pch_dma.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071
  1. /*
  2. * Topcliff PCH DMA controller driver
  3. * Copyright (c) 2010 Intel Corporation
  4. * Copyright (C) 2011 OKI SEMICONDUCTOR CO., LTD.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  18. */
  19. #include <linux/dmaengine.h>
  20. #include <linux/dma-mapping.h>
  21. #include <linux/init.h>
  22. #include <linux/pci.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/module.h>
  25. #include <linux/pch_dma.h>
  26. #define DRV_NAME "pch-dma"
  27. #define DMA_CTL0_DISABLE 0x0
  28. #define DMA_CTL0_SG 0x1
  29. #define DMA_CTL0_ONESHOT 0x2
  30. #define DMA_CTL0_MODE_MASK_BITS 0x3
  31. #define DMA_CTL0_DIR_SHIFT_BITS 2
  32. #define DMA_CTL0_BITS_PER_CH 4
  33. #define DMA_CTL2_START_SHIFT_BITS 8
  34. #define DMA_CTL2_IRQ_ENABLE_MASK ((1UL << DMA_CTL2_START_SHIFT_BITS) - 1)
  35. #define DMA_STATUS_IDLE 0x0
  36. #define DMA_STATUS_DESC_READ 0x1
  37. #define DMA_STATUS_WAIT 0x2
  38. #define DMA_STATUS_ACCESS 0x3
  39. #define DMA_STATUS_BITS_PER_CH 2
  40. #define DMA_STATUS_MASK_BITS 0x3
  41. #define DMA_STATUS_SHIFT_BITS 16
  42. #define DMA_STATUS_IRQ(x) (0x1 << (x))
  43. #define DMA_STATUS0_ERR(x) (0x1 << ((x) + 8))
  44. #define DMA_STATUS2_ERR(x) (0x1 << (x))
  45. #define DMA_DESC_WIDTH_SHIFT_BITS 12
  46. #define DMA_DESC_WIDTH_1_BYTE (0x3 << DMA_DESC_WIDTH_SHIFT_BITS)
  47. #define DMA_DESC_WIDTH_2_BYTES (0x2 << DMA_DESC_WIDTH_SHIFT_BITS)
  48. #define DMA_DESC_WIDTH_4_BYTES (0x0 << DMA_DESC_WIDTH_SHIFT_BITS)
  49. #define DMA_DESC_MAX_COUNT_1_BYTE 0x3FF
  50. #define DMA_DESC_MAX_COUNT_2_BYTES 0x3FF
  51. #define DMA_DESC_MAX_COUNT_4_BYTES 0x7FF
  52. #define DMA_DESC_END_WITHOUT_IRQ 0x0
  53. #define DMA_DESC_END_WITH_IRQ 0x1
  54. #define DMA_DESC_FOLLOW_WITHOUT_IRQ 0x2
  55. #define DMA_DESC_FOLLOW_WITH_IRQ 0x3
  56. #define MAX_CHAN_NR 12
  57. #define DMA_MASK_CTL0_MODE 0x33333333
  58. #define DMA_MASK_CTL2_MODE 0x00003333
  59. static unsigned int init_nr_desc_per_channel = 64;
  60. module_param(init_nr_desc_per_channel, uint, 0644);
  61. MODULE_PARM_DESC(init_nr_desc_per_channel,
  62. "initial descriptors per channel (default: 64)");
  63. struct pch_dma_desc_regs {
  64. u32 dev_addr;
  65. u32 mem_addr;
  66. u32 size;
  67. u32 next;
  68. };
  69. struct pch_dma_regs {
  70. u32 dma_ctl0;
  71. u32 dma_ctl1;
  72. u32 dma_ctl2;
  73. u32 dma_ctl3;
  74. u32 dma_sts0;
  75. u32 dma_sts1;
  76. u32 dma_sts2;
  77. u32 reserved3;
  78. struct pch_dma_desc_regs desc[MAX_CHAN_NR];
  79. };
  80. struct pch_dma_desc {
  81. struct pch_dma_desc_regs regs;
  82. struct dma_async_tx_descriptor txd;
  83. struct list_head desc_node;
  84. struct list_head tx_list;
  85. };
  86. struct pch_dma_chan {
  87. struct dma_chan chan;
  88. void __iomem *membase;
  89. enum dma_data_direction dir;
  90. struct tasklet_struct tasklet;
  91. unsigned long err_status;
  92. spinlock_t lock;
  93. dma_cookie_t completed_cookie;
  94. struct list_head active_list;
  95. struct list_head queue;
  96. struct list_head free_list;
  97. unsigned int descs_allocated;
  98. };
  99. #define PDC_DEV_ADDR 0x00
  100. #define PDC_MEM_ADDR 0x04
  101. #define PDC_SIZE 0x08
  102. #define PDC_NEXT 0x0C
  103. #define channel_readl(pdc, name) \
  104. readl((pdc)->membase + PDC_##name)
  105. #define channel_writel(pdc, name, val) \
  106. writel((val), (pdc)->membase + PDC_##name)
  107. struct pch_dma {
  108. struct dma_device dma;
  109. void __iomem *membase;
  110. struct pci_pool *pool;
  111. struct pch_dma_regs regs;
  112. struct pch_dma_desc_regs ch_regs[MAX_CHAN_NR];
  113. struct pch_dma_chan channels[MAX_CHAN_NR];
  114. };
  115. #define PCH_DMA_CTL0 0x00
  116. #define PCH_DMA_CTL1 0x04
  117. #define PCH_DMA_CTL2 0x08
  118. #define PCH_DMA_CTL3 0x0C
  119. #define PCH_DMA_STS0 0x10
  120. #define PCH_DMA_STS1 0x14
  121. #define PCH_DMA_STS2 0x18
  122. #define dma_readl(pd, name) \
