shdma.c 36 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442
  1. /*
  2. * Renesas SuperH DMA Engine support
  3. *
  4. * base is drivers/dma/flsdma.c
  5. *
  6. * Copyright (C) 2009 Nobuhiro Iwamatsu <iwamatsu.nobuhiro@renesas.com>
  7. * Copyright (C) 2009 Renesas Solutions, Inc. All rights reserved.
  8. * Copyright (C) 2007 Freescale Semiconductor, Inc. All rights reserved.
  9. *
  10. * This is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License as published by
  12. * the Free Software Foundation; either version 2 of the License, or
  13. * (at your option) any later version.
  14. *
  15. * - DMA of SuperH does not have Hardware DMA chain mode.
  16. * - MAX DMA size is 16MB.
  17. *
  18. */
  19. #include <linux/init.h>
  20. #include <linux/module.h>
  21. #include <linux/slab.h>
  22. #include <linux/interrupt.h>
  23. #include <linux/dmaengine.h>
  24. #include <linux/delay.h>
  25. #include <linux/dma-mapping.h>
  26. #include <linux/platform_device.h>
  27. #include <linux/pm_runtime.h>
  28. #include <linux/sh_dma.h>
  29. #include <linux/notifier.h>
  30. #include <linux/kdebug.h>
  31. #include <linux/spinlock.h>
  32. #include <linux/rculist.h>
  33. #include "shdma.h"
  34. /* DMA descriptor control */
  35. enum sh_dmae_desc_status {
  36. DESC_IDLE,
  37. DESC_PREPARED,
  38. DESC_SUBMITTED,
  39. DESC_COMPLETED, /* completed, have to call callback */
  40. DESC_WAITING, /* callback called, waiting for ack / re-submit */
  41. };
  42. #define NR_DESCS_PER_CHANNEL 32
  43. /* Default MEMCPY transfer size = 2^2 = 4 bytes */
  44. #define LOG2_DEFAULT_XFER_SIZE 2
  45. /*
  46. * Used for write-side mutual exclusion for the global device list,
  47. * read-side synchronization by way of RCU, and per-controller data.
  48. */
  49. static DEFINE_SPINLOCK(sh_dmae_lock);
  50. static LIST_HEAD(sh_dmae_devices);
  51. /* A bitmask with bits enough for enum sh_dmae_slave_chan_id */
  52. static unsigned long sh_dmae_slave_used[BITS_TO_LONGS(SH_DMA_SLAVE_NUMBER)];
  53. static void sh_dmae_chan_ld_cleanup(struct sh_dmae_chan *sh_chan, bool all);
  54. static void sh_dmae_writel(struct sh_dmae_chan *sh_dc, u32 data, u32 reg)
  55. {
  56. __raw_writel(data, sh_dc->base + reg / sizeof(u32));
  57. }
  58. static u32 sh_dmae_readl(struct sh_dmae_chan *sh_dc, u32 reg)
  59. {
  60. return __raw_readl(sh_dc->base + reg / sizeof(u32));
  61. }
  62. static u16 dmaor_read(struct sh_dmae_device *shdev)
  63. {
  64. return __raw_readw(shdev->chan_reg + DMAOR / sizeof(u32));
  65. }
  66. static void dmaor_write(struct sh_dmae_device *shdev, u16 data)
  67. {
  68. __raw_writew(data, shdev->chan_reg + DMAOR / sizeof(u32));
  69. }
  70. /*
  71. * Reset DMA controller
  72. *
  73. * SH7780 has two DMAOR register
  74. */
  75. static void sh_dmae_ctl_stop(struct sh_dmae_device *shdev)
  76. {
  77. unsigned short dmaor;
  78. unsigned long flags;
  79. spin_lock_irqsave(&sh_dmae_lock, flags);
  80. dmaor = dmaor_read(shdev);
  81. dmaor_write(shdev, dmaor & ~(DMAOR_NMIF | DMAOR_AE | DMAOR_DME));
  82. spin_unlock_irqrestore(&sh_dmae_lock, flags);
  83. }
  84. static int sh_dmae_rst(struct sh_dmae_device *shdev)
  85. {
  86. unsigned short dmaor;
  87. unsigned long flags;
  88. spin_lock_irqsave(&sh_dmae_lock, flags);
  89. dmaor = dmaor_read(shdev) & ~(DMAOR_NMIF | DMAOR_AE | DMAOR_DME);
  90. dmaor_write(shdev, dmaor | shdev->pdata->dmaor_init);
  91. dmaor = dmaor_read(shdev);
  92. spin_unlock_irqrestore(&sh_dmae_lock, flags);
  93. if (dmaor & (DMAOR_AE | DMAOR_NMIF)) {
  94. dev_warn(shdev->common.dev, "Can't initialize DMAOR.\n");
  95. return -EIO;
  96. }
  97. return 0;
  98. }
  99. static bool dmae_is_busy(struct sh_dmae_chan *sh_chan)
  100. {
  101. u32 chcr = sh_dmae_readl(sh_chan, CHCR);
  102. if ((chcr & (CHCR_DE | CHCR_TE)) == CHCR_DE)
  103. return true; /* working */
  104. return false; /* waiting */
  105. }
  106. static unsigned int calc_xmit_shift(struct sh_dmae_chan *sh_chan, u32 chcr)
  107. {
  108. struct sh_dmae_device *shdev = container_of(sh_chan->common.device,
  109. struct sh_dmae_device, common);
  110. struct sh_dmae_pdata *pdata = shdev->pdata;
  111. int cnt = ((chcr & pdata->ts_low_mask) >> pdata->ts_low_shift) |
  112. ((chcr & pdata->ts_high_mask) >> pdata->ts_high_shift);
  113. if (cnt >= pdata->ts_shift_num)
  114. cnt = 0;
  115. return pdata->ts_shift[cnt];
  116. }
  117. static u32 log2size_to_chcr(struct sh_dmae_chan *sh_chan, int l2size)
  118. {
  119. struct sh_dmae_device *shdev = container_of(sh_chan->common.device,
  120. struct sh_dmae_device, common);
  121. struct sh_dmae_pdata *pdata = shdev->pdata;
  122. int i;
  123. for (i = 0; i < pdata->ts_shift_num; i++)
  124. if (pdata->ts_shift[i] == l2size)
  125. break;
  126. if (i == pdata->ts_shift_num)
  127. i = 0;
  128. return ((i << pdata->ts_low_shift) & pdata->ts_low_mask) |
  129. ((i << pdata->ts_high_shift) & pdata->ts_high_mask);
  130. }
  131. static void dmae_set_reg(struct sh_dmae_chan *sh_chan, struct sh_dmae_regs *hw)
  132. {
  133. sh_dmae_writel(sh_chan, hw->sar, SAR);
  134. sh_dmae_writel(sh_chan, hw->dar, DAR);
  135. sh_dmae_writel(sh_chan, hw->tcr >> sh_chan->xmit_shift, TCR);
  136. }
  137. static void dmae_start(struct sh_dmae_chan *sh_chan)
  138. {
  139. u32 chcr = sh_dmae_readl(sh_chan, CHCR);
  140. chcr |= CHCR_DE | CHCR_IE;
  141. sh_dmae_writel(sh_chan, chcr & ~CHCR_TE, CHCR);
  142. }
  143. static void dmae_halt(struct sh_dmae_chan *sh_chan)
  144. {
  145. u32 chcr = sh_dmae_readl(sh_chan, CHCR);
  146. chcr &= ~(CHCR_DE | CHCR_TE | CHCR_IE);
  147. sh_dmae_writel(sh_chan, chcr, CHCR);
  148. }
  149. static void dmae_init(struct sh_dmae_chan *sh_chan)
  150. {
  151. /*
  152. * Default configuration for dual address memory-memory transfer.
