iop-adma.c 49 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765
  1. /*
  2. * offload engine driver for the Intel Xscale series of i/o processors
  3. * Copyright © 2006, Intel Corporation.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms and conditions of the GNU General Public License,
  7. * version 2, as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. *
  14. * You should have received a copy of the GNU General Public License along with
  15. * this program; if not, write to the Free Software Foundation, Inc.,
  16. * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  17. *
  18. */
  19. /*
  20. * This driver supports the asynchrounous DMA copy and RAID engines available
  21. * on the Intel Xscale(R) family of I/O Processors (IOP 32x, 33x, 134x)
  22. */
  23. #include <linux/init.h>
  24. #include <linux/module.h>
  25. #include <linux/delay.h>
  26. #include <linux/dma-mapping.h>
  27. #include <linux/spinlock.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/platform_device.h>
  30. #include <linux/memory.h>
  31. #include <linux/ioport.h>
  32. #include <linux/raid/pq.h>
  33. #include <linux/slab.h>
  34. #include <mach/adma.h>
  35. #define to_iop_adma_chan(chan) container_of(chan, struct iop_adma_chan, common)
  36. #define to_iop_adma_device(dev) \
  37. container_of(dev, struct iop_adma_device, common)
  38. #define tx_to_iop_adma_slot(tx) \
  39. container_of(tx, struct iop_adma_desc_slot, async_tx)
  40. /**
  41. * iop_adma_free_slots - flags descriptor slots for reuse
  42. * @slot: Slot to free
  43. * Caller must hold &iop_chan->lock while calling this function
  44. */
  45. static void iop_adma_free_slots(struct iop_adma_desc_slot *slot)
  46. {
  47. int stride = slot->slots_per_op;
  48. while (stride--) {
  49. slot->slots_per_op = 0;
  50. slot = list_entry(slot->slot_node.next,
  51. struct iop_adma_desc_slot,
  52. slot_node);
  53. }
  54. }
  55. static void
  56. iop_desc_unmap(struct iop_adma_chan *iop_chan, struct iop_adma_desc_slot *desc)
  57. {
  58. struct dma_async_tx_descriptor *tx = &desc->async_tx;
  59. struct iop_adma_desc_slot *unmap = desc->group_head;
  60. struct device *dev = &iop_chan->device->pdev->dev;
  61. u32 len = unmap->unmap_len;
  62. enum dma_ctrl_flags flags = tx->flags;
  63. u32 src_cnt;
  64. dma_addr_t addr;
  65. dma_addr_t dest;
  66. src_cnt = unmap->unmap_src_cnt;
  67. dest = iop_desc_get_dest_addr(unmap, iop_chan);
  68. if (!(flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
  69. enum dma_data_direction dir;
  70. if (src_cnt > 1) /* is xor? */
  71. dir = DMA_BIDIRECTIONAL;
  72. else
  73. dir = DMA_FROM_DEVICE;
  74. dma_unmap_page(dev, dest, len, dir);
  75. }
  76. if (!(flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
  77. while (src_cnt--) {
  78. addr = iop_desc_get_src_addr(unmap, iop_chan, src_cnt);
  79. if (addr == dest)
  80. continue;
  81. dma_unmap_page(dev, addr, len, DMA_TO_DEVICE);
  82. }
  83. }
  84. desc->group_head = NULL;
  85. }
  86. static void
  87. iop_desc_unmap_pq(struct iop_adma_chan *iop_chan, struct iop_adma_desc_slot *desc)
  88. {
  89. struct dma_async_tx_descriptor *tx = &desc->async_tx;
  90. struct iop_adma_desc_slot *unmap = desc->group_head;
  91. struct device *dev = &iop_chan->device->pdev->dev;
  92. u32 len = unmap->unmap_len;
  93. enum dma_ctrl_flags flags = tx->flags;
  94. u32 src_cnt = unmap->unmap_src_cnt;
  95. dma_addr_t pdest = iop_desc_get_dest_addr(unmap, iop_chan);
  96. dma_addr_t qdest = iop_desc_get_qdest_addr(unmap, iop_chan);
  97. int i;
  98. if (tx->flags & DMA_PREP_CONTINUE)
  99. src_cnt -= 3;
  100. if (!(flags & DMA_COMPL_SKIP_DEST_UNMAP) && !desc->pq_check_result) {
  101. dma_unmap_page(dev, pdest, len, DMA_BIDIRECTIONAL);
  102. dma_unmap_page(dev, qdest, len, DMA_BIDIRECTIONAL);
  103. }
  104. if (!(flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
  105. dma_addr_t addr;
  106. for (i = 0; i < src_cnt; i++) {
  107. addr = iop_desc_get_src_addr(unmap, iop_chan, i);
  108. dma_unmap_page(dev, addr, len, DMA_TO_DEVICE);
  109. }
  110. if (desc->pq_check_result) {
  111. dma_unmap_page(dev, pdest, len, DMA_TO_DEVICE);
  112. dma_unmap_page(dev, qdest, len, DMA_TO_DEVICE);
  113. }
  114. }
  115. desc->group_head = NULL;
  116. }
  117. static dma_cookie_t
  118. iop_adma_run_tx_complete_actions(struct iop_adma_desc_slot *desc,
  119. struct iop_adma_chan *iop_chan, dma_cookie_t cookie)
  120. {
  121. struct dma_async_tx_descriptor *tx = &desc->async_tx;
  122. BUG_ON(tx->cookie < 0);
  123. if (tx->cookie > 0) {
  124. cookie = tx->cookie;
  125. tx->cookie = 0;
  126. /* call the callback (must not sleep or submit new
  127. * operations to this channel)
  128. */
  129. if (tx->callback)
  130. tx->callback(tx->callback_param);
  131. /* unmap dma addresses
  132. * (unmap_single vs unmap_page?)
  133. */
  134. if (desc->group_head && desc->unmap_len) {
  135. if (iop_desc_is_pq(desc))
  136. iop_desc_unmap_pq(iop_chan, desc);
  137. else
  138. iop_desc_unmap(iop_chan, desc);
  139. }
  140. }
  141. /* run dependent operations */
  142. dma_run_dependencies(tx);
  143. return cookie;
  144. }
  145. static int
  146. iop_adma_clean_slot(struct iop_adma_desc_slot *desc,
  147. struct iop_adma_chan *iop_chan)
  148. {
  149. /* the client is allowed to attach dependent operations
  150. * until 'ack' is set
  151. */
  152. if (!async_tx_test_ack(&desc->async_tx))
  153. return 0;
  154. /* leave the last descriptor in the chain
  155. * so we can append to it
  156. */
  157. if (desc->chain_node.next == &iop_chan->chain)
  158. return 1;
  159. dev_dbg(iop_chan->device->common.dev,
  160. "\tfree slot: %d slots_per_op: %d\n",
  161. desc->idx, desc->slots_per_op);
  162. list_del(&desc->chain_node);
  163. iop_adma_free_slots(desc);
  164. return 0;
  165. }
  166. static void __iop_adma_slot_cleanup(struct iop_adma_chan *iop_chan)
  167. {
  168. struct iop_adma_desc_slot *iter, *_iter, *grp_start = NULL;
  169. dma_cookie_t cookie = 0;
  170. u32 current_desc = iop_chan_get_current_descriptor(iop_chan);
  171. int busy = iop_chan_is_busy(iop_chan);
  172. int seen_current = 0, slot_cnt = 0, slots_per_op = 0;
  173. dev_dbg(iop_chan->device->common.dev, "%s\n", __func__);
  174. /* free completed slots from the chain starting with
  175. * the oldest descriptor
  176. */
  177. list_for_each_entry_safe(iter, _iter, &iop_chan->chain,
  178. chain_node) {
  179. pr_debug("\tcookie: %d slot: %d busy: %d "
  180. "this_desc: %#x next_desc: %#x ack: %d\n",
  181. iter->async_tx.cookie, iter->idx, busy,
  182. iter->async_tx.phys, iop_desc_get_next_desc(iter),
  183. async_tx_test_ack(&iter->async_tx));
  184. prefetch(_iter);
  185. prefetch(&_iter->async_tx);
  186. /* do not advance past the current descriptor loaded into the
  187. * hardware channel, subsequent descriptors are either in
  188. * process or have not been submitted
  189. */
  190. if (seen_current)
  191. break;
  192. /* stop the search if we reach the current descriptor and the
  193. * channel is busy, or if it appears that the current descriptor
  194. * needs to be re-read (i.e. has been appended to)
  195. */
  196. if (iter->async_tx.phys == current_desc) {
  197. BUG_ON(seen_current++);
  198. if (busy || iop_desc_get_next_desc(iter))
  199. break;
  200. }
  201. /* detect the start of a group transaction */
  202. if (!slot_cnt && !slots_per_op) {
  203. slot_cnt = iter->slot_cnt;
  204. slots_per_op = iter->slots_per_op;
  205. if (slot_cnt <= slots_per_op) {
  206. slot_cnt = 0;
  207. slots_per_op = 0;
  208. }
  209. }
  210. if (slot_cnt) {
  211. pr_debug("\tgroup++\n");