  123. readl((pd)->membase + PCH_DMA_##name)
  124. #define dma_writel(pd, name, val) \
  125. writel((val), (pd)->membase + PCH_DMA_##name)
  126. static inline
  127. struct pch_dma_desc *to_pd_desc(struct dma_async_tx_descriptor *txd)
  128. {
  129. return container_of(txd, struct pch_dma_desc, txd);
  130. }
  131. static inline struct pch_dma_chan *to_pd_chan(struct dma_chan *chan)
  132. {
  133. return container_of(chan, struct pch_dma_chan, chan);
  134. }
  135. static inline struct pch_dma *to_pd(struct dma_device *ddev)
  136. {
  137. return container_of(ddev, struct pch_dma, dma);
  138. }
  139. static inline struct device *chan2dev(struct dma_chan *chan)
  140. {
  141. return &chan->dev->device;
  142. }
  143. static inline struct device *chan2parent(struct dma_chan *chan)
  144. {
  145. return chan->dev->device.parent;
  146. }
  147. static inline
  148. struct pch_dma_desc *pdc_first_active(struct pch_dma_chan *pd_chan)
  149. {
  150. return list_first_entry(&pd_chan->active_list,
  151. struct pch_dma_desc, desc_node);
  152. }
  153. static inline
  154. struct pch_dma_desc *pdc_first_queued(struct pch_dma_chan *pd_chan)
  155. {
  156. return list_first_entry(&pd_chan->queue,
  157. struct pch_dma_desc, desc_node);
  158. }
  159. static void pdc_enable_irq(struct dma_chan *chan, int enable)
  160. {
  161. struct pch_dma *pd = to_pd(chan->device);
  162. u32 val;
  163. int pos;
  164. if (chan->chan_id < 8)
  165. pos = chan->chan_id;
  166. else
  167. pos = chan->chan_id + 8;
  168. val = dma_readl(pd, CTL2);
  169. if (enable)
  170. val |= 0x1 << pos;
  171. else
  172. val &= ~(0x1 << pos);
  173. dma_writel(pd, CTL2, val);
  174. dev_dbg(chan2dev(chan), "pdc_enable_irq: chan %d -> %x\n",
  175. chan->chan_id, val);
  176. }
  177. static void pdc_set_dir(struct dma_chan *chan)
  178. {
  179. struct pch_dma_chan *pd_chan = to_pd_chan(chan);
  180. struct pch_dma *pd = to_pd(chan->device);
  181. u32 val;
  182. u32 mask_mode;
  183. u32 mask_ctl;
  184. if (chan->chan_id < 8) {
  185. val = dma_readl(pd, CTL0);
  186. mask_mode = DMA_CTL0_MODE_MASK_BITS <<
  187. (DMA_CTL0_BITS_PER_CH * chan->chan_id);
  188. mask_ctl = DMA_MASK_CTL0_MODE & ~(DMA_CTL0_MODE_MASK_BITS <<
  189. (DMA_CTL0_BITS_PER_CH * chan->chan_id));
  190. val &= mask_mode;
  191. if (pd_chan->dir == DMA_TO_DEVICE)
  192. val |= 0x1 << (DMA_CTL0_BITS_PER_CH * chan->chan_id +
  193. DMA_CTL0_DIR_SHIFT_BITS);
  194. else
  195. val &= ~(0x1 << (DMA_CTL0_BITS_PER_CH * chan->chan_id +
  196. DMA_CTL0_DIR_SHIFT_BITS));
  197. val |= mask_ctl;
  198. dma_writel(pd, CTL0, val);
  199. } else {
  200. int ch = chan->chan_id - 8; /* ch8-->0 ch9-->1 ... ch11->3 */
  201. val = dma_readl(pd, CTL3);
  202. mask_mode = DMA_CTL0_MODE_MASK_BITS <<
  203. (DMA_CTL0_BITS_PER_CH * ch);
  204. mask_ctl = DMA_MASK_CTL2_MODE & ~(DMA_CTL0_MODE_MASK_BITS <<
  205. (DMA_CTL0_BITS_PER_CH * ch));
  206. val &= mask_mode;
  207. if (pd_chan->dir == DMA_TO_DEVICE)
  208. val |= 0x1 << (DMA_CTL0_BITS_PER_CH * ch +
  209. DMA_CTL0_DIR_SHIFT_BITS);
  210. else
  211. val &= ~(0x1 << (DMA_CTL0_BITS_PER_CH * ch +
  212. DMA_CTL0_DIR_SHIFT_BITS));
  213. val |= mask_ctl;
  214. dma_writel(pd, CTL3, val);
  215. }
  216. dev_dbg(chan2dev(chan), "pdc_set_dir: chan %d -> %x\n",
  217. chan->chan_id, val);
  218. }
  219. static void pdc_set_mode(struct dma_chan *chan, u32 mode)
  220. {
  221. struct pch_dma *pd = to_pd(chan->device);
  222. u32 val;
  223. u32 mask_ctl;
  224. u32 mask_dir;
  225. if (chan->chan_id < 8) {
  226. mask_ctl = DMA_MASK_CTL0_MODE & ~(DMA_CTL0_MODE_MASK_BITS <<
  227. (DMA_CTL0_BITS_PER_CH * chan->chan_id));
  228. mask_dir = 1 << (DMA_CTL0_BITS_PER_CH * chan->chan_id +\
  229. DMA_CTL0_DIR_SHIFT_BITS);
  230. val = dma_readl(pd, CTL0);
  231. val &= mask_dir;
  232. val |= mode << (DMA_CTL0_BITS_PER_CH * chan->chan_id);
  233. val |= mask_ctl;
  234. dma_writel(pd, CTL0, val);
  235. } else {