  153. * 0x400 represents auto-request.
  154. */
  155. u32 chcr = DM_INC | SM_INC | 0x400 | log2size_to_chcr(sh_chan,
  156. LOG2_DEFAULT_XFER_SIZE);
  157. sh_chan->xmit_shift = calc_xmit_shift(sh_chan, chcr);
  158. sh_dmae_writel(sh_chan, chcr, CHCR);
  159. }
  160. static int dmae_set_chcr(struct sh_dmae_chan *sh_chan, u32 val)
  161. {
  162. /* If DMA is active, cannot set CHCR. TODO: remove this superfluous check */
  163. if (dmae_is_busy(sh_chan))
  164. return -EBUSY;
  165. sh_chan->xmit_shift = calc_xmit_shift(sh_chan, val);
  166. sh_dmae_writel(sh_chan, val, CHCR);
  167. return 0;
  168. }
  169. static int dmae_set_dmars(struct sh_dmae_chan *sh_chan, u16 val)
  170. {
  171. struct sh_dmae_device *shdev = container_of(sh_chan->common.device,
  172. struct sh_dmae_device, common);
  173. struct sh_dmae_pdata *pdata = shdev->pdata;
  174. const struct sh_dmae_channel *chan_pdata = &pdata->channel[sh_chan->id];
  175. u16 __iomem *addr = shdev->dmars;
  176. int shift = chan_pdata->dmars_bit;
  177. if (dmae_is_busy(sh_chan))
  178. return -EBUSY;
  179. /* in the case of a missing DMARS resource use first memory window */
  180. if (!addr)
  181. addr = (u16 __iomem *)shdev->chan_reg;
  182. addr += chan_pdata->dmars / sizeof(u16);
  183. __raw_writew((__raw_readw(addr) & (0xff00 >> shift)) | (val << shift),
  184. addr);
  185. return 0;
  186. }
  187. static dma_cookie_t sh_dmae_tx_submit(struct dma_async_tx_descriptor *tx)
  188. {
  189. struct sh_desc *desc = tx_to_sh_desc(tx), *chunk, *last = desc, *c;
  190. struct sh_dmae_chan *sh_chan = to_sh_chan(tx->chan);
  191. dma_async_tx_callback callback = tx->callback;
  192. dma_cookie_t cookie;
  193. spin_lock_bh(&sh_chan->desc_lock);
  194. cookie = sh_chan->common.cookie;
  195. cookie++;
  196. if (cookie < 0)
  197. cookie = 1;
  198. sh_chan->common.cookie = cookie;
  199. tx->cookie = cookie;
  200. /* Mark all chunks of this descriptor as submitted, move to the queue */
  201. list_for_each_entry_safe(chunk, c, desc->node.prev, node) {
  202. /*
  203. * All chunks are on the global ld_free, so, we have to find
  204. * the end of the chain ourselves
  205. */
  206. if (chunk != desc && (chunk->mark == DESC_IDLE ||
  207. chunk->async_tx.cookie > 0 ||
  208. chunk->async_tx.cookie == -EBUSY ||
  209. &chunk->node == &sh_chan->ld_free))
  210. break;
  211. chunk->mark = DESC_SUBMITTED;
  212. /* Callback goes to the last chunk */
  213. chunk->async_tx.callback = NULL;
  214. chunk->cookie = cookie;
  215. list_move_tail(&chunk->node, &sh_chan->ld_queue);
  216. last = chunk;
  217. }
  218. last->async_tx.callback = callback;
  219. last->async_tx.callback_param = tx->callback_param;
  220. dev_dbg(sh_chan->dev, "submit #%d@%p on %d: %x[%d] -> %x\n",
  221. tx->cookie, &last->async_tx, sh_chan->id,
  222. desc->hw.sar, desc->hw.tcr, desc->hw.dar);
  223. spin_unlock_bh(&sh_chan->desc_lock);
  224. return cookie;
  225. }
  226. /* Called with desc_lock held */
  227. static struct sh_desc *sh_dmae_get_desc(struct sh_dmae_chan *sh_chan)
  228. {
  229. struct sh_desc *desc;
  230. list_for_each_entry(desc, &sh_chan->ld_free, node)
  231. if (desc->mark != DESC_PREPARED) {
  232. BUG_ON(desc->mark != DESC_IDLE);
  233. list_del(&desc->node);
  234. return desc;
  235. }
  236. return NULL;
  237. }
  238. static const struct sh_dmae_slave_config *sh_dmae_find_slave(
  239. struct sh_dmae_chan *sh_chan, struct sh_dmae_slave *param)
  240. {
  241. struct dma_device *dma_dev = sh_chan->common.device;
  242. struct sh_dmae_device *shdev = container_of(dma_dev,
  243. struct sh_dmae_device, common);
  244. struct sh_dmae_pdata *pdata = shdev->pdata;
  245. int i;
  246. if (param->slave_id >= SH_DMA_SLAVE_NUMBER)
  247. return NULL;
  248. for (i = 0; i < pdata->slave_num; i++)
  249. if (pdata->slave[i].slave_id == param->slave_id)
  250. return pdata->slave + i;
  251. return NULL;
  252. }
  253. static int sh_dmae_alloc_chan_resources(struct dma_chan *chan)
  254. {
  255. struct sh_dmae_chan *sh_chan = to_sh_chan(chan);
  256. struct sh_desc *desc;
  257. struct sh_dmae_slave *param = chan->private;
  258. int ret;
  259. pm_runtime_get_sync(sh_chan->dev);
  260. /*
  261. * This relies on the guarantee from dmaengine that alloc_chan_resources
  262. * never runs concurrently with itself or free_chan_resources.