  212. if (!grp_start)
  213. grp_start = iter;
  214. slot_cnt -= slots_per_op;
  215. }
  216. /* all the members of a group are complete */
  217. if (slots_per_op != 0 && slot_cnt == 0) {
  218. struct iop_adma_desc_slot *grp_iter, *_grp_iter;
  219. int end_of_chain = 0;
  220. pr_debug("\tgroup end\n");
  221. /* collect the total results */
  222. if (grp_start->xor_check_result) {
  223. u32 zero_sum_result = 0;
  224. slot_cnt = grp_start->slot_cnt;
  225. grp_iter = grp_start;
  226. list_for_each_entry_from(grp_iter,
  227. &iop_chan->chain, chain_node) {
  228. zero_sum_result |=
  229. iop_desc_get_zero_result(grp_iter);
  230. pr_debug("\titer%d result: %d\n",
  231. grp_iter->idx, zero_sum_result);
  232. slot_cnt -= slots_per_op;
  233. if (slot_cnt == 0)
  234. break;
  235. }
  236. pr_debug("\tgrp_start->xor_check_result: %p\n",
  237. grp_start->xor_check_result);
  238. *grp_start->xor_check_result = zero_sum_result;
  239. }
  240. /* clean up the group */
  241. slot_cnt = grp_start->slot_cnt;
  242. grp_iter = grp_start;
  243. list_for_each_entry_safe_from(grp_iter, _grp_iter,
  244. &iop_chan->chain, chain_node) {
  245. cookie = iop_adma_run_tx_complete_actions(
  246. grp_iter, iop_chan, cookie);
  247. slot_cnt -= slots_per_op;
  248. end_of_chain = iop_adma_clean_slot(grp_iter,
  249. iop_chan);
  250. if (slot_cnt == 0 || end_of_chain)
  251. break;
  252. }
  253. /* the group should be complete at this point */
  254. BUG_ON(slot_cnt);
  255. slots_per_op = 0;
  256. grp_start = NULL;
  257. if (end_of_chain)
  258. break;
  259. else
  260. continue;
  261. } else if (slots_per_op) /* wait for group completion */
  262. continue;
  263. /* write back zero sum results (single descriptor case) */
  264. if (iter->xor_check_result && iter->async_tx.cookie)
  265. *iter->xor_check_result =
  266. iop_desc_get_zero_result(iter);
  267. cookie = iop_adma_run_tx_complete_actions(
  268. iter, iop_chan, cookie);
  269. if (iop_adma_clean_slot(iter, iop_chan))
  270. break;
  271. }
  272. if (cookie > 0) {
  273. iop_chan->completed_cookie = cookie;
  274. pr_debug("\tcompleted cookie %d\n", cookie);
  275. }
  276. }
  277. static void
  278. iop_adma_slot_cleanup(struct iop_adma_chan *iop_chan)
  279. {
  280. spin_lock_bh(&iop_chan->lock);
  281. __iop_adma_slot_cleanup(iop_chan);
  282. spin_unlock_bh(&iop_chan->lock);
  283. }
  284. static void iop_adma_tasklet(unsigned long data)
  285. {
  286. struct iop_adma_chan *iop_chan = (struct iop_adma_chan *) data;
  287. /* lockdep will flag depedency submissions as potentially
  288. * recursive locking, this is not the case as a dependency
  289. * submission will never recurse a channels submit routine.
  290. * There are checks in async_tx.c to prevent this.
  291. */
  292. spin_lock_nested(&iop_chan->lock, SINGLE_DEPTH_NESTING);
  293. __iop_adma_slot_cleanup(iop_chan);
  294. spin_unlock(&iop_chan->lock);
  295. }
  296. static struct iop_adma_desc_slot *
  297. iop_adma_alloc_slots(struct iop_adma_chan *iop_chan, int num_slots,
  298. int slots_per_op)
  299. {
  300. struct iop_adma_desc_slot *iter, *_iter, *alloc_start = NULL;
  301. LIST_HEAD(chain);
  302. int slots_found, retry = 0;
  303. /* start search from the last allocated descrtiptor
  304. * if a contiguous allocation can not be found start searching
  305. * from the beginning of the list
  306. */
  307. retry:
  308. slots_found = 0;
  309. if (retry == 0)
  310. iter = iop_chan->last_used;
  311. else
  312. iter = list_entry(&iop_chan->all_slots,
  313. struct iop_adma_desc_slot,
  314. slot_node);
  315. list_for_each_entry_safe_continue(
  316. iter, _iter, &iop_chan->all_slots, slot_node) {
  317. prefetch(_iter);
  318. prefetch(&_iter->async_tx);
  319. if (iter->slots_per_op) {
  320. /* give up after finding the first busy slot
  321. * on the second pass through the list
  322. */
  323. if (retry)
  324. break;
  325. slots_found = 0;
  326. continue;
  327. }
  328. /* start the allocation if the slot is correctly aligned */
  329. if (!slots_found++) {
  330. if (iop_desc_is_aligned(iter, slots_per_op))
  331. alloc_start = iter;
  332. else {
  333. slots_found = 0;
  334. continue;
  335. }
  336. }
  337. if (slots_found == num_slots) {
  338. struct iop_adma_desc_slot *alloc_tail = NULL;
  339. struct iop_adma_desc_slot *last_used = NULL;
  340. iter = alloc_start;
  341. while (num_slots) {
  342. int i;
  343. dev_dbg(iop_chan->device->common.dev,
  344. "allocated slot: %d "
  345. "(desc %p phys: %#x) slots_per_op %d\n",
  346. iter->idx, iter->hw_desc,
  347. iter->async_tx.phys, slots_per_op);
  348. /* pre-ack all but the last descriptor */
  349. if (num_slots != slots_per_op)
  350. async_tx_ack(&iter->async_tx);
  351. list_add_tail(&iter->chain_node, &chain);
  352. alloc_tail = iter;
  353. iter->async_tx.cookie = 0;
  354. iter->slot_cnt = num_slots;
  355. iter->xor_check_result = NULL;
  356. for (i = 0; i < slots_per_op; i++) {
  357. iter->slots_per_op = slots_per_op - i;
  358. last_used = iter;
  359. iter = list_entry(iter->slot_node.next,
  360. struct iop_adma_desc_slot,
  361. slot_node);
  362. }
  363. num_slots -= slots_per_op;
  364. }
  365. alloc_tail->group_head = alloc_start;
  366. alloc_tail->async_tx.cookie = -EBUSY;
  367. list_splice(&chain, &alloc_tail->tx_list);
  368. iop_chan->last_used = last_used;
  369. iop_desc_clear_next_desc(alloc_start);
  370. iop_desc_clear_next_desc(alloc_tail);
  371. return alloc_tail;
  372. }
  373. }
  374. if (!retry++)
  375. goto retry;
  376. /* perform direct reclaim if the allocation fails */
  377. __iop_adma_slot_cleanup(iop_chan);
  378. return NULL;
  379. }
  380. static dma_cookie_t
  381. iop_desc_assign_cookie(struct iop_adma_chan *iop_chan,
  382. struct iop_adma_desc_slot *desc)
  383. {
  384. dma_cookie_t cookie = iop_chan->common.cookie;
  385. cookie++;
  386. if (cookie < 0)
  387. cookie = 1;
  388. iop_chan->common.cookie = desc->async_tx.cookie = cookie;
  389. return cookie;
  390. }
  391. static void iop_adma_check_threshold(struct iop_adma_chan *iop_chan)
  392. {
  393. dev_dbg(iop_chan->device->common.dev, "pending: %d\n",
  394. iop_chan->pending);
  395. if (iop_chan->pending >= IOP_ADMA_THRESHOLD) {
  396. iop_chan->pending = 0;
  397. iop_chan_append(iop_chan);
  398. }
  399. }
  400. static dma_cookie_t
  401. iop_adma_tx_submit(struct dma_async_tx_descriptor *tx)
  402. {
  403. struct iop_adma_desc_slot *sw_desc = tx_to_iop_adma_slot(tx);
  404. struct iop_adma_chan *iop_chan = to_iop_adma_chan(tx->chan);
  405. struct iop_adma_desc_slot *grp_start, *old_chain_tail;
  406. int slot_cnt;
  407. int slots_per_op;
  408. dma_cookie_t cookie;
  409. dma_addr_t next_dma;
  410. grp_start = sw_desc->group_head;
  411. slot_cnt = grp_start->slot_cnt;
  412. slots_per_op = grp_start->slots_per_op;
  413. spin_lock_bh(&iop_chan->lock);
  414. cookie = iop_desc_assign_cookie(iop_chan, sw_desc);
  415. old_chain_tail = list_entry(iop_chan->chain.prev,
  416. struct iop_adma_desc_slot, chain_node);
  417. list_splice_init(&sw_desc->tx_list,
  418. &old_chain_tail->chain_node);
  419. /* fix up the hardware chain */
  420. next_dma = grp_start->async_tx.phys;
  421. iop_desc_set_next_desc(old_chain_tail, next_dma);
  422. BUG_ON(iop_desc_get_next_desc(old_chain_tail) != next_dma); /* flush */
  423. /* check for pre-chained descriptors */
  424. iop_paranoia(iop_desc_get_next_desc(sw_desc));
  425. /* increment the pending count by the number of slots
  426. * memcpy operations have a 1:1 (slot:operation) relation
  427. * other operations are heavier and will pop the threshold
  428. * more often.