  236. int ch = chan->chan_id - 8; /* ch8-->0 ch9-->1 ... ch11->3 */
  237. mask_ctl = DMA_MASK_CTL2_MODE & ~(DMA_CTL0_MODE_MASK_BITS <<
  238. (DMA_CTL0_BITS_PER_CH * ch));
  239. mask_dir = 1 << (DMA_CTL0_BITS_PER_CH * ch +\
  240. DMA_CTL0_DIR_SHIFT_BITS);
  241. val = dma_readl(pd, CTL3);
  242. val &= mask_dir;
  243. val |= mode << (DMA_CTL0_BITS_PER_CH * ch);
  244. val |= mask_ctl;
  245. dma_writel(pd, CTL3, val);
  246. }
  247. dev_dbg(chan2dev(chan), "pdc_set_mode: chan %d -> %x\n",
  248. chan->chan_id, val);
  249. }
  250. static u32 pdc_get_status0(struct pch_dma_chan *pd_chan)
  251. {
  252. struct pch_dma *pd = to_pd(pd_chan->chan.device);
  253. u32 val;
  254. val = dma_readl(pd, STS0);
  255. return DMA_STATUS_MASK_BITS & (val >> (DMA_STATUS_SHIFT_BITS +
  256. DMA_STATUS_BITS_PER_CH * pd_chan->chan.chan_id));
  257. }
  258. static u32 pdc_get_status2(struct pch_dma_chan *pd_chan)
  259. {
  260. struct pch_dma *pd = to_pd(pd_chan->chan.device);
  261. u32 val;
  262. val = dma_readl(pd, STS2);
  263. return DMA_STATUS_MASK_BITS & (val >> (DMA_STATUS_SHIFT_BITS +
  264. DMA_STATUS_BITS_PER_CH * (pd_chan->chan.chan_id - 8)));
  265. }
  266. static bool pdc_is_idle(struct pch_dma_chan *pd_chan)
  267. {
  268. u32 sts;
  269. if (pd_chan->chan.chan_id < 8)
  270. sts = pdc_get_status0(pd_chan);
  271. else
  272. sts = pdc_get_status2(pd_chan);
  273. if (sts == DMA_STATUS_IDLE)
  274. return true;
  275. else
  276. return false;
  277. }
  278. static void pdc_dostart(struct pch_dma_chan *pd_chan, struct pch_dma_desc* desc)
  279. {
  280. if (!pdc_is_idle(pd_chan)) {
  281. dev_err(chan2dev(&pd_chan->chan),
  282. "BUG: Attempt to start non-idle channel\n");
  283. return;
  284. }
  285. dev_dbg(chan2dev(&pd_chan->chan), "chan %d -> dev_addr: %x\n",
  286. pd_chan->chan.chan_id, desc->regs.dev_addr);
  287. dev_dbg(chan2dev(&pd_chan->chan), "chan %d -> mem_addr: %x\n",
  288. pd_chan->chan.chan_id, desc->regs.mem_addr);
  289. dev_dbg(chan2dev(&pd_chan->chan), "chan %d -> size: %x\n",
  290. pd_chan->chan.chan_id, desc->regs.size);
  291. dev_dbg(chan2dev(&pd_chan->chan), "chan %d -> next: %x\n",
  292. pd_chan->chan.chan_id, desc->regs.next);
  293. if (list_empty(&desc->tx_list)) {
  294. channel_writel(pd_chan, DEV_ADDR, desc->regs.dev_addr);
  295. channel_writel(pd_chan, MEM_ADDR, desc->regs.mem_addr);
  296. channel_writel(pd_chan, SIZE, desc->regs.size);
  297. channel_writel(pd_chan, NEXT, desc->regs.next);
  298. pdc_set_mode(&pd_chan->chan, DMA_CTL0_ONESHOT);
  299. } else {
  300. channel_writel(pd_chan, NEXT, desc->txd.phys);
  301. pdc_set_mode(&pd_chan->chan, DMA_CTL0_SG);
  302. }
  303. }
  304. static void pdc_chain_complete(struct pch_dma_chan *pd_chan,
  305. struct pch_dma_desc *desc)
  306. {
  307. struct dma_async_tx_descriptor *txd = &desc->txd;
  308. dma_async_tx_callback callback = txd->callback;
  309. void *param = txd->callback_param;
  310. list_splice_init(&desc->tx_list, &pd_chan->free_list);
  311. list_move(&desc->desc_node, &pd_chan->free_list);
  312. if (callback)
  313. callback(param);
  314. }
  315. static void pdc_complete_all(struct pch_dma_chan *pd_chan)
  316. {
  317. struct pch_dma_desc *desc, *_d;
  318. LIST_HEAD(list);
  319. BUG_ON(!pdc_is_idle(pd_chan));
  320. if (!list_empty(&pd_chan->queue))
  321. pdc_dostart(pd_chan, pdc_first_queued(pd_chan));
  322. list_splice_init(&pd_chan->active_list, &list);
  323. list_splice_init(&pd_chan->queue, &pd_chan->active_list);
  324. list_for_each_entry_safe(desc, _d, &list, desc_node)
  325. pdc_chain_complete(pd_chan, desc);
  326. }
  327. static void pdc_handle_error(struct pch_dma_chan *pd_chan)
  328. {
  329. struct pch_dma_desc *bad_desc;
  330. bad_desc = pdc_first_active(pd_chan);
  331. list_del(&bad_desc->desc_node);
  332. list_splice_init(&pd_chan->queue, pd_chan->active_list.prev);
  333. if (!list_empty(&pd_chan->active_list))
  334. pdc_dostart(pd_chan, pdc_first_active(pd_chan));