  263. */
  264. if (param) {
  265. const struct sh_dmae_slave_config *cfg;
  266. cfg = sh_dmae_find_slave(sh_chan, param);
  267. if (!cfg) {
  268. ret = -EINVAL;
  269. goto efindslave;
  270. }
  271. if (test_and_set_bit(param->slave_id, sh_dmae_slave_used)) {
  272. ret = -EBUSY;
  273. goto etestused;
  274. }
  275. param->config = cfg;
  276. dmae_set_dmars(sh_chan, cfg->mid_rid);
  277. dmae_set_chcr(sh_chan, cfg->chcr);
  278. } else {
  279. dmae_init(sh_chan);
  280. }
  281. spin_lock_bh(&sh_chan->desc_lock);
  282. while (sh_chan->descs_allocated < NR_DESCS_PER_CHANNEL) {
  283. spin_unlock_bh(&sh_chan->desc_lock);
  284. desc = kzalloc(sizeof(struct sh_desc), GFP_KERNEL);
  285. if (!desc) {
  286. spin_lock_bh(&sh_chan->desc_lock);
  287. break;
  288. }
  289. dma_async_tx_descriptor_init(&desc->async_tx,
  290. &sh_chan->common);
  291. desc->async_tx.tx_submit = sh_dmae_tx_submit;
  292. desc->mark = DESC_IDLE;
  293. spin_lock_bh(&sh_chan->desc_lock);
  294. list_add(&desc->node, &sh_chan->ld_free);
  295. sh_chan->descs_allocated++;
  296. }
  297. spin_unlock_bh(&sh_chan->desc_lock);
  298. if (!sh_chan->descs_allocated) {
  299. ret = -ENOMEM;
  300. goto edescalloc;
  301. }
  302. return sh_chan->descs_allocated;
  303. edescalloc:
  304. if (param)
  305. clear_bit(param->slave_id, sh_dmae_slave_used);
  306. etestused:
  307. efindslave:
  308. pm_runtime_put(sh_chan->dev);
  309. return ret;
  310. }
  311. /*
  312. * sh_dma_free_chan_resources - Free all resources of the channel.
  313. */
  314. static void sh_dmae_free_chan_resources(struct dma_chan *chan)
  315. {
  316. struct sh_dmae_chan *sh_chan = to_sh_chan(chan);
  317. struct sh_desc *desc, *_desc;
  318. LIST_HEAD(list);
  319. int descs = sh_chan->descs_allocated;
  320. /* Protect against ISR */
  321. spin_lock_irq(&sh_chan->desc_lock);
  322. dmae_halt(sh_chan);
  323. spin_unlock_irq(&sh_chan->desc_lock);
  324. /* Now no new interrupts will occur */
  325. /* Prepared and not submitted descriptors can still be on the queue */
  326. if (!list_empty(&sh_chan->ld_queue))
  327. sh_dmae_chan_ld_cleanup(sh_chan, true);
  328. if (chan->private) {
  329. /* The caller is holding dma_list_mutex */
  330. struct sh_dmae_slave *param = chan->private;
  331. clear_bit(param->slave_id, sh_dmae_slave_used);
  332. chan->private = NULL;
  333. }
  334. spin_lock_bh(&sh_chan->desc_lock);
  335. list_splice_init(&sh_chan->ld_free, &list);
  336. sh_chan->descs_allocated = 0;
  337. spin_unlock_bh(&sh_chan->desc_lock);
  338. if (descs > 0)
  339. pm_runtime_put(sh_chan->dev);
  340. list_for_each_entry_safe(desc, _desc, &list, node)
  341. kfree(desc);
  342. }
  343. /**
  344. * sh_dmae_add_desc - get, set up and return one transfer descriptor
  345. * @sh_chan: DMA channel
  346. * @flags: DMA transfer flags
  347. * @dest: destination DMA address, incremented when direction equals
  348. * DMA_FROM_DEVICE or DMA_BIDIRECTIONAL
  349. * @src: source DMA address, incremented when direction equals
  350. * DMA_TO_DEVICE or DMA_BIDIRECTIONAL
  351. * @len: DMA transfer length
  352. * @first: if NULL, set to the current descriptor and cookie set to -EBUSY
  353. * @direction: needed for slave DMA to decide which address to keep constant,
  354. * equals DMA_BIDIRECTIONAL for MEMCPY
  355. * Returns 0 or an error
  356. * Locks: called with desc_lock held
  357. */
  358. static struct sh_desc *sh_dmae_add_desc(struct sh_dmae_chan *sh_chan,
  359. unsigned long flags, dma_addr_t *dest, dma_addr_t *src, size_t *len,
  360. struct sh_desc **first, enum dma_data_direction direction)
  361. {
  362. struct sh_desc *new;
  363. size_t copy_size;
  364. if (!*len)
  365. return NULL;
  366. /* Allocate the link descriptor from the free list */
  367. new = sh_dmae_get_desc(sh_chan);
  368. if (!new) {
  369. dev_err(sh_chan->dev, "No free link descriptor available\n");
  370. return NULL;
  371. }
  372. copy_size = min(*len, (size_t)SH_DMA_TCR_MAX + 1);
  373. new->hw.sar = *src;
  374. new->hw.dar = *dest;
  375. new->hw.tcr = copy_size;
  376. if (!*first) {
  377. /* First desc */
  378. new->async_tx.cookie = -EBUSY;
  379. *first = new;
  380. } else {
  381. /* Other desc - invisible to the user */
  382. new->async_tx.cookie = -EINVAL;
  383. }
  384. dev_dbg(sh_chan->dev,
  385. "chaining (%u/%u)@%x -> %x with %p, cookie %d, shift %d\n",
  386. copy_size, *len, *src, *dest, &new->async_tx,
  387. new->async_tx.cookie, sh_chan->xmit_shift);
  388. new->mark = DESC_PREPARED;
  389. new->async_tx.flags = flags;
  390. new->direction = direction;
  391. *len -= copy_size;
  392. if (direction == DMA_BIDIRECTIONAL || direction == DMA_TO_DEVICE)
  393. *src += copy_size;
  394. if (direction == DMA_BIDIRECTIONAL || direction == DMA_FROM_DEVICE)
  395. *dest += copy_size;
  396. return new;
  397. }
  398. /*
  399. * sh_dmae_prep_sg - prepare transfer descriptors from an SG list
  400. *
  401. * Common routine for public (MEMCPY) and slave DMA. The MEMCPY case is also
  402. * converted to scatter-gather to guarantee consistent locking and a correct
  403. * list manipulation. For slave DMA direction carries the usual meaning, and,
  404. * logically, the SG list is RAM and the addr variable contains slave address,
  405. * e.g., the FIFO I/O register. For MEMCPY direction equals DMA_BIDIRECTIONAL
  406. * and the SG list contains only one element and points at the source buffer.
