dma_v2.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911
  1. /*
  2. * Intel I/OAT DMA Linux driver
  3. * Copyright(c) 2004 - 2009 Intel Corporation.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms and conditions of the GNU General Public License,
  7. * version 2, as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. *
  14. * You should have received a copy of the GNU General Public License along with
  15. * this program; if not, write to the Free Software Foundation, Inc.,
  16. * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  17. *
  18. * The full GNU General Public License is included in this distribution in
  19. * the file called "COPYING".
  20. *
  21. */
  22. /*
  23. * This driver supports an Intel I/OAT DMA engine (versions >= 2), which
  24. * does asynchronous data movement and checksumming operations.
  25. */
  26. #include <linux/init.h>
  27. #include <linux/module.h>
  28. #include <linux/slab.h>
  29. #include <linux/pci.h>
  30. #include <linux/interrupt.h>
  31. #include <linux/dmaengine.h>
  32. #include <linux/delay.h>
  33. #include <linux/dma-mapping.h>
  34. #include <linux/workqueue.h>
  35. #include <linux/prefetch.h>
  36. #include <linux/i7300_idle.h>
  37. #include "dma.h"
  38. #include "dma_v2.h"
  39. #include "registers.h"
  40. #include "hw.h"
  41. int ioat_ring_alloc_order = 8;
  42. module_param(ioat_ring_alloc_order, int, 0644);
  43. MODULE_PARM_DESC(ioat_ring_alloc_order,
  44. "ioat2+: allocate 2^n descriptors per channel"
  45. " (default: 8 max: 16)");
  46. static int ioat_ring_max_alloc_order = IOAT_MAX_ORDER;
  47. module_param(ioat_ring_max_alloc_order, int, 0644);
  48. MODULE_PARM_DESC(ioat_ring_max_alloc_order,
  49. "ioat2+: upper limit for ring size (default: 16)");
  50. void __ioat2_issue_pending(struct ioat2_dma_chan *ioat)
  51. {
  52. struct ioat_chan_common *chan = &ioat->base;
  53. ioat->dmacount += ioat2_ring_pending(ioat);
  54. ioat->issued = ioat->head;
  55. writew(ioat->dmacount, chan->reg_base + IOAT_CHAN_DMACOUNT_OFFSET);
  56. dev_dbg(to_dev(chan),
  57. "%s: head: %#x tail: %#x issued: %#x count: %#x\n",
  58. __func__, ioat->head, ioat->tail, ioat->issued, ioat->dmacount);
  59. }
  60. void ioat2_issue_pending(struct dma_chan *c)
  61. {
  62. struct ioat2_dma_chan *ioat = to_ioat2_chan(c);
  63. if (ioat2_ring_pending(ioat)) {
  64. spin_lock_bh(&ioat->prep_lock);
  65. __ioat2_issue_pending(ioat);
  66. spin_unlock_bh(&ioat->prep_lock);
  67. }
  68. }
  69. /**
  70. * ioat2_update_pending - log pending descriptors
  71. * @ioat: ioat2+ channel
  72. *
  73. * Check if the number of unsubmitted descriptors has exceeded the
  74. * watermark. Called with prep_lock held
  75. */
  76. static void ioat2_update_pending(struct ioat2_dma_chan *ioat)
  77. {
  78. if (ioat2_ring_pending(ioat) > ioat_pending_level)
  79. __ioat2_issue_pending(ioat);
  80. }
  81. static void __ioat2_start_null_desc(struct ioat2_dma_chan *ioat)
  82. {
  83. struct ioat_ring_ent *desc;
  84. struct ioat_dma_descriptor *hw;
  85. if (ioat2_ring_space(ioat) < 1) {
  86. dev_err(to_dev(&ioat->base),
  87. "Unable to start null desc - ring full\n");
  88. return;
  89. }
  90. dev_dbg(to_dev(&ioat->base), "%s: head: %#x tail: %#x issued: %#x\n",
  91. __func__, ioat->head, ioat->tail, ioat->issued);
  92. desc = ioat2_get_ring_ent(ioat, ioat->head);
  93. hw = desc->hw;
  94. hw->ctl = 0;
  95. hw->ctl_f.null = 1;
  96. hw->ctl_f.int_en = 1;
  97. hw->ctl_f.compl_write = 1;
  98. /* set size to non-zero value (channel returns error when size is 0) */
  99. hw->size = NULL_DESC_BUFFER_SIZE;
  100. hw->src_addr = 0;
  101. hw->dst_addr = 0;
  102. async_tx_ack(&desc->txd);
  103. ioat2_set_chainaddr(ioat, desc->txd.phys);
  104. dump_desc_dbg(ioat, desc);