  335. dev_crit(chan2dev(&pd_chan->chan), "Bad descriptor submitted\n");
  336. dev_crit(chan2dev(&pd_chan->chan), "descriptor cookie: %d\n",
  337. bad_desc->txd.cookie);
  338. pdc_chain_complete(pd_chan, bad_desc);
  339. }
  340. static void pdc_advance_work(struct pch_dma_chan *pd_chan)
  341. {
  342. if (list_empty(&pd_chan->active_list) ||
  343. list_is_singular(&pd_chan->active_list)) {
  344. pdc_complete_all(pd_chan);
  345. } else {
  346. pdc_chain_complete(pd_chan, pdc_first_active(pd_chan));
  347. pdc_dostart(pd_chan, pdc_first_active(pd_chan));
  348. }
  349. }
  350. static dma_cookie_t pdc_assign_cookie(struct pch_dma_chan *pd_chan,
  351. struct pch_dma_desc *desc)
  352. {
  353. dma_cookie_t cookie = pd_chan->chan.cookie;
  354. if (++cookie < 0)
  355. cookie = 1;
  356. pd_chan->chan.cookie = cookie;
  357. desc->txd.cookie = cookie;
  358. return cookie;
  359. }
  360. static dma_cookie_t pd_tx_submit(struct dma_async_tx_descriptor *txd)
  361. {
  362. struct pch_dma_desc *desc = to_pd_desc(txd);
  363. struct pch_dma_chan *pd_chan = to_pd_chan(txd->chan);
  364. dma_cookie_t cookie;
  365. spin_lock(&pd_chan->lock);
  366. cookie = pdc_assign_cookie(pd_chan, desc);
  367. if (list_empty(&pd_chan->active_list)) {
  368. list_add_tail(&desc->desc_node, &pd_chan->active_list);
  369. pdc_dostart(pd_chan, desc);
  370. } else {
  371. list_add_tail(&desc->desc_node, &pd_chan->queue);
  372. }
  373. spin_unlock(&pd_chan->lock);
  374. return 0;
  375. }
  376. static struct pch_dma_desc *pdc_alloc_desc(struct dma_chan *chan, gfp_t flags)
  377. {
  378. struct pch_dma_desc *desc = NULL;
  379. struct pch_dma *pd = to_pd(chan->device);
  380. dma_addr_t addr;
  381. desc = pci_pool_alloc(pd->pool, flags, &addr);
  382. if (desc) {
  383. memset(desc, 0, sizeof(struct pch_dma_desc));
  384. INIT_LIST_HEAD(&desc->tx_list);
  385. dma_async_tx_descriptor_init(&desc->txd, chan);
  386. desc->txd.tx_submit = pd_tx_submit;
  387. desc->txd.flags = DMA_CTRL_ACK;
  388. desc->txd.phys = addr;
  389. }
  390. return desc;
  391. }
  392. static struct pch_dma_desc *pdc_desc_get(struct pch_dma_chan *pd_chan)
  393. {
  394. struct pch_dma_desc *desc, *_d;
  395. struct pch_dma_desc *ret = NULL;
  396. int i = 0;
  397. spin_lock(&pd_chan->lock);
  398. list_for_each_entry_safe(desc, _d, &pd_chan->free_list, desc_node) {
  399. i++;
  400. if (async_tx_test_ack(&desc->txd)) {
  401. list_del(&desc->desc_node);
  402. ret = desc;
  403. break;
  404. }
  405. dev_dbg(chan2dev(&pd_chan->chan), "desc %p not ACKed\n", desc);
  406. }
  407. spin_unlock(&pd_chan->lock);
  408. dev_dbg(chan2dev(&pd_chan->chan), "scanned %d descriptors\n", i);
  409. if (!ret) {
  410. ret = pdc_alloc_desc(&pd_chan->chan, GFP_NOIO);
  411. if (ret) {
  412. spin_lock(&pd_chan->lock);
  413. pd_chan->descs_allocated++;
  414. spin_unlock(&pd_chan->lock);
  415. } else {
  416. dev_err(chan2dev(&pd_chan->chan),
  417. "failed to alloc desc\n");
  418. }
  419. }
  420. return ret;
  421. }
  422. static void pdc_desc_put(struct pch_dma_chan *pd_chan,
  423. struct pch_dma_desc *desc)
  424. {
  425. if (desc) {
  426. spin_lock(&pd_chan->lock);
  427. list_splice_init(&desc->tx_list, &pd_chan->free_list);
  428. list_add(&desc->desc_node, &pd_chan->free_list);
  429. spin_unlock(&pd_chan->lock);
  430. }
  431. }
  432. static int pd_alloc_chan_resources(struct dma_chan *chan)
  433. {
  434. struct pch_dma_chan *pd_chan = to_pd_chan(chan);
  435. struct pch_dma_desc *desc;
  436. LIST_HEAD(tmp_list);
  437. int i;
  438. if (!pdc_is_idle(pd_chan)) {
  439. dev_dbg(chan2dev(chan), "DMA channel not idle ?\n");
  440. return -EIO;
  441. }
  442. if (!list_empty(&pd_chan->free_list))
  443. return pd_chan->descs_allocated;
  444. for (i = 0; i < init_nr_desc_per_channel; i++) {
  445. desc = pdc_alloc_desc(chan, GFP_KERNEL);
  446. if (!desc) {
  447. dev_warn(chan2dev(chan),