  407. */
  408. static struct dma_async_tx_descriptor *sh_dmae_prep_sg(struct sh_dmae_chan *sh_chan,
  409. struct scatterlist *sgl, unsigned int sg_len, dma_addr_t *addr,
  410. enum dma_data_direction direction, unsigned long flags)
  411. {
  412. struct scatterlist *sg;
  413. struct sh_desc *first = NULL, *new = NULL /* compiler... */;
  414. LIST_HEAD(tx_list);
  415. int chunks = 0;
  416. int i;
  417. if (!sg_len)
  418. return NULL;
  419. for_each_sg(sgl, sg, sg_len, i)
  420. chunks += (sg_dma_len(sg) + SH_DMA_TCR_MAX) /
  421. (SH_DMA_TCR_MAX + 1);
  422. /* Have to lock the whole loop to protect against concurrent release */
  423. spin_lock_bh(&sh_chan->desc_lock);
  424. /*
  425. * Chaining:
  426. * first descriptor is what user is dealing with in all API calls, its
  427. * cookie is at first set to -EBUSY, at tx-submit to a positive
  428. * number
  429. * if more than one chunk is needed further chunks have cookie = -EINVAL
  430. * the last chunk, if not equal to the first, has cookie = -ENOSPC
  431. * all chunks are linked onto the tx_list head with their .node heads
  432. * only during this function, then they are immediately spliced
  433. * back onto the free list in form of a chain
  434. */
  435. for_each_sg(sgl, sg, sg_len, i) {
  436. dma_addr_t sg_addr = sg_dma_address(sg);
  437. size_t len = sg_dma_len(sg);
  438. if (!len)
  439. goto err_get_desc;
  440. do {
  441. dev_dbg(sh_chan->dev, "Add SG #%d@%p[%d], dma %llx\n",
  442. i, sg, len, (unsigned long long)sg_addr);
  443. if (direction == DMA_FROM_DEVICE)
  444. new = sh_dmae_add_desc(sh_chan, flags,
  445. &sg_addr, addr, &len, &first,
  446. direction);
  447. else
  448. new = sh_dmae_add_desc(sh_chan, flags,
  449. addr, &sg_addr, &len, &first,
  450. direction);
  451. if (!new)
  452. goto err_get_desc;
  453. new->chunks = chunks--;
  454. list_add_tail(&new->node, &tx_list);
  455. } while (len);
  456. }
  457. if (new != first)
  458. new->async_tx.cookie = -ENOSPC;
  459. /* Put them back on the free list, so, they don't get lost */
  460. list_splice_tail(&tx_list, &sh_chan->ld_free);
  461. spin_unlock_bh(&sh_chan->desc_lock);
  462. return &first->async_tx;
  463. err_get_desc:
  464. list_for_each_entry(new, &tx_list, node)
  465. new->mark = DESC_IDLE;
  466. list_splice(&tx_list, &sh_chan->ld_free);
  467. spin_unlock_bh(&sh_chan->desc_lock);
  468. return NULL;
  469. }
  470. static struct dma_async_tx_descriptor *sh_dmae_prep_memcpy(
  471. struct dma_chan *chan, dma_addr_t dma_dest, dma_addr_t dma_src,
  472. size_t len, unsigned long flags)
  473. {
  474. struct sh_dmae_chan *sh_chan;
  475. struct scatterlist sg;
  476. if (!chan || !len)
  477. return NULL;
  478. sh_chan = to_sh_chan(chan);
  479. sg_init_table(&sg, 1);
  480. sg_set_page(&sg, pfn_to_page(PFN_DOWN(dma_src)), len,
  481. offset_in_page(dma_src));
  482. sg_dma_address(&sg) = dma_src;
  483. sg_dma_len(&sg) = len;
  484. return sh_dmae_prep_sg(sh_chan, &sg, 1, &dma_dest, DMA_BIDIRECTIONAL,
  485. flags);
  486. }
  487. static struct dma_async_tx_descriptor *sh_dmae_prep_slave_sg(
  488. struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
  489. enum dma_data_direction direction, unsigned long flags)
  490. {
  491. struct sh_dmae_slave *param;
  492. struct sh_dmae_chan *sh_chan;
  493. dma_addr_t slave_addr;
  494. if (!chan)
  495. return NULL;
  496. sh_chan = to_sh_chan(chan);
  497. param = chan->private;
  498. /* Someone calling slave DMA on a public channel? */
  499. if (!param || !sg_len) {
  500. dev_warn(sh_chan->dev, "%s: bad parameter: %p, %d, %d\n",
  501. __func__, param, sg_len, param ? param->slave_id : -1);
  502. return NULL;
  503. }
  504. slave_addr = param->config->addr;
  505. /*
  506. * if (param != NULL), this is a successfully requested slave channel,
  507. * therefore param->config != NULL too.
  508. */
  509. return sh_dmae_prep_sg(sh_chan, sgl, sg_len, &slave_addr,
  510. direction, flags);
  511. }
  512. static int sh_dmae_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
  513. unsigned long arg)
  514. {
  515. struct sh_dmae_chan *sh_chan = to_sh_chan(chan);
  516. /* Only supports DMA_TERMINATE_ALL */
  517. if (cmd != DMA_TERMINATE_ALL)
  518. return -ENXIO;
  519. if (!chan)
  520. return -EINVAL;
  521. spin_lock_bh(&sh_chan->desc_lock);
  522. dmae_halt(sh_chan);
  523. if (!list_empty(&sh_chan->ld_queue)) {
  524. /* Record partial transfer */
  525. struct sh_desc *desc = list_entry(sh_chan->ld_queue.next,
  526. struct sh_desc, node);
  527. desc->partial = (desc->hw.tcr - sh_dmae_readl(sh_chan, TCR)) <<
  528. sh_chan->xmit_shift;
  529. }
  530. spin_unlock_bh(&sh_chan->desc_lock);
  531. sh_dmae_chan_ld_cleanup(sh_chan, true);
  532. return 0;
  533. }
  534. static dma_async_tx_callback __ld_cleanup(struct sh_dmae_chan *sh_chan, bool all)
  535. {
  536. struct sh_desc *desc, *_desc;
  537. /* Is the "exposed" head of a chain acked? */
  538. bool head_acked = false;
  539. dma_cookie_t cookie = 0;
  540. dma_async_tx_callback callback = NULL;
  541. void *param = NULL;
  542. spin_lock_bh(&sh_chan->desc_lock);
  543. list_for_each_entry_safe(desc, _desc, &sh_chan->ld_queue, node) {
  544. struct dma_async_tx_descriptor *tx = &desc->async_tx;
  545. BUG_ON(tx->cookie > 0 && tx->cookie != desc->cookie);
  546. BUG_ON(desc->mark != DESC_SUBMITTED &&
  547. desc->mark != DESC_COMPLETED &&
  548. desc->mark != DESC_WAITING);
  549. /*
  550. * queue is ordered, and we use this loop to (1) clean up all
  551. * completed descriptors, and to (2) update descriptor flags of
  552. * any chunks in a (partially) completed chain
  553. */
  554. if (!all && desc->mark == DESC_SUBMITTED &&
  555. desc->cookie != cookie)
  556. break;
  557. if (tx->cookie > 0)
  558. cookie = tx->cookie;
  559. if (desc->mark == DESC_COMPLETED && desc->chunks == 1) {
  560. if (sh_chan->completed_cookie != desc->cookie - 1)
  561. dev_dbg(sh_chan->dev,
  562. "Completing cookie %d, expected %d\n",
  563. desc->cookie,
  564. sh_chan->completed_cookie + 1);
  565. sh_chan->completed_cookie = desc->cookie;
  566. }
  567. /* Call callback on the last chunk */
  568. if (desc->mark == DESC_COMPLETED && tx->callback) {
  569. desc->mark = DESC_WAITING;
  570. callback = tx->callback;
  571. param = tx->callback_param;
  572. dev_dbg(sh_chan->dev, "descriptor #%d@%p on %d callback\n",
  573. tx->cookie, tx, sh_chan->id);
  574. BUG_ON(desc->chunks != 1);
  575. break;
  576. }
  577. if (tx->cookie > 0 || tx->cookie == -EBUSY) {
  578. if (desc->mark == DESC_COMPLETED) {
  579. BUG_ON(tx->cookie < 0);
  580. desc->mark = DESC_WAITING;
  581. }
  582. head_acked = async_tx_test_ack(tx);
  583. } else {
  584. switch (desc->mark) {
  585. case DESC_COMPLETED:
  586. desc->mark = DESC_WAITING;
  587. /* Fall through */
  588. case DESC_WAITING:
  589. if (head_acked)
  590. async_tx_ack(&desc->async_tx);
  591. }
  592. }
  593. dev_dbg(sh_chan->dev, "descriptor %p #%d completed.\n",
  594. tx, tx->cookie);
  595. if (((desc->mark == DESC_COMPLETED ||
  596. desc->mark == DESC_WAITING) &&
  597. async_tx_test_ack(&desc->async_tx)) || all) {
  598. /* Remove from ld_queue list */
  599. desc->mark = DESC_IDLE;
  600. list_move(&desc->node, &sh_chan->ld_free);
  601. }
  602. }
  603. if (all && !callback)
  604. /*
  605. * Terminating and the loop completed normally: forgive
  606. * uncompleted cookies
  607. */
  608. sh_chan->completed_cookie = sh_chan->common.cookie;
  609. spin_unlock_bh(&sh_chan->desc_lock);
  610. if (callback)
  611. callback(param);
  612. return callback;
  613. }
  614. /*
  615. * sh_chan_ld_cleanup - Clean up link descriptors
  616. *
  617. * This function cleans up the ld_queue of DMA channel.