  429. */
  430. iop_chan->pending += slot_cnt;
  431. iop_adma_check_threshold(iop_chan);
  432. spin_unlock_bh(&iop_chan->lock);
  433. dev_dbg(iop_chan->device->common.dev, "%s cookie: %d slot: %d\n",
  434. __func__, sw_desc->async_tx.cookie, sw_desc->idx);
  435. return cookie;
  436. }
  437. static void iop_chan_start_null_memcpy(struct iop_adma_chan *iop_chan);
  438. static void iop_chan_start_null_xor(struct iop_adma_chan *iop_chan);
  439. /**
  440. * iop_adma_alloc_chan_resources - returns the number of allocated descriptors
  441. * @chan - allocate descriptor resources for this channel
  442. * @client - current client requesting the channel be ready for requests
  443. *
  444. * Note: We keep the slots for 1 operation on iop_chan->chain at all times. To
  445. * avoid deadlock, via async_xor, num_descs_in_pool must at a minimum be
  446. * greater than 2x the number slots needed to satisfy a device->max_xor
  447. * request.
  448. * */
  449. static int iop_adma_alloc_chan_resources(struct dma_chan *chan)
  450. {
  451. char *hw_desc;
  452. int idx;
  453. struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
  454. struct iop_adma_desc_slot *slot = NULL;
  455. int init = iop_chan->slots_allocated ? 0 : 1;
  456. struct iop_adma_platform_data *plat_data =
  457. iop_chan->device->pdev->dev.platform_data;
  458. int num_descs_in_pool = plat_data->pool_size/IOP_ADMA_SLOT_SIZE;
  459. /* Allocate descriptor slots */
  460. do {
  461. idx = iop_chan->slots_allocated;
  462. if (idx == num_descs_in_pool)
  463. break;
  464. slot = kzalloc(sizeof(*slot), GFP_KERNEL);
  465. if (!slot) {
  466. printk(KERN_INFO "IOP ADMA Channel only initialized"
  467. " %d descriptor slots", idx);
  468. break;
  469. }
  470. hw_desc = (char *) iop_chan->device->dma_desc_pool_virt;
  471. slot->hw_desc = (void *) &hw_desc[idx * IOP_ADMA_SLOT_SIZE];
  472. dma_async_tx_descriptor_init(&slot->async_tx, chan);
  473. slot->async_tx.tx_submit = iop_adma_tx_submit;
  474. INIT_LIST_HEAD(&slot->tx_list);
  475. INIT_LIST_HEAD(&slot->chain_node);
  476. INIT_LIST_HEAD(&slot->slot_node);
  477. hw_desc = (char *) iop_chan->device->dma_desc_pool;
  478. slot->async_tx.phys =
  479. (dma_addr_t) &hw_desc[idx * IOP_ADMA_SLOT_SIZE];
  480. slot->idx = idx;
  481. spin_lock_bh(&iop_chan->lock);
  482. iop_chan->slots_allocated++;
  483. list_add_tail(&slot->slot_node, &iop_chan->all_slots);
  484. spin_unlock_bh(&iop_chan->lock);
  485. } while (iop_chan->slots_allocated < num_descs_in_pool);
  486. if (idx && !iop_chan->last_used)
  487. iop_chan->last_used = list_entry(iop_chan->all_slots.next,
  488. struct iop_adma_desc_slot,
  489. slot_node);
  490. dev_dbg(iop_chan->device->common.dev,
  491. "allocated %d descriptor slots last_used: %p\n",
  492. iop_chan->slots_allocated, iop_chan->last_used);
  493. /* initialize the channel and the chain with a null operation */
  494. if (init) {
  495. if (dma_has_cap(DMA_MEMCPY,
  496. iop_chan->device->common.cap_mask))
  497. iop_chan_start_null_memcpy(iop_chan);
  498. else if (dma_has_cap(DMA_XOR,
  499. iop_chan->device->common.cap_mask))
  500. iop_chan_start_null_xor(iop_chan);
  501. else
  502. BUG();
  503. }
  504. return (idx > 0) ? idx : -ENOMEM;
  505. }
  506. static struct dma_async_tx_descriptor *
  507. iop_adma_prep_dma_interrupt(struct dma_chan *chan, unsigned long flags)
  508. {
  509. struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
  510. struct iop_adma_desc_slot *sw_desc, *grp_start;
  511. int slot_cnt, slots_per_op;
  512. dev_dbg(iop_chan->device->common.dev, "%s\n", __func__);
  513. spin_lock_bh(&iop_chan->lock);
  514. slot_cnt = iop_chan_interrupt_slot_count(&slots_per_op, iop_chan);
  515. sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
  516. if (sw_desc) {
  517. grp_start = sw_desc->group_head;
  518. iop_desc_init_interrupt(grp_start, iop_chan);
  519. grp_start->unmap_len = 0;
  520. sw_desc->async_tx.flags = flags;
  521. }
  522. spin_unlock_bh(&iop_chan->lock);
  523. return sw_desc ? &sw_desc->async_tx : NULL;
  524. }
  525. static struct dma_async_tx_descriptor *
  526. iop_adma_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dma_dest,
  527. dma_addr_t dma_src, size_t len, unsigned long flags)
  528. {
  529. struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
  530. struct iop_adma_desc_slot *sw_desc, *grp_start;
  531. int slot_cnt, slots_per_op;
  532. if (unlikely(!len))
  533. return NULL;
  534. BUG_ON(len > IOP_ADMA_MAX_BYTE_COUNT);
  535. dev_dbg(iop_chan->device->common.dev, "%s len: %u\n",
  536. __func__, len);
  537. spin_lock_bh(&iop_chan->lock);
  538. slot_cnt = iop_chan_memcpy_slot_count(len, &slots_per_op);
  539. sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
  540. if (sw_desc) {
  541. grp_start = sw_desc->group_head;
  542. iop_desc_init_memcpy(grp_start, flags);
  543. iop_desc_set_byte_count(grp_start, iop_chan, len);
  544. iop_desc_set_dest_addr(grp_start, iop_chan, dma_dest);
  545. iop_desc_set_memcpy_src_addr(grp_start, dma_src);
  546. sw_desc->unmap_src_cnt = 1;
  547. sw_desc->unmap_len = len;
  548. sw_desc->async_tx.flags = flags;
  549. }
  550. spin_unlock_bh(&iop_chan->lock);
  551. return sw_desc ? &sw_desc->async_tx : NULL;
  552. }
  553. static struct dma_async_tx_descriptor *
  554. iop_adma_prep_dma_memset(struct dma_chan *chan, dma_addr_t dma_dest,
  555. int value, size_t len, unsigned long flags)
  556. {
  557. struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
  558. struct iop_adma_desc_slot *sw_desc, *grp_start;
  559. int slot_cnt, slots_per_op;
  560. if (unlikely(!len))
  561. return NULL;
  562. BUG_ON(len > IOP_ADMA_MAX_BYTE_COUNT);
  563. dev_dbg(iop_chan->device->common.dev, "%s len: %u\n",
  564. __func__, len);
  565. spin_lock_bh(&iop_chan->lock);
  566. slot_cnt = iop_chan_memset_slot_count(len, &slots_per_op);
  567. sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
  568. if (sw_desc) {
  569. grp_start = sw_desc->group_head;
  570. iop_desc_init_memset(grp_start, flags);
  571. iop_desc_set_byte_count(grp_start, iop_chan, len);
  572. iop_desc_set_block_fill_val(grp_start, value);
  573. iop_desc_set_dest_addr(grp_start, iop_chan, dma_dest);
  574. sw_desc->unmap_src_cnt = 1;
  575. sw_desc->unmap_len = len;
  576. sw_desc->async_tx.flags = flags;
  577. }
  578. spin_unlock_bh(&iop_chan->lock);
  579. return sw_desc ? &sw_desc->async_tx : NULL;
  580. }
  581. static struct dma_async_tx_descriptor *
  582. iop_adma_prep_dma_xor(struct dma_chan *chan, dma_addr_t dma_dest,
  583. dma_addr_t *dma_src, unsigned int src_cnt, size_t len,
  584. unsigned long flags)
  585. {
  586. struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
  587. struct iop_adma_desc_slot *sw_desc, *grp_start;
  588. int slot_cnt, slots_per_op;
  589. if (unlikely(!len))
  590. return NULL;
  591. BUG_ON(len > IOP_ADMA_XOR_MAX_BYTE_COUNT);
  592. dev_dbg(iop_chan->device->common.dev,
  593. "%s src_cnt: %d len: %u flags: %lx\n",
  594. __func__, src_cnt, len, flags);
  595. spin_lock_bh(&iop_chan->lock);
  596. slot_cnt = iop_chan_xor_slot_count(len, src_cnt, &slots_per_op);
  597. sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
  598. if (sw_desc) {
  599. grp_start = sw_desc->group_head;
  600. iop_desc_init_xor(grp_start, src_cnt, flags);
  601. iop_desc_set_byte_count(grp_start, iop_chan, len);
  602. iop_desc_set_dest_addr(grp_start, iop_chan, dma_dest);
  603. sw_desc->unmap_src_cnt = src_cnt;
  604. sw_desc->unmap_len = len;
  605. sw_desc->async_tx.flags = flags;
  606. while (src_cnt--)
  607. iop_desc_set_xor_src_addr(grp_start, src_cnt,
  608. dma_src[src_cnt]);
  609. }
  610. spin_unlock_bh(&iop_chan->lock);
  611. return sw_desc ? &sw_desc->async_tx : NULL;
  612. }
  613. static struct dma_async_tx_descriptor *
  614. iop_adma_prep_dma_xor_val(struct dma_chan *chan, dma_addr_t *dma_src,
  615. unsigned int src_cnt, size_t len, u32 *result,
  616. unsigned long flags)
  617. {
  618. struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
  619. struct iop_adma_desc_slot *sw_desc, *grp_start;
  620. int slot_cnt, slots_per_op;
  621. if (unlikely(!len))
  622. return NULL;
  623. dev_dbg(iop_chan->device->common.dev, "%s src_cnt: %d len: %u\n",
  624. __func__, src_cnt, len);
  625. spin_lock_bh(&iop_chan->lock);
  626. slot_cnt = iop_chan_zero_sum_slot_count(len, src_cnt, &slots_per_op);