  448. "Only allocated %d initial descriptors\n", i);
  449. break;
  450. }
  451. list_add_tail(&desc->desc_node, &tmp_list);
  452. }
  453. spin_lock_irq(&pd_chan->lock);
  454. list_splice(&tmp_list, &pd_chan->free_list);
  455. pd_chan->descs_allocated = i;
  456. pd_chan->completed_cookie = chan->cookie = 1;
  457. spin_unlock_irq(&pd_chan->lock);
  458. pdc_enable_irq(chan, 1);
  459. return pd_chan->descs_allocated;
  460. }
  461. static void pd_free_chan_resources(struct dma_chan *chan)
  462. {
  463. struct pch_dma_chan *pd_chan = to_pd_chan(chan);
  464. struct pch_dma *pd = to_pd(chan->device);
  465. struct pch_dma_desc *desc, *_d;
  466. LIST_HEAD(tmp_list);
  467. BUG_ON(!pdc_is_idle(pd_chan));
  468. BUG_ON(!list_empty(&pd_chan->active_list));
  469. BUG_ON(!list_empty(&pd_chan->queue));
  470. spin_lock_irq(&pd_chan->lock);
  471. list_splice_init(&pd_chan->free_list, &tmp_list);
  472. pd_chan->descs_allocated = 0;
  473. spin_unlock_irq(&pd_chan->lock);
  474. list_for_each_entry_safe(desc, _d, &tmp_list, desc_node)
  475. pci_pool_free(pd->pool, desc, desc->txd.phys);
  476. pdc_enable_irq(chan, 0);
  477. }
  478. static enum dma_status pd_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
  479. struct dma_tx_state *txstate)
  480. {
  481. struct pch_dma_chan *pd_chan = to_pd_chan(chan);
  482. dma_cookie_t last_used;
  483. dma_cookie_t last_completed;
  484. int ret;
  485. spin_lock_irq(&pd_chan->lock);
  486. last_completed = pd_chan->completed_cookie;
  487. last_used = chan->cookie;
  488. spin_unlock_irq(&pd_chan->lock);
  489. ret = dma_async_is_complete(cookie, last_completed, last_used);
  490. dma_set_tx_state(txstate, last_completed, last_used, 0);
  491. return ret;
  492. }
  493. static void pd_issue_pending(struct dma_chan *chan)
  494. {
  495. struct pch_dma_chan *pd_chan = to_pd_chan(chan);
  496. if (pdc_is_idle(pd_chan)) {
  497. spin_lock(&pd_chan->lock);
  498. pdc_advance_work(pd_chan);
  499. spin_unlock(&pd_chan->lock);
  500. }
  501. }
  502. static struct dma_async_tx_descriptor *pd_prep_slave_sg(struct dma_chan *chan,
  503. struct scatterlist *sgl, unsigned int sg_len,
  504. enum dma_data_direction direction, unsigned long flags)
  505. {
  506. struct pch_dma_chan *pd_chan = to_pd_chan(chan);
  507. struct pch_dma_slave *pd_slave = chan->private;
  508. struct pch_dma_desc *first = NULL;
  509. struct pch_dma_desc *prev = NULL;
  510. struct pch_dma_desc *desc = NULL;
  511. struct scatterlist *sg;
  512. dma_addr_t reg;
  513. int i;
  514. if (unlikely(!sg_len)) {
  515. dev_info(chan2dev(chan), "prep_slave_sg: length is zero!\n");
  516. return NULL;
  517. }
  518. if (direction == DMA_FROM_DEVICE)
  519. reg = pd_slave->rx_reg;
  520. else if (direction == DMA_TO_DEVICE)
  521. reg = pd_slave->tx_reg;
  522. else
  523. return NULL;
  524. pd_chan->dir = direction;
  525. pdc_set_dir(chan);
  526. for_each_sg(sgl, sg, sg_len, i) {
  527. desc = pdc_desc_get(pd_chan);
  528. if (!desc)
  529. goto err_desc_get;
  530. desc->regs.dev_addr = reg;
  531. desc->regs.mem_addr = sg_phys(sg);
  532. desc->regs.size = sg_dma_len(sg);
  533. desc->regs.next = DMA_DESC_FOLLOW_WITHOUT_IRQ;
  534. switch (pd_slave->width) {
  535. case PCH_DMA_WIDTH_1_BYTE:
  536. if (desc->regs.size > DMA_DESC_MAX_COUNT_1_BYTE)
  537. goto err_desc_get;
  538. desc->regs.size |= DMA_DESC_WIDTH_1_BYTE;
  539. break;
  540. case PCH_DMA_WIDTH_2_BYTES:
  541. if (desc->regs.size > DMA_DESC_MAX_COUNT_2_BYTES)
  542. goto err_desc_get;
  543. desc->regs.size |= DMA_DESC_WIDTH_2_BYTES;
  544. break;
  545. case PCH_DMA_WIDTH_4_BYTES:
  546. if (desc->regs.size > DMA_DESC_MAX_COUNT_4_BYTES)
  547. goto err_desc_get;
  548. desc->regs.size |= DMA_DESC_WIDTH_4_BYTES;
  549. break;
  550. default:
  551. goto err_desc_get;
  552. }
  553. if (!first) {
  554. first = desc;
  555. } else {
  556. prev->regs.next |= desc->txd.phys;
  557. list_add_tail(&desc->desc_node, &first->tx_list);