  618. */
  619. static void sh_dmae_chan_ld_cleanup(struct sh_dmae_chan *sh_chan, bool all)
  620. {
  621. while (__ld_cleanup(sh_chan, all))
  622. ;
  623. }
  624. static void sh_chan_xfer_ld_queue(struct sh_dmae_chan *sh_chan)
  625. {
  626. struct sh_desc *desc;
  627. spin_lock_bh(&sh_chan->desc_lock);
  628. /* DMA work check */
  629. if (dmae_is_busy(sh_chan)) {
  630. spin_unlock_bh(&sh_chan->desc_lock);
  631. return;
  632. }
  633. /* Find the first not transferred descriptor */
  634. list_for_each_entry(desc, &sh_chan->ld_queue, node)
  635. if (desc->mark == DESC_SUBMITTED) {
  636. dev_dbg(sh_chan->dev, "Queue #%d to %d: %u@%x -> %x\n",
  637. desc->async_tx.cookie, sh_chan->id,
  638. desc->hw.tcr, desc->hw.sar, desc->hw.dar);
  639. /* Get the ld start address from ld_queue */
  640. dmae_set_reg(sh_chan, &desc->hw);
  641. dmae_start(sh_chan);
  642. break;
  643. }
  644. spin_unlock_bh(&sh_chan->desc_lock);
  645. }
  646. static void sh_dmae_memcpy_issue_pending(struct dma_chan *chan)
  647. {
  648. struct sh_dmae_chan *sh_chan = to_sh_chan(chan);
  649. sh_chan_xfer_ld_queue(sh_chan);
  650. }
  651. static enum dma_status sh_dmae_tx_status(struct dma_chan *chan,
  652. dma_cookie_t cookie,
  653. struct dma_tx_state *txstate)
  654. {
  655. struct sh_dmae_chan *sh_chan = to_sh_chan(chan);
  656. dma_cookie_t last_used;
  657. dma_cookie_t last_complete;
  658. enum dma_status status;
  659. sh_dmae_chan_ld_cleanup(sh_chan, false);
  660. /* First read completed cookie to avoid a skew */
  661. last_complete = sh_chan->completed_cookie;
  662. rmb();
  663. last_used = chan->cookie;
  664. BUG_ON(last_complete < 0);
  665. dma_set_tx_state(txstate, last_complete, last_used, 0);
  666. spin_lock_bh(&sh_chan->desc_lock);
  667. status = dma_async_is_complete(cookie, last_complete, last_used);
  668. /*
  669. * If we don't find cookie on the queue, it has been aborted and we have
  670. * to report error
  671. */
  672. if (status != DMA_SUCCESS) {
  673. struct sh_desc *desc;
  674. status = DMA_ERROR;
  675. list_for_each_entry(desc, &sh_chan->ld_queue, node)
  676. if (desc->cookie == cookie) {
  677. status = DMA_IN_PROGRESS;
  678. break;
  679. }
  680. }
  681. spin_unlock_bh(&sh_chan->desc_lock);
  682. return status;
  683. }
  684. static irqreturn_t sh_dmae_interrupt(int irq, void *data)
  685. {
  686. irqreturn_t ret = IRQ_NONE;
  687. struct sh_dmae_chan *sh_chan = data;
  688. u32 chcr;
  689. spin_lock(&sh_chan->desc_lock);
  690. chcr = sh_dmae_readl(sh_chan, CHCR);
  691. if (chcr & CHCR_TE) {
  692. /* DMA stop */
  693. dmae_halt(sh_chan);
  694. ret = IRQ_HANDLED;
  695. tasklet_schedule(&sh_chan->tasklet);
  696. }
  697. spin_unlock(&sh_chan->desc_lock);
  698. return ret;
  699. }
  700. /* Called from error IRQ or NMI */
  701. static bool sh_dmae_reset(struct sh_dmae_device *shdev)
  702. {
  703. unsigned int handled = 0;
  704. int i;
  705. /* halt the dma controller */
  706. sh_dmae_ctl_stop(shdev);
  707. /* We cannot detect, which channel caused the error, have to reset all */
  708. for (i = 0; i < SH_DMAC_MAX_CHANNELS; i++) {
  709. struct sh_dmae_chan *sh_chan = shdev->chan[i];
  710. struct sh_desc *desc;
  711. LIST_HEAD(dl);
  712. if (!sh_chan)
  713. continue;
  714. spin_lock(&sh_chan->desc_lock);
  715. /* Stop the channel */
  716. dmae_halt(sh_chan);
  717. list_splice_init(&sh_chan->ld_queue, &dl);
  718. spin_unlock(&sh_chan->desc_lock);
  719. /* Complete all */
  720. list_for_each_entry(desc, &dl, node) {
  721. struct dma_async_tx_descriptor *tx = &desc->async_tx;
  722. desc->mark = DESC_IDLE;
  723. if (tx->callback)
  724. tx->callback(tx->callback_param);
  725. }
  726. spin_lock(&sh_chan->desc_lock);
  727. list_splice(&dl, &sh_chan->ld_free);
  728. spin_unlock(&sh_chan->desc_lock);
  729. handled++;
  730. }
  731. sh_dmae_rst(shdev);
  732. return !!handled;
  733. }
  734. static irqreturn_t sh_dmae_err(int irq, void *data)
  735. {
  736. struct sh_dmae_device *shdev = data;
  737. if (!(dmaor_read(shdev) & DMAOR_AE))
  738. return IRQ_NONE;
  739. sh_dmae_reset(data);
  740. return IRQ_HANDLED;
  741. }
  742. static void dmae_do_tasklet(unsigned long data)
  743. {
  744. struct sh_dmae_chan *sh_chan = (struct sh_dmae_chan *)data;
  745. struct sh_desc *desc;
  746. u32 sar_buf = sh_dmae_readl(sh_chan, SAR);
  747. u32 dar_buf = sh_dmae_readl(sh_chan, DAR);
  748. spin_lock(&sh_chan->desc_lock);
  749. list_for_each_entry(desc, &sh_chan->ld_queue, node) {
  750. if (desc->mark == DESC_SUBMITTED &&
  751. ((desc->direction == DMA_FROM_DEVICE &&
  752. (desc->hw.dar + desc->hw.tcr) == dar_buf) ||
  753. (desc->hw.sar + desc->hw.tcr) == sar_buf)) {
  754. dev_dbg(sh_chan->dev, "done #%d@%p dst %u\n",
  755. desc->async_tx.cookie, &desc->async_tx,
  756. desc->hw.dar);
  757. desc->mark = DESC_COMPLETED;
  758. break;
  759. }
  760. }
  761. spin_unlock(&sh_chan->desc_lock);
  762. /* Next desc */
  763. sh_chan_xfer_ld_queue(sh_chan);