  627. sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
  628. if (sw_desc) {
  629. grp_start = sw_desc->group_head;
  630. iop_desc_init_zero_sum(grp_start, src_cnt, flags);
  631. iop_desc_set_zero_sum_byte_count(grp_start, len);
  632. grp_start->xor_check_result = result;
  633. pr_debug("\t%s: grp_start->xor_check_result: %p\n",
  634. __func__, grp_start->xor_check_result);
  635. sw_desc->unmap_src_cnt = src_cnt;
  636. sw_desc->unmap_len = len;
  637. sw_desc->async_tx.flags = flags;
  638. while (src_cnt--)
  639. iop_desc_set_zero_sum_src_addr(grp_start, src_cnt,
  640. dma_src[src_cnt]);
  641. }
  642. spin_unlock_bh(&iop_chan->lock);
  643. return sw_desc ? &sw_desc->async_tx : NULL;
  644. }
  645. static struct dma_async_tx_descriptor *
  646. iop_adma_prep_dma_pq(struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
  647. unsigned int src_cnt, const unsigned char *scf, size_t len,
  648. unsigned long flags)
  649. {
  650. struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
  651. struct iop_adma_desc_slot *sw_desc, *g;
  652. int slot_cnt, slots_per_op;
  653. int continue_srcs;
  654. if (unlikely(!len))
  655. return NULL;
  656. BUG_ON(len > IOP_ADMA_XOR_MAX_BYTE_COUNT);
  657. dev_dbg(iop_chan->device->common.dev,
  658. "%s src_cnt: %d len: %u flags: %lx\n",
  659. __func__, src_cnt, len, flags);
  660. if (dmaf_p_disabled_continue(flags))
  661. continue_srcs = 1+src_cnt;
  662. else if (dmaf_continue(flags))
  663. continue_srcs = 3+src_cnt;
  664. else
  665. continue_srcs = 0+src_cnt;
  666. spin_lock_bh(&iop_chan->lock);
  667. slot_cnt = iop_chan_pq_slot_count(len, continue_srcs, &slots_per_op);
  668. sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
  669. if (sw_desc) {
  670. int i;
  671. g = sw_desc->group_head;
  672. iop_desc_set_byte_count(g, iop_chan, len);
  673. /* even if P is disabled its destination address (bits
  674. * [3:0]) must match Q. It is ok if P points to an
  675. * invalid address, it won't be written.
  676. */
  677. if (flags & DMA_PREP_PQ_DISABLE_P)
  678. dst[0] = dst[1] & 0x7;
  679. iop_desc_set_pq_addr(g, dst);
  680. sw_desc->unmap_src_cnt = src_cnt;
  681. sw_desc->unmap_len = len;
  682. sw_desc->async_tx.flags = flags;
  683. for (i = 0; i < src_cnt; i++)
  684. iop_desc_set_pq_src_addr(g, i, src[i], scf[i]);
  685. /* if we are continuing a previous operation factor in
  686. * the old p and q values, see the comment for dma_maxpq
  687. * in include/linux/dmaengine.h
  688. */
  689. if (dmaf_p_disabled_continue(flags))
  690. iop_desc_set_pq_src_addr(g, i++, dst[1], 1);
  691. else if (dmaf_continue(flags)) {
  692. iop_desc_set_pq_src_addr(g, i++, dst[0], 0);
  693. iop_desc_set_pq_src_addr(g, i++, dst[1], 1);
  694. iop_desc_set_pq_src_addr(g, i++, dst[1], 0);
  695. }
  696. iop_desc_init_pq(g, i, flags);
  697. }
  698. spin_unlock_bh(&iop_chan->lock);
  699. return sw_desc ? &sw_desc->async_tx : NULL;
  700. }
  701. static struct dma_async_tx_descriptor *
  702. iop_adma_prep_dma_pq_val(struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
  703. unsigned int src_cnt, const unsigned char *scf,
  704. size_t len, enum sum_check_flags *pqres,
  705. unsigned long flags)
  706. {
  707. struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
  708. struct iop_adma_desc_slot *sw_desc, *g;
  709. int slot_cnt, slots_per_op;
  710. if (unlikely(!len))
  711. return NULL;
  712. BUG_ON(len > IOP_ADMA_XOR_MAX_BYTE_COUNT);
  713. dev_dbg(iop_chan->device->common.dev, "%s src_cnt: %d len: %u\n",
  714. __func__, src_cnt, len);
  715. spin_lock_bh(&iop_chan->lock);
  716. slot_cnt = iop_chan_pq_zero_sum_slot_count(len, src_cnt + 2, &slots_per_op);
  717. sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
  718. if (sw_desc) {
  719. /* for validate operations p and q are tagged onto the
  720. * end of the source list
  721. */
  722. int pq_idx = src_cnt;
  723. g = sw_desc->group_head;
  724. iop_desc_init_pq_zero_sum(g, src_cnt+2, flags);
  725. iop_desc_set_pq_zero_sum_byte_count(g, len);
  726. g->pq_check_result = pqres;
  727. pr_debug("\t%s: g->pq_check_result: %p\n",
  728. __func__, g->pq_check_result);
  729. sw_desc->unmap_src_cnt = src_cnt+2;
  730. sw_desc->unmap_len = len;
  731. sw_desc->async_tx.flags = flags;
  732. while (src_cnt--)
  733. iop_desc_set_pq_zero_sum_src_addr(g, src_cnt,
  734. src[src_cnt],
  735. scf[src_cnt]);
  736. iop_desc_set_pq_zero_sum_addr(g, pq_idx, src);
  737. }
  738. spin_unlock_bh(&iop_chan->lock);
  739. return sw_desc ? &sw_desc->async_tx : NULL;
  740. }
  741. static void iop_adma_free_chan_resources(struct dma_chan *chan)
  742. {
  743. struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
  744. struct iop_adma_desc_slot *iter, *_iter;
  745. int in_use_descs = 0;
  746. iop_adma_slot_cleanup(iop_chan);
  747. spin_lock_bh(&iop_chan->lock);
  748. list_for_each_entry_safe(iter, _iter, &iop_chan->chain,
  749. chain_node) {
  750. in_use_descs++;
  751. list_del(&iter->chain_node);
  752. }
  753. list_for_each_entry_safe_reverse(
  754. iter, _iter, &iop_chan->all_slots, slot_node) {
  755. list_del(&iter->slot_node);
  756. kfree(iter);
  757. iop_chan->slots_allocated--;
  758. }
  759. iop_chan->last_used = NULL;
  760. dev_dbg(iop_chan->device->common.dev, "%s slots_allocated %d\n",
  761. __func__, iop_chan->slots_allocated);
  762. spin_unlock_bh(&iop_chan->lock);
  763. /* one is ok since we left it on there on purpose */
  764. if (in_use_descs > 1)
  765. printk(KERN_ERR "IOP: Freeing %d in use descriptors!\n",
  766. in_use_descs - 1);
  767. }
  768. /**
  769. * iop_adma_status - poll the status of an ADMA transaction
  770. * @chan: ADMA channel handle
  771. * @cookie: ADMA transaction identifier
  772. * @txstate: a holder for the current state of the channel or NULL
  773. */
  774. static enum dma_status iop_adma_status(struct dma_chan *chan,
  775. dma_cookie_t cookie,
  776. struct dma_tx_state *txstate)
  777. {
  778. struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
  779. dma_cookie_t last_used;
  780. dma_cookie_t last_complete;
  781. enum dma_status ret;
  782. last_used = chan->cookie;
  783. last_complete = iop_chan->completed_cookie;
  784. dma_set_tx_state(txstate, last_complete, last_used, 0);
  785. ret = dma_async_is_complete(cookie, last_complete, last_used);
  786. if (ret == DMA_SUCCESS)
  787. return ret;
  788. iop_adma_slot_cleanup(iop_chan);
  789. last_used = chan->cookie;
  790. last_complete = iop_chan->completed_cookie;
  791. dma_set_tx_state(txstate, last_complete, last_used, 0);
  792. return dma_async_is_complete(cookie, last_complete, last_used);
  793. }
  794. static irqreturn_t iop_adma_eot_handler(int irq, void *data)
  795. {
  796. struct iop_adma_chan *chan = data;
  797. dev_dbg(chan->device->common.dev, "%s\n", __func__);
  798. tasklet_schedule(&chan->irq_tasklet);
  799. iop_adma_device_clear_eot_status(chan);
  800. return IRQ_HANDLED;
  801. }
  802. static irqreturn_t iop_adma_eoc_handler(int irq, void *data)
  803. {
  804. struct iop_adma_chan *chan = data;
  805. dev_dbg(chan->device->common.dev, "%s\n", __func__);
  806. tasklet_schedule(&chan->irq_tasklet);
  807. iop_adma_device_clear_eoc_status(chan);
  808. return IRQ_HANDLED;
  809. }
  810. static irqreturn_t iop_adma_err_handler(int irq, void *data)
  811. {
  812. struct iop_adma_chan *chan = data;
  813. unsigned long status = iop_chan_get_status(chan);
  814. dev_printk(KERN_ERR, chan->device->common.dev,
  815. "error ( %s%s%s%s%s%s%s)\n",
  816. iop_is_err_int_parity(status, chan) ? "int_parity " : "",
  817. iop_is_err_mcu_abort(status, chan) ? "mcu_abort " : "",
  818. iop_is_err_int_tabort(status, chan) ? "int_tabort " : "",
  819. iop_is_err_int_mabort(status, chan) ? "int_mabort " : "",
  820. iop_is_err_pci_tabort(status, chan) ? "pci_tabort " : "",
  821. iop_is_err_pci_mabort(status, chan) ? "pci_mabort " : "",
  822. iop_is_err_split_tx(status, chan) ? "split_tx " : "");
  823. iop_adma_device_clear_err_status(chan);
  824. BUG();
  825. return IRQ_HANDLED;
  826. }
  827. static void iop_adma_issue_pending(struct dma_chan *chan)
  828. {
  829. struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
  830. if (iop_chan->pending) {
  831. iop_chan->pending = 0;
  832. iop_chan_append(iop_chan);
  833. }
  834. }
  835. /*
  836. * Perform a transaction to verify the HW works.