  558. }
  559. prev = desc;
  560. }
  561. if (flags & DMA_PREP_INTERRUPT)
  562. desc->regs.next = DMA_DESC_END_WITH_IRQ;
  563. else
  564. desc->regs.next = DMA_DESC_END_WITHOUT_IRQ;
  565. first->txd.cookie = -EBUSY;
  566. desc->txd.flags = flags;
  567. return &first->txd;
  568. err_desc_get:
  569. dev_err(chan2dev(chan), "failed to get desc or wrong parameters\n");
  570. pdc_desc_put(pd_chan, first);
  571. return NULL;
  572. }
  573. static int pd_device_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
  574. unsigned long arg)
  575. {
  576. struct pch_dma_chan *pd_chan = to_pd_chan(chan);
  577. struct pch_dma_desc *desc, *_d;
  578. LIST_HEAD(list);
  579. if (cmd != DMA_TERMINATE_ALL)
  580. return -ENXIO;
  581. spin_lock_irq(&pd_chan->lock);
  582. pdc_set_mode(&pd_chan->chan, DMA_CTL0_DISABLE);
  583. list_splice_init(&pd_chan->active_list, &list);
  584. list_splice_init(&pd_chan->queue, &list);
  585. list_for_each_entry_safe(desc, _d, &list, desc_node)
  586. pdc_chain_complete(pd_chan, desc);
  587. spin_unlock_irq(&pd_chan->lock);
  588. return 0;
  589. }
  590. static void pdc_tasklet(unsigned long data)
  591. {
  592. struct pch_dma_chan *pd_chan = (struct pch_dma_chan *)data;
  593. unsigned long flags;
  594. if (!pdc_is_idle(pd_chan)) {
  595. dev_err(chan2dev(&pd_chan->chan),
  596. "BUG: handle non-idle channel in tasklet\n");
  597. return;
  598. }
  599. spin_lock_irqsave(&pd_chan->lock, flags);
  600. if (test_and_clear_bit(0, &pd_chan->err_status))
  601. pdc_handle_error(pd_chan);
  602. else
  603. pdc_advance_work(pd_chan);
  604. spin_unlock_irqrestore(&pd_chan->lock, flags);
  605. }
  606. static irqreturn_t pd_irq(int irq, void *devid)
  607. {
  608. struct pch_dma *pd = (struct pch_dma *)devid;
  609. struct pch_dma_chan *pd_chan;
  610. u32 sts0;
  611. u32 sts2;
  612. int i;
  613. int ret0 = IRQ_NONE;
  614. int ret2 = IRQ_NONE;
  615. sts0 = dma_readl(pd, STS0);
  616. sts2 = dma_readl(pd, STS2);
  617. dev_dbg(pd->dma.dev, "pd_irq sts0: %x\n", sts0);
  618. for (i = 0; i < pd->dma.chancnt; i++) {
  619. pd_chan = &pd->channels[i];
  620. if (i < 8) {
  621. if (sts0 & DMA_STATUS_IRQ(i)) {
  622. if (sts0 & DMA_STATUS0_ERR(i))
  623. set_bit(0, &pd_chan->err_status);
  624. tasklet_schedule(&pd_chan->tasklet);
  625. ret0 = IRQ_HANDLED;
  626. }
  627. } else {
  628. if (sts2 & DMA_STATUS_IRQ(i - 8)) {
  629. if (sts2 & DMA_STATUS2_ERR(i))
  630. set_bit(0, &pd_chan->err_status);
  631. tasklet_schedule(&pd_chan->tasklet);
  632. ret2 = IRQ_HANDLED;
  633. }
  634. }
  635. }
  636. /* clear interrupt bits in status register */
  637. if (ret0)
  638. dma_writel(pd, STS0, sts0);
  639. if (ret2)
  640. dma_writel(pd, STS2, sts2);
  641. return ret0 | ret2;
  642. }
  643. #ifdef CONFIG_PM
  644. static void pch_dma_save_regs(struct pch_dma *pd)
  645. {
  646. struct pch_dma_chan *pd_chan;
  647. struct dma_chan *chan, *_c;
  648. int i = 0;
  649. pd->regs.dma_ctl0 = dma_readl(pd, CTL0);
  650. pd->regs.dma_ctl1 = dma_readl(pd, CTL1);
  651. pd->regs.dma_ctl2 = dma_readl(pd, CTL2);
  652. pd->regs.dma_ctl3 = dma_readl(pd, CTL3);
  653. list_for_each_entry_safe(chan, _c, &pd->dma.channels, device_node) {
  654. pd_chan = to_pd_chan(chan);
  655. pd->ch_regs[i].dev_addr = channel_readl(pd_chan, DEV_ADDR);
  656. pd->ch_regs[i].mem_addr = channel_readl(pd_chan, MEM_ADDR);
  657. pd->ch_regs[i].size = channel_readl(pd_chan, SIZE);
  658. pd->ch_regs[i].next = channel_readl(pd_chan, NEXT);
  659. i++;
  660. }
  661. }
  662. static void pch_dma_restore_regs(struct pch_dma *pd)
  663. {
  664. struct pch_dma_chan *pd_chan;
  665. struct dma_chan *chan, *_c;
  666. int i = 0;
  667. dma_writel(pd, CTL0, pd->regs.dma_ctl0);
  668. dma_writel(pd, CTL1, pd->regs.dma_ctl1);
  669. dma_writel(pd, CTL2, pd->regs.dma_ctl2);
  670. dma_writel(pd, CTL3, pd->regs.dma_ctl3);
  671. list_for_each_entry_safe(chan, _c, &pd->dma.channels, device_node) {