  764. sh_dmae_chan_ld_cleanup(sh_chan, false);
  765. }
  766. static bool sh_dmae_nmi_notify(struct sh_dmae_device *shdev)
  767. {
  768. /* Fast path out if NMIF is not asserted for this controller */
  769. if ((dmaor_read(shdev) & DMAOR_NMIF) == 0)
  770. return false;
  771. return sh_dmae_reset(shdev);
  772. }
  773. static int sh_dmae_nmi_handler(struct notifier_block *self,
  774. unsigned long cmd, void *data)
  775. {
  776. struct sh_dmae_device *shdev;
  777. int ret = NOTIFY_DONE;
  778. bool triggered;
  779. /*
  780. * Only concern ourselves with NMI events.
  781. *
  782. * Normally we would check the die chain value, but as this needs
  783. * to be architecture independent, check for NMI context instead.
  784. */
  785. if (!in_nmi())
  786. return NOTIFY_DONE;
  787. rcu_read_lock();
  788. list_for_each_entry_rcu(shdev, &sh_dmae_devices, node) {
  789. /*
  790. * Only stop if one of the controllers has NMIF asserted,
  791. * we do not want to interfere with regular address error
  792. * handling or NMI events that don't concern the DMACs.
  793. */
  794. triggered = sh_dmae_nmi_notify(shdev);
  795. if (triggered == true)
  796. ret = NOTIFY_OK;
  797. }
  798. rcu_read_unlock();
  799. return ret;
  800. }
  801. static struct notifier_block sh_dmae_nmi_notifier __read_mostly = {
  802. .notifier_call = sh_dmae_nmi_handler,
  803. /* Run before NMI debug handler and KGDB */
  804. .priority = 1,
  805. };
  806. static int __devinit sh_dmae_chan_probe(struct sh_dmae_device *shdev, int id,
  807. int irq, unsigned long flags)
  808. {
  809. int err;
  810. const struct sh_dmae_channel *chan_pdata = &shdev->pdata->channel[id];
  811. struct platform_device *pdev = to_platform_device(shdev->common.dev);
  812. struct sh_dmae_chan *new_sh_chan;
  813. /* alloc channel */
  814. new_sh_chan = kzalloc(sizeof(struct sh_dmae_chan), GFP_KERNEL);
  815. if (!new_sh_chan) {
  816. dev_err(shdev->common.dev,
  817. "No free memory for allocating dma channels!\n");
  818. return -ENOMEM;
  819. }
  820. /* copy struct dma_device */
  821. new_sh_chan->common.device = &shdev->common;
  822. new_sh_chan->dev = shdev->common.dev;
  823. new_sh_chan->id = id;
  824. new_sh_chan->irq = irq;
  825. new_sh_chan->base = shdev->chan_reg + chan_pdata->offset / sizeof(u32);
  826. /* Init DMA tasklet */
  827. tasklet_init(&new_sh_chan->tasklet, dmae_do_tasklet,
  828. (unsigned long)new_sh_chan);
  829. spin_lock_init(&new_sh_chan->desc_lock);
  830. /* Init descripter manage list */
  831. INIT_LIST_HEAD(&new_sh_chan->ld_queue);
  832. INIT_LIST_HEAD(&new_sh_chan->ld_free);
  833. /* Add the channel to DMA device channel list */
  834. list_add_tail(&new_sh_chan->common.device_node,
  835. &shdev->common.channels);
  836. shdev->common.chancnt++;
  837. if (pdev->id >= 0)
  838. snprintf(new_sh_chan->dev_id, sizeof(new_sh_chan->dev_id),
  839. "sh-dmae%d.%d", pdev->id, new_sh_chan->id);
  840. else
  841. snprintf(new_sh_chan->dev_id, sizeof(new_sh_chan->dev_id),
  842. "sh-dma%d", new_sh_chan->id);
  843. /* set up channel irq */
  844. err = request_irq(irq, &sh_dmae_interrupt, flags,
  845. new_sh_chan->dev_id, new_sh_chan);
  846. if (err) {
  847. dev_err(shdev->common.dev, "DMA channel %d request_irq error "
  848. "with return %d\n", id, err);
  849. goto err_no_irq;
  850. }
  851. shdev->chan[id] = new_sh_chan;
  852. return 0;
  853. err_no_irq:
  854. /* remove from dmaengine device node */
  855. list_del(&new_sh_chan->common.device_node);
  856. kfree(new_sh_chan);
  857. return err;
  858. }
  859. static void sh_dmae_chan_remove(struct sh_dmae_device *shdev)
  860. {
  861. int i;
  862. for (i = shdev->common.chancnt - 1 ; i >= 0 ; i--) {
  863. if (shdev->chan[i]) {
  864. struct sh_dmae_chan *sh_chan = shdev->chan[i];
  865. free_irq(sh_chan->irq, sh_chan);
  866. list_del(&sh_chan->common.device_node);
  867. kfree(sh_chan);
  868. shdev->chan[i] = NULL;
  869. }
  870. }
  871. shdev->common.chancnt = 0;
  872. }
  873. static int __init sh_dmae_probe(struct platform_device *pdev)
  874. {
  875. struct sh_dmae_pdata *pdata = pdev->dev.platform_data;
  876. unsigned long irqflags = IRQF_DISABLED,
  877. chan_flag[SH_DMAC_MAX_CHANNELS] = {};
  878. int errirq, chan_irq[SH_DMAC_MAX_CHANNELS];
  879. int err, i, irq_cnt = 0, irqres = 0, irq_cap = 0;
  880. struct sh_dmae_device *shdev;
  881. struct resource *chan, *dmars, *errirq_res, *chanirq_res;
  882. /* get platform data */
  883. if (!pdata || !pdata->channel_num)
  884. return -ENODEV;
  885. chan = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  886. /* DMARS area is optional */
  887. dmars = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  888. /*
  889. * IRQ resources:
  890. * 1. there always must be at least one IRQ IO-resource. On SH4 it is
  891. * the error IRQ, in which case it is the only IRQ in this resource:
  892. * start == end. If it is the only IRQ resource, all channels also
  893. * use the same IRQ.