  837. */
  838. #define IOP_ADMA_TEST_SIZE 2000
  839. static int __devinit iop_adma_memcpy_self_test(struct iop_adma_device *device)
  840. {
  841. int i;
  842. void *src, *dest;
  843. dma_addr_t src_dma, dest_dma;
  844. struct dma_chan *dma_chan;
  845. dma_cookie_t cookie;
  846. struct dma_async_tx_descriptor *tx;
  847. int err = 0;
  848. struct iop_adma_chan *iop_chan;
  849. dev_dbg(device->common.dev, "%s\n", __func__);
  850. src = kmalloc(IOP_ADMA_TEST_SIZE, GFP_KERNEL);
  851. if (!src)
  852. return -ENOMEM;
  853. dest = kzalloc(IOP_ADMA_TEST_SIZE, GFP_KERNEL);
  854. if (!dest) {
  855. kfree(src);
  856. return -ENOMEM;
  857. }
  858. /* Fill in src buffer */
  859. for (i = 0; i < IOP_ADMA_TEST_SIZE; i++)
  860. ((u8 *) src)[i] = (u8)i;
  861. /* Start copy, using first DMA channel */
  862. dma_chan = container_of(device->common.channels.next,
  863. struct dma_chan,
  864. device_node);
  865. if (iop_adma_alloc_chan_resources(dma_chan) < 1) {
  866. err = -ENODEV;
  867. goto out;
  868. }
  869. dest_dma = dma_map_single(dma_chan->device->dev, dest,
  870. IOP_ADMA_TEST_SIZE, DMA_FROM_DEVICE);
  871. src_dma = dma_map_single(dma_chan->device->dev, src,
  872. IOP_ADMA_TEST_SIZE, DMA_TO_DEVICE);
  873. tx = iop_adma_prep_dma_memcpy(dma_chan, dest_dma, src_dma,
  874. IOP_ADMA_TEST_SIZE,
  875. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  876. cookie = iop_adma_tx_submit(tx);
  877. iop_adma_issue_pending(dma_chan);
  878. msleep(1);
  879. if (iop_adma_status(dma_chan, cookie, NULL) !=
  880. DMA_SUCCESS) {
  881. dev_printk(KERN_ERR, dma_chan->device->dev,
  882. "Self-test copy timed out, disabling\n");
  883. err = -ENODEV;
  884. goto free_resources;
  885. }
  886. iop_chan = to_iop_adma_chan(dma_chan);
  887. dma_sync_single_for_cpu(&iop_chan->device->pdev->dev, dest_dma,
  888. IOP_ADMA_TEST_SIZE, DMA_FROM_DEVICE);
  889. if (memcmp(src, dest, IOP_ADMA_TEST_SIZE)) {
  890. dev_printk(KERN_ERR, dma_chan->device->dev,
  891. "Self-test copy failed compare, disabling\n");
  892. err = -ENODEV;
  893. goto free_resources;
  894. }
  895. free_resources:
  896. iop_adma_free_chan_resources(dma_chan);
  897. out:
  898. kfree(src);
  899. kfree(dest);
  900. return err;
  901. }
  902. #define IOP_ADMA_NUM_SRC_TEST 4 /* must be <= 15 */
  903. static int __devinit
  904. iop_adma_xor_val_self_test(struct iop_adma_device *device)
  905. {
  906. int i, src_idx;
  907. struct page *dest;
  908. struct page *xor_srcs[IOP_ADMA_NUM_SRC_TEST];
  909. struct page *zero_sum_srcs[IOP_ADMA_NUM_SRC_TEST + 1];
  910. dma_addr_t dma_srcs[IOP_ADMA_NUM_SRC_TEST + 1];
  911. dma_addr_t dma_addr, dest_dma;
  912. struct dma_async_tx_descriptor *tx;
  913. struct dma_chan *dma_chan;
  914. dma_cookie_t cookie;
  915. u8 cmp_byte = 0;
  916. u32 cmp_word;
  917. u32 zero_sum_result;
  918. int err = 0;
  919. struct iop_adma_chan *iop_chan;
  920. dev_dbg(device->common.dev, "%s\n", __func__);
  921. for (src_idx = 0; src_idx < IOP_ADMA_NUM_SRC_TEST; src_idx++) {
  922. xor_srcs[src_idx] = alloc_page(GFP_KERNEL);
  923. if (!xor_srcs[src_idx]) {
  924. while (src_idx--)
  925. __free_page(xor_srcs[src_idx]);
  926. return -ENOMEM;
  927. }
  928. }
  929. dest = alloc_page(GFP_KERNEL);
  930. if (!dest) {
  931. while (src_idx--)
  932. __free_page(xor_srcs[src_idx]);
  933. return -ENOMEM;
  934. }
  935. /* Fill in src buffers */
  936. for (src_idx = 0; src_idx < IOP_ADMA_NUM_SRC_TEST; src_idx++) {
  937. u8 *ptr = page_address(xor_srcs[src_idx]);
  938. for (i = 0; i < PAGE_SIZE; i++)
  939. ptr[i] = (1 << src_idx);
  940. }
  941. for (src_idx = 0; src_idx < IOP_ADMA_NUM_SRC_TEST; src_idx++)
  942. cmp_byte ^= (u8) (1 << src_idx);
  943. cmp_word = (cmp_byte << 24) | (cmp_byte << 16) |
  944. (cmp_byte << 8) | cmp_byte;
  945. memset(page_address(dest), 0, PAGE_SIZE);
  946. dma_chan = container_of(device->common.channels.next,
  947. struct dma_chan,
  948. device_node);
  949. if (iop_adma_alloc_chan_resources(dma_chan) < 1) {
  950. err = -ENODEV;
  951. goto out;
  952. }
  953. /* test xor */
  954. dest_dma = dma_map_page(dma_chan->device->dev, dest, 0,
  955. PAGE_SIZE, DMA_FROM_DEVICE);
  956. for (i = 0; i < IOP_ADMA_NUM_SRC_TEST; i++)
  957. dma_srcs[i] = dma_map_page(dma_chan->device->dev, xor_srcs[i],
  958. 0, PAGE_SIZE, DMA_TO_DEVICE);
  959. tx = iop_adma_prep_dma_xor(dma_chan, dest_dma, dma_srcs,
  960. IOP_ADMA_NUM_SRC_TEST, PAGE_SIZE,
  961. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  962. cookie = iop_adma_tx_submit(tx);
  963. iop_adma_issue_pending(dma_chan);
  964. msleep(8);
  965. if (iop_adma_status(dma_chan, cookie, NULL) !=
  966. DMA_SUCCESS) {
  967. dev_printk(KERN_ERR, dma_chan->device->dev,
  968. "Self-test xor timed out, disabling\n");
  969. err = -ENODEV;
  970. goto free_resources;
  971. }
  972. iop_chan = to_iop_adma_chan(dma_chan);
  973. dma_sync_single_for_cpu(&iop_chan->device->pdev->dev, dest_dma,
  974. PAGE_SIZE, DMA_FROM_DEVICE);
  975. for (i = 0; i < (PAGE_SIZE / sizeof(u32)); i++) {
  976. u32 *ptr = page_address(dest);
  977. if (ptr[i] != cmp_word) {
  978. dev_printk(KERN_ERR, dma_chan->device->dev,
  979. "Self-test xor failed compare, disabling\n");
  980. err = -ENODEV;
  981. goto free_resources;
  982. }
  983. }
  984. dma_sync_single_for_device(&iop_chan->device->pdev->dev, dest_dma,
  985. PAGE_SIZE, DMA_TO_DEVICE);
  986. /* skip zero sum if the capability is not present */
  987. if (!dma_has_cap(DMA_XOR_VAL, dma_chan->device->cap_mask))
  988. goto free_resources;
  989. /* zero sum the sources with the destintation page */
  990. for (i = 0; i < IOP_ADMA_NUM_SRC_TEST; i++)
  991. zero_sum_srcs[i] = xor_srcs[i];
  992. zero_sum_srcs[i] = dest;
  993. zero_sum_result = 1;
  994. for (i = 0; i < IOP_ADMA_NUM_SRC_TEST + 1; i++)
  995. dma_srcs[i] = dma_map_page(dma_chan->device->dev,
  996. zero_sum_srcs[i], 0, PAGE_SIZE,
  997. DMA_TO_DEVICE);
  998. tx = iop_adma_prep_dma_xor_val(dma_chan, dma_srcs,
  999. IOP_ADMA_NUM_SRC_TEST + 1, PAGE_SIZE,
  1000. &zero_sum_result,
  1001. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  1002. cookie = iop_adma_tx_submit(tx);
  1003. iop_adma_issue_pending(dma_chan);
  1004. msleep(8);
  1005. if (iop_adma_status(dma_chan, cookie, NULL) != DMA_SUCCESS) {
  1006. dev_printk(KERN_ERR, dma_chan->device->dev,
  1007. "Self-test zero sum timed out, disabling\n");
  1008. err = -ENODEV;