  672. pd_chan = to_pd_chan(chan);
  673. channel_writel(pd_chan, DEV_ADDR, pd->ch_regs[i].dev_addr);
  674. channel_writel(pd_chan, MEM_ADDR, pd->ch_regs[i].mem_addr);
  675. channel_writel(pd_chan, SIZE, pd->ch_regs[i].size);
  676. channel_writel(pd_chan, NEXT, pd->ch_regs[i].next);
  677. i++;
  678. }
  679. }
  680. static int pch_dma_suspend(struct pci_dev *pdev, pm_message_t state)
  681. {
  682. struct pch_dma *pd = pci_get_drvdata(pdev);
  683. if (pd)
  684. pch_dma_save_regs(pd);
  685. pci_save_state(pdev);
  686. pci_disable_device(pdev);
  687. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  688. return 0;
  689. }
  690. static int pch_dma_resume(struct pci_dev *pdev)
  691. {
  692. struct pch_dma *pd = pci_get_drvdata(pdev);
  693. int err;
  694. pci_set_power_state(pdev, PCI_D0);
  695. pci_restore_state(pdev);
  696. err = pci_enable_device(pdev);
  697. if (err) {
  698. dev_dbg(&pdev->dev, "failed to enable device\n");
  699. return err;
  700. }
  701. if (pd)
  702. pch_dma_restore_regs(pd);
  703. return 0;
  704. }
  705. #endif
  706. static int __devinit pch_dma_probe(struct pci_dev *pdev,
  707. const struct pci_device_id *id)
  708. {
  709. struct pch_dma *pd;
  710. struct pch_dma_regs *regs;
  711. unsigned int nr_channels;
  712. int err;
  713. int i;
  714. nr_channels = id->driver_data;
  715. pd = kzalloc(sizeof(struct pch_dma)+
  716. sizeof(struct pch_dma_chan) * nr_channels, GFP_KERNEL);
  717. if (!pd)
  718. return -ENOMEM;
  719. pci_set_drvdata(pdev, pd);
  720. err = pci_enable_device(pdev);
  721. if (err) {
  722. dev_err(&pdev->dev, "Cannot enable PCI device\n");
  723. goto err_free_mem;
  724. }
  725. if (!(pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
  726. dev_err(&pdev->dev, "Cannot find proper base address\n");
  727. goto err_disable_pdev;
  728. }
  729. err = pci_request_regions(pdev, DRV_NAME);
  730. if (err) {
  731. dev_err(&pdev->dev, "Cannot obtain PCI resources\n");
  732. goto err_disable_pdev;
  733. }
  734. err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
  735. if (err) {
  736. dev_err(&pdev->dev, "Cannot set proper DMA config\n");
  737. goto err_free_res;
  738. }
  739. regs = pd->membase = pci_iomap(pdev, 1, 0);
  740. if (!pd->membase) {
  741. dev_err(&pdev->dev, "Cannot map MMIO registers\n");
  742. err = -ENOMEM;
  743. goto err_free_res;
  744. }
  745. pci_set_master(pdev);
  746. err = request_irq(pdev->irq, pd_irq, IRQF_SHARED, DRV_NAME, pd);
  747. if (err) {
  748. dev_err(&pdev->dev, "Failed to request IRQ\n");
  749. goto err_iounmap;
  750. }
  751. pd->pool = pci_pool_create("pch_dma_desc_pool", pdev,
  752. sizeof(struct pch_dma_desc), 4, 0);
  753. if (!pd->pool) {
  754. dev_err(&pdev->dev, "Failed to alloc DMA descriptors\n");
  755. err = -ENOMEM;
  756. goto err_free_irq;
  757. }
  758. pd->dma.dev = &pdev->dev;
  759. pd->dma.chancnt = nr_channels;
  760. INIT_LIST_HEAD(&pd->dma.channels);
  761. for (i = 0; i < nr_channels; i++) {
  762. struct pch_dma_chan *pd_chan = &pd->channels[i];
  763. pd_chan->chan.device = &pd->dma;
  764. pd_chan->chan.cookie = 1;
  765. pd_chan->chan.chan_id = i;
  766. pd_chan->membase = &regs->desc[i];
  767. spin_lock_init(&pd_chan->lock);
  768. INIT_LIST_HEAD(&pd_chan->active_list);
  769. INIT_LIST_HEAD(&pd_chan->queue);
  770. INIT_LIST_HEAD(&pd_chan->free_list);
  771. tasklet_init(&pd_chan->tasklet, pdc_tasklet,
  772. (unsigned long)pd_chan);
  773. list_add_tail(&pd_chan->chan.device_node, &pd->dma.channels);
  774. }
  775. dma_cap_zero(pd->dma.cap_mask);
  776. dma_cap_set(DMA_PRIVATE, pd->dma.cap_mask);
  777. dma_cap_set(DMA_SLAVE, pd->dma.cap_mask);
  778. pd->dma.device_alloc_chan_resources = pd_alloc_chan_resources;
  779. pd->dma.device_free_chan_resources = pd_free_chan_resources;
  780. pd->dma.device_tx_status = pd_tx_status;
  781. pd->dma.device_issue_pending = pd_issue_pending;