  894. * 2. DMA channel IRQ resources can be specified one per resource or in
  895. * ranges (start != end)
  896. * 3. iff all events (channels and, optionally, error) on this
  897. * controller use the same IRQ, only one IRQ resource can be
  898. * specified, otherwise there must be one IRQ per channel, even if
  899. * some of them are equal
  900. * 4. if all IRQs on this controller are equal or if some specific IRQs
  901. * specify IORESOURCE_IRQ_SHAREABLE in their resources, they will be
  902. * requested with the IRQF_SHARED flag
  903. */
  904. errirq_res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
  905. if (!chan || !errirq_res)
  906. return -ENODEV;
  907. if (!request_mem_region(chan->start, resource_size(chan), pdev->name)) {
  908. dev_err(&pdev->dev, "DMAC register region already claimed\n");
  909. return -EBUSY;
  910. }
  911. if (dmars && !request_mem_region(dmars->start, resource_size(dmars), pdev->name)) {
  912. dev_err(&pdev->dev, "DMAC DMARS region already claimed\n");
  913. err = -EBUSY;
  914. goto ermrdmars;
  915. }
  916. err = -ENOMEM;
  917. shdev = kzalloc(sizeof(struct sh_dmae_device), GFP_KERNEL);
  918. if (!shdev) {
  919. dev_err(&pdev->dev, "Not enough memory\n");
  920. goto ealloc;
  921. }
  922. shdev->chan_reg = ioremap(chan->start, resource_size(chan));
  923. if (!shdev->chan_reg)
  924. goto emapchan;
  925. if (dmars) {
  926. shdev->dmars = ioremap(dmars->start, resource_size(dmars));
  927. if (!shdev->dmars)
  928. goto emapdmars;
  929. }
  930. /* platform data */
  931. shdev->pdata = pdata;
  932. platform_set_drvdata(pdev, shdev);
  933. pm_runtime_enable(&pdev->dev);
  934. pm_runtime_get_sync(&pdev->dev);
  935. spin_lock_irq(&sh_dmae_lock);
  936. list_add_tail_rcu(&shdev->node, &sh_dmae_devices);
  937. spin_unlock_irq(&sh_dmae_lock);
  938. /* reset dma controller - only needed as a test */
  939. err = sh_dmae_rst(shdev);
  940. if (err)
  941. goto rst_err;
  942. INIT_LIST_HEAD(&shdev->common.channels);
  943. dma_cap_set(DMA_MEMCPY, shdev->common.cap_mask);
  944. if (pdata->slave && pdata->slave_num)
  945. dma_cap_set(DMA_SLAVE, shdev->common.cap_mask);
  946. shdev->common.device_alloc_chan_resources
  947. = sh_dmae_alloc_chan_resources;
  948. shdev->common.device_free_chan_resources = sh_dmae_free_chan_resources;
  949. shdev->common.device_prep_dma_memcpy = sh_dmae_prep_memcpy;
  950. shdev->common.device_tx_status = sh_dmae_tx_status;
  951. shdev->common.device_issue_pending = sh_dmae_memcpy_issue_pending;
  952. /* Compulsory for DMA_SLAVE fields */
  953. shdev->common.device_prep_slave_sg = sh_dmae_prep_slave_sg;
  954. shdev->common.device_control = sh_dmae_control;
  955. shdev->common.dev = &pdev->dev;
  956. /* Default transfer size of 32 bytes requires 32-byte alignment */
  957. shdev->common.copy_align = LOG2_DEFAULT_XFER_SIZE;
  958. #if defined(CONFIG_CPU_SH4) || defined(CONFIG_ARCH_SHMOBILE)
  959. chanirq_res = platform_get_resource(pdev, IORESOURCE_IRQ, 1);
  960. if (!chanirq_res)
  961. chanirq_res = errirq_res;
  962. else
  963. irqres++;
  964. if (chanirq_res == errirq_res ||
  965. (errirq_res->flags & IORESOURCE_BITS) == IORESOURCE_IRQ_SHAREABLE)
  966. irqflags = IRQF_SHARED;
  967. errirq = errirq_res->start;
  968. err = request_irq(errirq, sh_dmae_err, irqflags,
  969. "DMAC Address Error", shdev);
  970. if (err) {
  971. dev_err(&pdev->dev,
  972. "DMA failed requesting irq #%d, error %d\n",
  973. errirq, err);
  974. goto eirq_err;
  975. }
  976. #else
  977. chanirq_res = errirq_res;
  978. #endif /* CONFIG_CPU_SH4 || CONFIG_ARCH_SHMOBILE */
  979. if (chanirq_res->start == chanirq_res->end &&
  980. !platform_get_resource(pdev, IORESOURCE_IRQ, 1)) {
  981. /* Special case - all multiplexed */
  982. for (; irq_cnt < pdata->channel_num; irq_cnt++) {
  983. if (irq_cnt < SH_DMAC_MAX_CHANNELS) {
  984. chan_irq[irq_cnt] = chanirq_res->start;
  985. chan_flag[irq_cnt] = IRQF_SHARED;
  986. } else {
  987. irq_cap = 1;
  988. break;
  989. }
  990. }
  991. } else {
  992. do {
  993. for (i = chanirq_res->start; i <= chanirq_res->end; i++) {
  994. if (irq_cnt >= SH_DMAC_MAX_CHANNELS) {
  995. irq_cap = 1;
  996. break;
  997. }
  998. if ((errirq_res->flags & IORESOURCE_BITS) ==
  999. IORESOURCE_IRQ_SHAREABLE)
  1000. chan_flag[irq_cnt] = IRQF_SHARED;
  1001. else
  1002. chan_flag[irq_cnt] = IRQF_DISABLED;
  1003. dev_dbg(&pdev->dev,
  1004. "Found IRQ %d for channel %d\n",
  1005. i, irq_cnt);
  1006. chan_irq[irq_cnt++] = i;
  1007. }
  1008. if (irq_cnt >= SH_DMAC_MAX_CHANNELS)
  1009. break;
  1010. chanirq_res = platform_get_resource(pdev,
  1011. IORESOURCE_IRQ, ++irqres);
  1012. } while (irq_cnt < pdata->channel_num && chanirq_res);
  1013. }
  1014. /* Create DMA Channel */
  1015. for (i = 0; i < irq_cnt; i++) {
  1016. err = sh_dmae_chan_probe(shdev, i, chan_irq[i], chan_flag[i]);
  1017. if (err)
  1018. goto chan_probe_err;
  1019. }
  1020. if (irq_cap)
  1021. dev_notice(&pdev->dev, "Attempting to register %d DMA "