  105. wmb();
  106. ioat->head += 1;
  107. __ioat2_issue_pending(ioat);
  108. }
  109. static void ioat2_start_null_desc(struct ioat2_dma_chan *ioat)
  110. {
  111. spin_lock_bh(&ioat->prep_lock);
  112. __ioat2_start_null_desc(ioat);
  113. spin_unlock_bh(&ioat->prep_lock);
  114. }
  115. static void __cleanup(struct ioat2_dma_chan *ioat, unsigned long phys_complete)
  116. {
  117. struct ioat_chan_common *chan = &ioat->base;
  118. struct dma_async_tx_descriptor *tx;
  119. struct ioat_ring_ent *desc;
  120. bool seen_current = false;
  121. u16 active;
  122. int idx = ioat->tail, i;
  123. dev_dbg(to_dev(chan), "%s: head: %#x tail: %#x issued: %#x\n",
  124. __func__, ioat->head, ioat->tail, ioat->issued);
  125. active = ioat2_ring_active(ioat);
  126. for (i = 0; i < active && !seen_current; i++) {
  127. smp_read_barrier_depends();
  128. prefetch(ioat2_get_ring_ent(ioat, idx + i + 1));
  129. desc = ioat2_get_ring_ent(ioat, idx + i);
  130. tx = &desc->txd;
  131. dump_desc_dbg(ioat, desc);
  132. if (tx->cookie) {
  133. ioat_dma_unmap(chan, tx->flags, desc->len, desc->hw);
  134. chan->completed_cookie = tx->cookie;
  135. tx->cookie = 0;
  136. if (tx->callback) {
  137. tx->callback(tx->callback_param);
  138. tx->callback = NULL;
  139. }
  140. }
  141. if (tx->phys == phys_complete)
  142. seen_current = true;
  143. }
  144. smp_mb(); /* finish all descriptor reads before incrementing tail */
  145. ioat->tail = idx + i;
  146. BUG_ON(active && !seen_current); /* no active descs have written a completion? */
  147. chan->last_completion = phys_complete;
  148. if (active - i == 0) {
  149. dev_dbg(to_dev(chan), "%s: cancel completion timeout\n",
  150. __func__);
  151. clear_bit(IOAT_COMPLETION_PENDING, &chan->state);
  152. mod_timer(&chan->timer, jiffies + IDLE_TIMEOUT);
  153. }
  154. }
  155. /**
  156. * ioat2_cleanup - clean finished descriptors (advance tail pointer)
  157. * @chan: ioat channel to be cleaned up
  158. */
  159. static void ioat2_cleanup(struct ioat2_dma_chan *ioat)
  160. {
  161. struct ioat_chan_common *chan = &ioat->base;
  162. unsigned long phys_complete;
  163. spin_lock_bh(&chan->cleanup_lock);
  164. if (ioat_cleanup_preamble(chan, &phys_complete))
  165. __cleanup(ioat, phys_complete);
  166. spin_unlock_bh(&chan->cleanup_lock);
  167. }
  168. void ioat2_cleanup_event(unsigned long data)
  169. {
  170. struct ioat2_dma_chan *ioat = to_ioat2_chan((void *) data);
  171. ioat2_cleanup(ioat);
  172. writew(IOAT_CHANCTRL_RUN, ioat->base.reg_base + IOAT_CHANCTRL_OFFSET);
  173. }
  174. void __ioat2_restart_chan(struct ioat2_dma_chan *ioat)
  175. {
  176. struct ioat_chan_common *chan = &ioat->base;
  177. /* set the tail to be re-issued */
  178. ioat->issued = ioat->tail;
  179. ioat->dmacount = 0;
  180. set_bit(IOAT_COMPLETION_PENDING, &chan->state);
  181. mod_timer(&chan->timer, jiffies + COMPLETION_TIMEOUT);
  182. dev_dbg(to_dev(chan),
  183. "%s: head: %#x tail: %#x issued: %#x count: %#x\n",
  184. __func__, ioat->head, ioat->tail, ioat->issued, ioat->dmacount);
  185. if (ioat2_ring_pending(ioat)) {
  186. struct ioat_ring_ent *desc;
  187. desc = ioat2_get_ring_ent(ioat, ioat->tail);
  188. ioat2_set_chainaddr(ioat, desc->txd.phys);
  189. __ioat2_issue_pending(ioat);
  190. } else
  191. __ioat2_start_null_desc(ioat);
  192. }
  193. int ioat2_quiesce(struct ioat_chan_common *chan, unsigned long tmo)
  194. {
  195. unsigned long end = jiffies + tmo;
  196. int err = 0;
  197. u32 status;
  198. status = ioat_chansts(chan);
  199. if (is_ioat_active(status) || is_ioat_idle(status))
  200. ioat_suspend(chan);
  201. while (is_ioat_active(status) || is_ioat_idle(status)) {
  202. if (tmo && time_after(jiffies, end)) {
  203. err = -ETIMEDOUT;