  782. pd->dma.device_prep_slave_sg = pd_prep_slave_sg;
  783. pd->dma.device_control = pd_device_control;
  784. err = dma_async_device_register(&pd->dma);
  785. if (err) {
  786. dev_err(&pdev->dev, "Failed to register DMA device\n");
  787. goto err_free_pool;
  788. }
  789. return 0;
  790. err_free_pool:
  791. pci_pool_destroy(pd->pool);
  792. err_free_irq:
  793. free_irq(pdev->irq, pd);
  794. err_iounmap:
  795. pci_iounmap(pdev, pd->membase);
  796. err_free_res:
  797. pci_release_regions(pdev);
  798. err_disable_pdev:
  799. pci_disable_device(pdev);
  800. err_free_mem:
  801. return err;
  802. }
  803. static void __devexit pch_dma_remove(struct pci_dev *pdev)
  804. {
  805. struct pch_dma *pd = pci_get_drvdata(pdev);
  806. struct pch_dma_chan *pd_chan;
  807. struct dma_chan *chan, *_c;
  808. if (pd) {
  809. dma_async_device_unregister(&pd->dma);
  810. list_for_each_entry_safe(chan, _c, &pd->dma.channels,
  811. device_node) {
  812. pd_chan = to_pd_chan(chan);
  813. tasklet_disable(&pd_chan->tasklet);
  814. tasklet_kill(&pd_chan->tasklet);
  815. }
  816. pci_pool_destroy(pd->pool);
  817. free_irq(pdev->irq, pd);
  818. pci_iounmap(pdev, pd->membase);
  819. pci_release_regions(pdev);
  820. pci_disable_device(pdev);
  821. kfree(pd);
  822. }
  823. }
  824. /* PCI Device ID of DMA device */
  825. #define PCI_VENDOR_ID_ROHM 0x10DB
  826. #define PCI_DEVICE_ID_EG20T_PCH_DMA_8CH 0x8810
  827. #define PCI_DEVICE_ID_EG20T_PCH_DMA_4CH 0x8815
  828. #define PCI_DEVICE_ID_ML7213_DMA1_8CH 0x8026
  829. #define PCI_DEVICE_ID_ML7213_DMA2_8CH 0x802B
  830. #define PCI_DEVICE_ID_ML7213_DMA3_4CH 0x8034
  831. #define PCI_DEVICE_ID_ML7213_DMA4_12CH 0x8032
  832. #define PCI_DEVICE_ID_ML7223_DMA1_4CH 0x800B
  833. #define PCI_DEVICE_ID_ML7223_DMA2_4CH 0x800E
  834. #define PCI_DEVICE_ID_ML7223_DMA3_4CH 0x8017
  835. #define PCI_DEVICE_ID_ML7223_DMA4_4CH 0x803B
  836. #define PCI_DEVICE_ID_ML7831_DMA1_8CH 0x8810
  837. #define PCI_DEVICE_ID_ML7831_DMA2_4CH 0x8815
  838. DEFINE_PCI_DEVICE_TABLE(pch_dma_id_table) = {
  839. { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_EG20T_PCH_DMA_8CH), 8 },
  840. { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_EG20T_PCH_DMA_4CH), 4 },
  841. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_DMA1_8CH), 8}, /* UART Video */
  842. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_DMA2_8CH), 8}, /* PCMIF SPI */
  843. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_DMA3_4CH), 4}, /* FPGA */
  844. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_DMA4_12CH), 12}, /* I2S */
  845. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_DMA1_4CH), 4}, /* UART */
  846. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_DMA2_4CH), 4}, /* Video SPI */
  847. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_DMA3_4CH), 4}, /* Security */
  848. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_DMA4_4CH), 4}, /* FPGA */
  849. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7831_DMA1_8CH), 8}, /* UART */
  850. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7831_DMA2_4CH), 4}, /* SPI */
  851. { 0, },
  852. };
  853. static struct pci_driver pch_dma_driver = {
  854. .name = DRV_NAME,
  855. .id_table = pch_dma_id_table,
  856. .probe = pch_dma_probe,
  857. .remove = __devexit_p(pch_dma_remove),
  858. #ifdef CONFIG_PM
  859. .suspend = pch_dma_suspend,
  860. .resume = pch_dma_resume,
  861. #endif
  862. };
  863. static int __init pch_dma_init(void)
  864. {
  865. return pci_register_driver(&pch_dma_driver);
  866. }
  867. static void __exit pch_dma_exit(void)
  868. {
  869. pci_unregister_driver(&pch_dma_driver);
  870. }
  871. module_init(pch_dma_init);
  872. module_exit(pch_dma_exit);
  873. MODULE_DESCRIPTION("Intel EG20T PCH / OKI SEMICON ML7213/ML7223/ML7831 IOH"
  874. "DMA controller driver");
  875. MODULE_AUTHOR("Yong Wang <yong.y.wang@intel.com>");
  876. MODULE_LICENSE("GPL v2");