  1009. goto free_resources;
  1010. }
  1011. if (zero_sum_result != 0) {
  1012. dev_printk(KERN_ERR, dma_chan->device->dev,
  1013. "Self-test zero sum failed compare, disabling\n");
  1014. err = -ENODEV;
  1015. goto free_resources;
  1016. }
  1017. /* test memset */
  1018. dma_addr = dma_map_page(dma_chan->device->dev, dest, 0,
  1019. PAGE_SIZE, DMA_FROM_DEVICE);
  1020. tx = iop_adma_prep_dma_memset(dma_chan, dma_addr, 0, PAGE_SIZE,
  1021. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  1022. cookie = iop_adma_tx_submit(tx);
  1023. iop_adma_issue_pending(dma_chan);
  1024. msleep(8);
  1025. if (iop_adma_status(dma_chan, cookie, NULL) != DMA_SUCCESS) {
  1026. dev_printk(KERN_ERR, dma_chan->device->dev,
  1027. "Self-test memset timed out, disabling\n");
  1028. err = -ENODEV;
  1029. goto free_resources;
  1030. }
  1031. for (i = 0; i < PAGE_SIZE/sizeof(u32); i++) {
  1032. u32 *ptr = page_address(dest);
  1033. if (ptr[i]) {
  1034. dev_printk(KERN_ERR, dma_chan->device->dev,
  1035. "Self-test memset failed compare, disabling\n");
  1036. err = -ENODEV;
  1037. goto free_resources;
  1038. }
  1039. }
  1040. /* test for non-zero parity sum */
  1041. zero_sum_result = 0;
  1042. for (i = 0; i < IOP_ADMA_NUM_SRC_TEST + 1; i++)
  1043. dma_srcs[i] = dma_map_page(dma_chan->device->dev,
  1044. zero_sum_srcs[i], 0, PAGE_SIZE,
  1045. DMA_TO_DEVICE);
  1046. tx = iop_adma_prep_dma_xor_val(dma_chan, dma_srcs,
  1047. IOP_ADMA_NUM_SRC_TEST + 1, PAGE_SIZE,
  1048. &zero_sum_result,
  1049. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  1050. cookie = iop_adma_tx_submit(tx);
  1051. iop_adma_issue_pending(dma_chan);
  1052. msleep(8);
  1053. if (iop_adma_status(dma_chan, cookie, NULL) != DMA_SUCCESS) {
  1054. dev_printk(KERN_ERR, dma_chan->device->dev,
  1055. "Self-test non-zero sum timed out, disabling\n");
  1056. err = -ENODEV;
  1057. goto free_resources;
  1058. }
  1059. if (zero_sum_result != 1) {
  1060. dev_printk(KERN_ERR, dma_chan->device->dev,
  1061. "Self-test non-zero sum failed compare, disabling\n");
  1062. err = -ENODEV;
  1063. goto free_resources;
  1064. }
  1065. free_resources:
  1066. iop_adma_free_chan_resources(dma_chan);
  1067. out:
  1068. src_idx = IOP_ADMA_NUM_SRC_TEST;
  1069. while (src_idx--)
  1070. __free_page(xor_srcs[src_idx]);
  1071. __free_page(dest);
  1072. return err;
  1073. }
  1074. #ifdef CONFIG_RAID6_PQ
  1075. static int __devinit
  1076. iop_adma_pq_zero_sum_self_test(struct iop_adma_device *device)
  1077. {
  1078. /* combined sources, software pq results, and extra hw pq results */
  1079. struct page *pq[IOP_ADMA_NUM_SRC_TEST+2+2];
  1080. /* ptr to the extra hw pq buffers defined above */
  1081. struct page **pq_hw = &pq[IOP_ADMA_NUM_SRC_TEST+2];
  1082. /* address conversion buffers (dma_map / page_address) */
  1083. void *pq_sw[IOP_ADMA_NUM_SRC_TEST+2];
  1084. dma_addr_t pq_src[IOP_ADMA_NUM_SRC_TEST];
  1085. dma_addr_t pq_dest[2];
  1086. int i;
  1087. struct dma_async_tx_descriptor *tx;
  1088. struct dma_chan *dma_chan;
  1089. dma_cookie_t cookie;
  1090. u32 zero_sum_result;
  1091. int err = 0;
  1092. struct device *dev;
  1093. dev_dbg(device->common.dev, "%s\n", __func__);
  1094. for (i = 0; i < ARRAY_SIZE(pq); i++) {
  1095. pq[i] = alloc_page(GFP_KERNEL);
  1096. if (!pq[i]) {
  1097. while (i--)
  1098. __free_page(pq[i]);
  1099. return -ENOMEM;
  1100. }
  1101. }
  1102. /* Fill in src buffers */
  1103. for (i = 0; i < IOP_ADMA_NUM_SRC_TEST; i++) {
  1104. pq_sw[i] = page_address(pq[i]);
  1105. memset(pq_sw[i], 0x11111111 * (1<<i), PAGE_SIZE);
  1106. }
  1107. pq_sw[i] = page_address(pq[i]);
  1108. pq_sw[i+1] = page_address(pq[i+1]);
  1109. dma_chan = container_of(device->common.channels.next,
  1110. struct dma_chan,
  1111. device_node);
  1112. if (iop_adma_alloc_chan_resources(dma_chan) < 1) {
  1113. err = -ENODEV;
  1114. goto out;
  1115. }
  1116. dev = dma_chan->device->dev;
  1117. /* initialize the dests */
  1118. memset(page_address(pq_hw[0]), 0 , PAGE_SIZE);
  1119. memset(page_address(pq_hw[1]), 0 , PAGE_SIZE);
  1120. /* test pq */
  1121. pq_dest[0] = dma_map_page(dev, pq_hw[0], 0, PAGE_SIZE, DMA_FROM_DEVICE);
  1122. pq_dest[1] = dma_map_page(dev, pq_hw[1], 0, PAGE_SIZE, DMA_FROM_DEVICE);
  1123. for (i = 0; i < IOP_ADMA_NUM_SRC_TEST; i++)
  1124. pq_src[i] = dma_map_page(dev, pq[i], 0, PAGE_SIZE,
  1125. DMA_TO_DEVICE);
  1126. tx = iop_adma_prep_dma_pq(dma_chan, pq_dest, pq_src,
  1127. IOP_ADMA_NUM_SRC_TEST, (u8 *)raid6_gfexp,
  1128. PAGE_SIZE,
  1129. DMA_PREP_INTERRUPT |
  1130. DMA_CTRL_ACK);
  1131. cookie = iop_adma_tx_submit(tx);
  1132. iop_adma_issue_pending(dma_chan);
  1133. msleep(8);
  1134. if (iop_adma_status(dma_chan, cookie, NULL) !=
  1135. DMA_SUCCESS) {
  1136. dev_err(dev, "Self-test pq timed out, disabling\n");
  1137. err = -ENODEV;
  1138. goto free_resources;
  1139. }
  1140. raid6_call.gen_syndrome(IOP_ADMA_NUM_SRC_TEST+2, PAGE_SIZE, pq_sw);
  1141. if (memcmp(pq_sw[IOP_ADMA_NUM_SRC_TEST],
  1142. page_address(pq_hw[0]), PAGE_SIZE) != 0) {
  1143. dev_err(dev, "Self-test p failed compare, disabling\n");
  1144. err = -ENODEV;
  1145. goto free_resources;
  1146. }
  1147. if (memcmp(pq_sw[IOP_ADMA_NUM_SRC_TEST+1],
  1148. page_address(pq_hw[1]), PAGE_SIZE) != 0) {
  1149. dev_err(dev, "Self-test q failed compare, disabling\n");
  1150. err = -ENODEV;
  1151. goto free_resources;
  1152. }
  1153. /* test correct zero sum using the software generated pq values */
  1154. for (i = 0; i < IOP_ADMA_NUM_SRC_TEST + 2; i++)
  1155. pq_src[i] = dma_map_page(dev, pq[i], 0, PAGE_SIZE,
  1156. DMA_TO_DEVICE);
  1157. zero_sum_result = ~0;
  1158. tx = iop_adma_prep_dma_pq_val(dma_chan, &pq_src[IOP_ADMA_NUM_SRC_TEST],
  1159. pq_src, IOP_ADMA_NUM_SRC_TEST,
  1160. raid6_gfexp, PAGE_SIZE, &zero_sum_result,
  1161. DMA_PREP_INTERRUPT|DMA_CTRL_ACK);
  1162. cookie = iop_adma_tx_submit(tx);
  1163. iop_adma_issue_pending(dma_chan);
  1164. msleep(8);
  1165. if (iop_adma_status(dma_chan, cookie, NULL) !=
  1166. DMA_SUCCESS) {
  1167. dev_err(dev, "Self-test pq-zero-sum timed out, disabling\n");
  1168. err = -ENODEV;
  1169. goto free_resources;
  1170. }
  1171. if (zero_sum_result != 0) {
  1172. dev_err(dev, "Self-test pq-zero-sum failed to validate: %x\n",
  1173. zero_sum_result);
  1174. err = -ENODEV;
  1175. goto free_resources;
  1176. }