  1022. "channels when a maximum of %d are supported.\n",
  1023. pdata->channel_num, SH_DMAC_MAX_CHANNELS);
  1024. pm_runtime_put(&pdev->dev);
  1025. dma_async_device_register(&shdev->common);
  1026. return err;
  1027. chan_probe_err:
  1028. sh_dmae_chan_remove(shdev);
  1029. #if defined(CONFIG_CPU_SH4) || defined(CONFIG_ARCH_SHMOBILE)
  1030. free_irq(errirq, shdev);
  1031. eirq_err:
  1032. #endif
  1033. rst_err:
  1034. spin_lock_irq(&sh_dmae_lock);
  1035. list_del_rcu(&shdev->node);
  1036. spin_unlock_irq(&sh_dmae_lock);
  1037. pm_runtime_put(&pdev->dev);
  1038. pm_runtime_disable(&pdev->dev);
  1039. if (dmars)
  1040. iounmap(shdev->dmars);
  1041. platform_set_drvdata(pdev, NULL);
  1042. emapdmars:
  1043. iounmap(shdev->chan_reg);
  1044. synchronize_rcu();
  1045. emapchan:
  1046. kfree(shdev);
  1047. ealloc:
  1048. if (dmars)
  1049. release_mem_region(dmars->start, resource_size(dmars));
  1050. ermrdmars:
  1051. release_mem_region(chan->start, resource_size(chan));
  1052. return err;
  1053. }
  1054. static int __exit sh_dmae_remove(struct platform_device *pdev)
  1055. {
  1056. struct sh_dmae_device *shdev = platform_get_drvdata(pdev);
  1057. struct resource *res;
  1058. int errirq = platform_get_irq(pdev, 0);
  1059. dma_async_device_unregister(&shdev->common);
  1060. if (errirq > 0)
  1061. free_irq(errirq, shdev);
  1062. spin_lock_irq(&sh_dmae_lock);
  1063. list_del_rcu(&shdev->node);
  1064. spin_unlock_irq(&sh_dmae_lock);
  1065. /* channel data remove */
  1066. sh_dmae_chan_remove(shdev);
  1067. pm_runtime_disable(&pdev->dev);
  1068. if (shdev->dmars)
  1069. iounmap(shdev->dmars);
  1070. iounmap(shdev->chan_reg);
  1071. platform_set_drvdata(pdev, NULL);
  1072. synchronize_rcu();
  1073. kfree(shdev);
  1074. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1075. if (res)
  1076. release_mem_region(res->start, resource_size(res));
  1077. res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  1078. if (res)
  1079. release_mem_region(res->start, resource_size(res));
  1080. return 0;
  1081. }
  1082. static void sh_dmae_shutdown(struct platform_device *pdev)
  1083. {
  1084. struct sh_dmae_device *shdev = platform_get_drvdata(pdev);
  1085. sh_dmae_ctl_stop(shdev);
  1086. }
  1087. static int sh_dmae_runtime_suspend(struct device *dev)
  1088. {
  1089. return 0;
  1090. }
  1091. static int sh_dmae_runtime_resume(struct device *dev)
  1092. {
  1093. struct sh_dmae_device *shdev = dev_get_drvdata(dev);
  1094. return sh_dmae_rst(shdev);
  1095. }
  1096. #ifdef CONFIG_PM
  1097. static int sh_dmae_suspend(struct device *dev)
  1098. {
  1099. struct sh_dmae_device *shdev = dev_get_drvdata(dev);
  1100. int i;
  1101. for (i = 0; i < shdev->pdata->channel_num; i++) {
  1102. struct sh_dmae_chan *sh_chan = shdev->chan[i];
  1103. if (sh_chan->descs_allocated)
  1104. sh_chan->pm_error = pm_runtime_put_sync(dev);
  1105. }
  1106. return 0;
  1107. }
  1108. static int sh_dmae_resume(struct device *dev)
  1109. {
  1110. struct sh_dmae_device *shdev = dev_get_drvdata(dev);
  1111. int i;
  1112. for (i = 0; i < shdev->pdata->channel_num; i++) {
  1113. struct sh_dmae_chan *sh_chan = shdev->chan[i];
  1114. struct sh_dmae_slave *param = sh_chan->common.private;
  1115. if (!sh_chan->descs_allocated)
  1116. continue;
  1117. if (!sh_chan->pm_error)
  1118. pm_runtime_get_sync(dev);
  1119. if (param) {
  1120. const struct sh_dmae_slave_config *cfg = param->config;
  1121. dmae_set_dmars(sh_chan, cfg->mid_rid);
  1122. dmae_set_chcr(sh_chan, cfg->chcr);
  1123. } else {
  1124. dmae_init(sh_chan);
  1125. }
  1126. }
  1127. return 0;
  1128. }
  1129. #else
  1130. #define sh_dmae_suspend NULL
  1131. #define sh_dmae_resume NULL
  1132. #endif
  1133. const struct dev_pm_ops sh_dmae_pm = {
  1134. .suspend = sh_dmae_suspend,
  1135. .resume = sh_dmae_resume,
  1136. .runtime_suspend = sh_dmae_runtime_suspend,
  1137. .runtime_resume = sh_dmae_runtime_resume,
  1138. };
  1139. static struct platform_driver sh_dmae_driver = {
  1140. .remove = __exit_p(sh_dmae_remove),
  1141. .shutdown = sh_dmae_shutdown,
  1142. .driver = {
  1143. .owner = THIS_MODULE,
  1144. .name = "sh-dma-engine",
  1145. .pm = &sh_dmae_pm,
  1146. },
  1147. };
  1148. static int __init sh_dmae_init(void)
  1149. {
  1150. /* Wire up NMI handling */
  1151. int err = register_die_notifier(&sh_dmae_nmi_notifier);
  1152. if (err)
  1153. return err;
  1154. return platform_driver_probe(&sh_dmae_driver, sh_dmae_probe);
  1155. }
  1156. module_init(sh_dmae_init);
  1157. static void __exit sh_dmae_exit(void)
  1158. {
  1159. platform_driver_unregister(&sh_dmae_driver);
  1160. unregister_die_notifier(&sh_dmae_nmi_notifier);
  1161. }
  1162. module_exit(sh_dmae_exit);
  1163. MODULE_AUTHOR("Nobuhiro Iwamatsu <iwamatsu.nobuhiro@renesas.com>");
  1164. MODULE_DESCRIPTION("Renesas SH DMA Engine driver");
  1165. MODULE_LICENSE("GPL");
  1166. MODULE_ALIAS("platform:sh-dma-engine");