  1177. /* test incorrect zero sum */
  1178. i = IOP_ADMA_NUM_SRC_TEST;
  1179. memset(pq_sw[i] + 100, 0, 100);
  1180. memset(pq_sw[i+1] + 200, 0, 200);
  1181. for (i = 0; i < IOP_ADMA_NUM_SRC_TEST + 2; i++)
  1182. pq_src[i] = dma_map_page(dev, pq[i], 0, PAGE_SIZE,
  1183. DMA_TO_DEVICE);
  1184. zero_sum_result = 0;
  1185. tx = iop_adma_prep_dma_pq_val(dma_chan, &pq_src[IOP_ADMA_NUM_SRC_TEST],
  1186. pq_src, IOP_ADMA_NUM_SRC_TEST,
  1187. raid6_gfexp, PAGE_SIZE, &zero_sum_result,
  1188. DMA_PREP_INTERRUPT|DMA_CTRL_ACK);
  1189. cookie = iop_adma_tx_submit(tx);
  1190. iop_adma_issue_pending(dma_chan);
  1191. msleep(8);
  1192. if (iop_adma_status(dma_chan, cookie, NULL) !=
  1193. DMA_SUCCESS) {
  1194. dev_err(dev, "Self-test !pq-zero-sum timed out, disabling\n");
  1195. err = -ENODEV;
  1196. goto free_resources;
  1197. }
  1198. if (zero_sum_result != (SUM_CHECK_P_RESULT | SUM_CHECK_Q_RESULT)) {
  1199. dev_err(dev, "Self-test !pq-zero-sum failed to validate: %x\n",
  1200. zero_sum_result);
  1201. err = -ENODEV;
  1202. goto free_resources;
  1203. }
  1204. free_resources:
  1205. iop_adma_free_chan_resources(dma_chan);
  1206. out:
  1207. i = ARRAY_SIZE(pq);
  1208. while (i--)
  1209. __free_page(pq[i]);
  1210. return err;
  1211. }
  1212. #endif
  1213. static int __devexit iop_adma_remove(struct platform_device *dev)
  1214. {
  1215. struct iop_adma_device *device = platform_get_drvdata(dev);
  1216. struct dma_chan *chan, *_chan;
  1217. struct iop_adma_chan *iop_chan;
  1218. struct iop_adma_platform_data *plat_data = dev->dev.platform_data;
  1219. dma_async_device_unregister(&device->common);
  1220. dma_free_coherent(&dev->dev, plat_data->pool_size,
  1221. device->dma_desc_pool_virt, device->dma_desc_pool);
  1222. list_for_each_entry_safe(chan, _chan, &device->common.channels,
  1223. device_node) {
  1224. iop_chan = to_iop_adma_chan(chan);
  1225. list_del(&chan->device_node);
  1226. kfree(iop_chan);
  1227. }
  1228. kfree(device);
  1229. return 0;
  1230. }
  1231. static int __devinit iop_adma_probe(struct platform_device *pdev)
  1232. {
  1233. struct resource *res;
  1234. int ret = 0, i;
  1235. struct iop_adma_device *adev;
  1236. struct iop_adma_chan *iop_chan;
  1237. struct dma_device *dma_dev;
  1238. struct iop_adma_platform_data *plat_data = pdev->dev.platform_data;
  1239. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1240. if (!res)
  1241. return -ENODEV;
  1242. if (!devm_request_mem_region(&pdev->dev, res->start,
  1243. resource_size(res), pdev->name))
  1244. return -EBUSY;
  1245. adev = kzalloc(sizeof(*adev), GFP_KERNEL);
  1246. if (!adev)
  1247. return -ENOMEM;
  1248. dma_dev = &adev->common;
  1249. /* allocate coherent memory for hardware descriptors
  1250. * note: writecombine gives slightly better performance, but
  1251. * requires that we explicitly flush the writes
  1252. */
  1253. if ((adev->dma_desc_pool_virt = dma_alloc_writecombine(&pdev->dev,
  1254. plat_data->pool_size,
  1255. &adev->dma_desc_pool,
  1256. GFP_KERNEL)) == NULL) {
  1257. ret = -ENOMEM;
  1258. goto err_free_adev;
  1259. }
  1260. dev_dbg(&pdev->dev, "%s: allocted descriptor pool virt %p phys %p\n",
  1261. __func__, adev->dma_desc_pool_virt,
  1262. (void *) adev->dma_desc_pool);
  1263. adev->id = plat_data->hw_id;
  1264. /* discover transaction capabilites from the platform data */
  1265. dma_dev->cap_mask = plat_data->cap_mask;
  1266. adev->pdev = pdev;
  1267. platform_set_drvdata(pdev, adev);
  1268. INIT_LIST_HEAD(&dma_dev->channels);
  1269. /* set base routines */
  1270. dma_dev->device_alloc_chan_resources = iop_adma_alloc_chan_resources;
  1271. dma_dev->device_free_chan_resources = iop_adma_free_chan_resources;
  1272. dma_dev->device_tx_status = iop_adma_status;
  1273. dma_dev->device_issue_pending = iop_adma_issue_pending;
  1274. dma_dev->dev = &pdev->dev;
  1275. /* set prep routines based on capability */
  1276. if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask))
  1277. dma_dev->device_prep_dma_memcpy = iop_adma_prep_dma_memcpy;
  1278. if (dma_has_cap(DMA_MEMSET, dma_dev->cap_mask))
  1279. dma_dev->device_prep_dma_memset = iop_adma_prep_dma_memset;
  1280. if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
  1281. dma_dev->max_xor = iop_adma_get_max_xor();
  1282. dma_dev->device_prep_dma_xor = iop_adma_prep_dma_xor;
  1283. }
  1284. if (dma_has_cap(DMA_XOR_VAL, dma_dev->cap_mask))
  1285. dma_dev->device_prep_dma_xor_val =
  1286. iop_adma_prep_dma_xor_val;
  1287. if (dma_has_cap(DMA_PQ, dma_dev->cap_mask)) {
  1288. dma_set_maxpq(dma_dev, iop_adma_get_max_pq(), 0);
  1289. dma_dev->device_prep_dma_pq = iop_adma_prep_dma_pq;
  1290. }
  1291. if (dma_has_cap(DMA_PQ_VAL, dma_dev->cap_mask))
  1292. dma_dev->device_prep_dma_pq_val =
  1293. iop_adma_prep_dma_pq_val;
  1294. if (dma_has_cap(DMA_INTERRUPT, dma_dev->cap_mask))
  1295. dma_dev->device_prep_dma_interrupt =
  1296. iop_adma_prep_dma_interrupt;
  1297. iop_chan = kzalloc(sizeof(*iop_chan), GFP_KERNEL);
  1298. if (!iop_chan) {
  1299. ret = -ENOMEM;
  1300. goto err_free_dma;
  1301. }
  1302. iop_chan->device = adev;
  1303. iop_chan->mmr_base = devm_ioremap(&pdev->dev, res->start,
  1304. resource_size(res));
  1305. if (!iop_chan->mmr_base) {
  1306. ret = -ENOMEM;
  1307. goto err_free_iop_chan;
  1308. }
  1309. tasklet_init(&iop_chan->irq_tasklet, iop_adma_tasklet, (unsigned long)
  1310. iop_chan);
  1311. /* clear errors before enabling interrupts */
  1312. iop_adma_device_clear_err_status(iop_chan);
  1313. for (i = 0; i < 3; i++) {
  1314. irq_handler_t handler[] = { iop_adma_eot_handler,
  1315. iop_adma_eoc_handler,
  1316. iop_adma_err_handler };
  1317. int irq = platform_get_irq(pdev, i);
  1318. if (irq < 0) {
  1319. ret = -ENXIO;
  1320. goto err_free_iop_chan;
  1321. } else {
  1322. ret = devm_request_irq(&pdev->dev, irq,
  1323. handler[i], 0, pdev->name, iop_chan);
  1324. if (ret)
  1325. goto err_free_iop_chan;
  1326. }
  1327. }
  1328. spin_lock_init(&iop_chan->lock);
  1329. INIT_LIST_HEAD(&iop_chan->chain);
  1330. INIT_LIST_HEAD(&iop_chan->all_slots);
  1331. iop_chan->common.device = dma_dev;
  1332. list_add_tail(&iop_chan->common.device_node, &dma_dev->channels);
  1333. if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask)) {
  1334. ret = iop_adma_memcpy_self_test(adev);
  1335. dev_dbg(&pdev->dev, "memcpy self test returned %d\n", ret);
  1336. if (ret)
  1337. goto err_free_iop_chan;
  1338. }
  1339. if (dma_has_cap(DMA_XOR, dma_dev->cap_mask) ||
  1340. dma_has_cap(DMA_MEMSET, dma_dev->cap_mask)) {
  1341. ret = iop_adma_xor_val_self_test(adev);
  1342. dev_dbg(&pdev->dev, "xor self test returned %d\n", ret);
  1343. if (ret)
  1344. goto err_free_iop_chan;
  1345. }
  1346. if (dma_has_cap(DMA_PQ, dma_dev->cap_mask) &&
  1347. dma_has_cap(DMA_PQ_VAL, dma_dev->cap_mask)) {
  1348. #ifdef CONFIG_RAID6_PQ
  1349. ret = iop_adma_pq_zero_sum_self_test(adev);
  1350. dev_dbg(&pdev->dev, "pq self test returned %d\n", ret);
  1351. #else
  1352. /* can not test raid6, so do not publish capability */
  1353. dma_cap_clear(DMA_PQ, dma_dev->cap_mask);
  1354. dma_cap_clear(DMA_PQ_VAL, dma_dev->cap_mask);
  1355. ret = 0;
  1356. #endif
  1357. if (ret)
  1358. goto err_free_iop_chan;
  1359. }
  1360. dev_printk(KERN_INFO, &pdev->dev, "Intel(R) IOP: "
  1361. "( %s%s%s%s%s%s%s)\n",
  1362. dma_has_cap(DMA_PQ, dma_dev->cap_mask) ? "pq " : "",
  1363. dma_has_cap(DMA_PQ_VAL, dma_dev->cap_mask) ? "pq_val " : "",
  1364. dma_has_cap(DMA_XOR, dma_dev->cap_mask) ? "xor " : "",
  1365. dma_has_cap(DMA_XOR_VAL, dma_dev->cap_mask) ? "xor_val " : "",
  1366. dma_has_cap(DMA_MEMSET, dma_dev->cap_mask) ? "fill " : "",
  1367. dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask) ? "cpy " : "",
  1368. dma_has_cap(DMA_INTERRUPT, dma_dev->cap_mask) ? "intr " : "");
  1369. dma_async_device_register(dma_dev);
  1370. goto out;
  1371. err_free_iop_chan:
  1372. kfree(iop_chan);
  1373. err_free_dma:
  1374. dma_free_coherent(&adev->pdev->dev, plat_data->pool_size,
  1375. adev->dma_desc_pool_virt, adev->dma_desc_pool);
  1376. err_free_adev:
  1377. kfree(adev);
  1378. out:
  1379. return ret;
  1380. }
  1381. static void iop_chan_start_null_memcpy(struct iop_adma_chan *iop_chan)
  1382. {
  1383. struct iop_adma_desc_slot *sw_desc, *grp_start;
  1384. dma_cookie_t cookie;
  1385. int slot_cnt, slots_per_op;
  1386. dev_dbg(iop_chan->device->common.dev, "%s\n", __func__);
  1387. spin_lock_bh(&iop_chan->lock);
  1388. slot_cnt = iop_chan_memcpy_slot_count(0, &slots_per_op);
  1389. sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
  1390. if (sw_desc) {
  1391. grp_start = sw_desc->group_head;
  1392. list_splice_init(&sw_desc->tx_list, &iop_chan->chain);
  1393. async_tx_ack(&sw_desc->async_tx);
  1394. iop_desc_init_memcpy(grp_start, 0);
  1395. iop_desc_set_byte_count(grp_start, iop_chan, 0);
  1396. iop_desc_set_dest_addr(grp_start, iop_chan, 0);
  1397. iop_desc_set_memcpy_src_addr(grp_start, 0);
  1398. cookie = iop_chan->common.cookie;
  1399. cookie++;
  1400. if (cookie <= 1)
  1401. cookie = 2;
  1402. /* initialize the completed cookie to be less than
  1403. * the most recently used cookie
  1404. */
  1405. iop_chan->completed_cookie = cookie - 1;
  1406. iop_chan->common.cookie = sw_desc->async_tx.cookie = cookie;
  1407. /* channel should not be busy */
  1408. BUG_ON(iop_chan_is_busy(iop_chan));
  1409. /* clear any prior error-status bits */
  1410. iop_adma_device_clear_err_status(iop_chan);
  1411. /* disable operation */
  1412. iop_chan_disable(iop_chan);
  1413. /* set the descriptor address */
  1414. iop_chan_set_next_descriptor(iop_chan, sw_desc->async_tx.phys);
  1415. /* 1/ don't add pre-chained descriptors
  1416. * 2/ dummy read to flush next_desc write
  1417. */
  1418. BUG_ON(iop_desc_get_next_desc(sw_desc));
  1419. /* run the descriptor */
  1420. iop_chan_enable(iop_chan);
  1421. } else
  1422. dev_printk(KERN_ERR, iop_chan->device->common.dev,
  1423. "failed to allocate null descriptor\n");
  1424. spin_unlock_bh(&iop_chan->lock);
  1425. }
  1426. static void iop_chan_start_null_xor(struct iop_adma_chan *iop_chan)
  1427. {
  1428. struct iop_adma_desc_slot *sw_desc, *grp_start;
  1429. dma_cookie_t cookie;
  1430. int slot_cnt, slots_per_op;
  1431. dev_dbg(iop_chan->device->common.dev, "%s\n", __func__);
  1432. spin_lock_bh(&iop_chan->lock);
  1433. slot_cnt = iop_chan_xor_slot_count(0, 2, &slots_per_op);
  1434. sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
  1435. if (sw_desc) {
  1436. grp_start = sw_desc->group_head;
  1437. list_splice_init(&sw_desc->tx_list, &iop_chan->chain);
  1438. async_tx_ack(&sw_desc->async_tx);
  1439. iop_desc_init_null_xor(grp_start, 2, 0);
  1440. iop_desc_set_byte_count(grp_start, iop_chan, 0);
  1441. iop_desc_set_dest_addr(grp_start, iop_chan, 0);
  1442. iop_desc_set_xor_src_addr(grp_start, 0, 0);
  1443. iop_desc_set_xor_src_addr(grp_start, 1, 0);
  1444. cookie = iop_chan->common.cookie;
  1445. cookie++;
  1446. if (cookie <= 1)
  1447. cookie = 2;
  1448. /* initialize the completed cookie to be less than
  1449. * the most recently used cookie
  1450. */
  1451. iop_chan->completed_cookie = cookie - 1;
  1452. iop_chan->common.cookie = sw_desc->async_tx.cookie = cookie;
  1453. /* channel should not be busy */
  1454. BUG_ON(iop_chan_is_busy(iop_chan));
  1455. /* clear any prior error-status bits */
  1456. iop_adma_device_clear_err_status(iop_chan);
  1457. /* disable operation */
  1458. iop_chan_disable(iop_chan);
  1459. /* set the descriptor address */
  1460. iop_chan_set_next_descriptor(iop_chan, sw_desc->async_tx.phys);
  1461. /* 1/ don't add pre-chained descriptors
  1462. * 2/ dummy read to flush next_desc write
  1463. */
  1464. BUG_ON(iop_desc_get_next_desc(sw_desc));
  1465. /* run the descriptor */
  1466. iop_chan_enable(iop_chan);
  1467. } else
  1468. dev_printk(KERN_ERR, iop_chan->device->common.dev,
  1469. "failed to allocate null descriptor\n");
  1470. spin_unlock_bh(&iop_chan->lock);
  1471. }
  1472. MODULE_ALIAS("platform:iop-adma");
  1473. static struct platform_driver iop_adma_driver = {
  1474. .probe = iop_adma_probe,
  1475. .remove = __devexit_p(iop_adma_remove),
  1476. .driver = {
  1477. .owner = THIS_MODULE,
  1478. .name = "iop-adma",
  1479. },
  1480. };
  1481. static int __init iop_adma_init (void)
  1482. {
  1483. return platform_driver_register(&iop_adma_driver);
  1484. }
  1485. static void __exit iop_adma_exit (void)
  1486. {
  1487. platform_driver_unregister(&iop_adma_driver);
  1488. return;
  1489. }
  1490. module_exit(iop_adma_exit);
  1491. module_init(iop_adma_init);
  1492. MODULE_AUTHOR("Intel Corporation");
  1493. MODULE_DESCRIPTION("IOP ADMA Engine Driver");
  1494. MODULE_LICENSE("GPL");