  204. break;
  205. }
  206. status = ioat_chansts(chan);
  207. cpu_relax();
  208. }
  209. return err;
  210. }
  211. int ioat2_reset_sync(struct ioat_chan_common *chan, unsigned long tmo)
  212. {
  213. unsigned long end = jiffies + tmo;
  214. int err = 0;
  215. ioat_reset(chan);
  216. while (ioat_reset_pending(chan)) {
  217. if (end && time_after(jiffies, end)) {
  218. err = -ETIMEDOUT;
  219. break;
  220. }
  221. cpu_relax();
  222. }
  223. return err;
  224. }
  225. static void ioat2_restart_channel(struct ioat2_dma_chan *ioat)
  226. {
  227. struct ioat_chan_common *chan = &ioat->base;
  228. unsigned long phys_complete;
  229. ioat2_quiesce(chan, 0);
  230. if (ioat_cleanup_preamble(chan, &phys_complete))
  231. __cleanup(ioat, phys_complete);
  232. __ioat2_restart_chan(ioat);
  233. }
  234. void ioat2_timer_event(unsigned long data)
  235. {
  236. struct ioat2_dma_chan *ioat = to_ioat2_chan((void *) data);
  237. struct ioat_chan_common *chan = &ioat->base;
  238. if (test_bit(IOAT_COMPLETION_PENDING, &chan->state)) {
  239. unsigned long phys_complete;
  240. u64 status;
  241. status = ioat_chansts(chan);
  242. /* when halted due to errors check for channel
  243. * programming errors before advancing the completion state
  244. */
  245. if (is_ioat_halted(status)) {
  246. u32 chanerr;
  247. chanerr = readl(chan->reg_base + IOAT_CHANERR_OFFSET);
  248. dev_err(to_dev(chan), "%s: Channel halted (%x)\n",
  249. __func__, chanerr);
  250. if (test_bit(IOAT_RUN, &chan->state))
  251. BUG_ON(is_ioat_bug(chanerr));
  252. else /* we never got off the ground */
  253. return;
  254. }
  255. /* if we haven't made progress and we have already
  256. * acknowledged a pending completion once, then be more
  257. * forceful with a restart
  258. */
  259. spin_lock_bh(&chan->cleanup_lock);
  260. if (ioat_cleanup_preamble(chan, &phys_complete)) {
  261. __cleanup(ioat, phys_complete);
  262. } else if (test_bit(IOAT_COMPLETION_ACK, &chan->state)) {
  263. spin_lock_bh(&ioat->prep_lock);
  264. ioat2_restart_channel(ioat);
  265. spin_unlock_bh(&ioat->prep_lock);
  266. } else {
  267. set_bit(IOAT_COMPLETION_ACK, &chan->state);
  268. mod_timer(&chan->timer, jiffies + COMPLETION_TIMEOUT);
  269. }
  270. spin_unlock_bh(&chan->cleanup_lock);
  271. } else {
  272. u16 active;
  273. /* if the ring is idle, empty, and oversized try to step
  274. * down the size
  275. */
  276. spin_lock_bh(&chan->cleanup_lock);
  277. spin_lock_bh(&ioat->prep_lock);
  278. active = ioat2_ring_active(ioat);
  279. if (active == 0 && ioat->alloc_order > ioat_get_alloc_order())
  280. reshape_ring(ioat, ioat->alloc_order-1);
  281. spin_unlock_bh(&ioat->prep_lock);
  282. spin_unlock_bh(&chan->cleanup_lock);
  283. /* keep shrinking until we get back to our minimum
  284. * default size
  285. */
  286. if (ioat->alloc_order > ioat_get_alloc_order())
  287. mod_timer(&chan->timer, jiffies + IDLE_TIMEOUT);
  288. }
  289. }
  290. static int ioat2_reset_hw(struct ioat_chan_common *chan)
  291. {
  292. /* throw away whatever the channel was doing and get it initialized */
  293. u32 chanerr;
  294. ioat2_quiesce(chan, msecs_to_jiffies(100));
  295. chanerr = readl(chan->reg_base + IOAT_CHANERR_OFFSET);
  296. writel(chanerr, chan->reg_base + IOAT_CHANERR_OFFSET);
  297. return ioat2_reset_sync(chan, msecs_to_jiffies(200));
  298. }
  299. /**
  300. * ioat2_enumerate_channels - find and initialize the device's channels
  301. * @device: the device to be enumerated
  302. */
  303. int ioat2_enumerate_channels(struct ioatdma_device *device)
  304. {
  305. struct ioat2_dma_chan *ioat;
  306. struct device *dev = &device->pdev->dev;
  307. struct dma_device *dma = &device->common;
  308. u8 xfercap_log;
  309. int i;
  310. INIT_LIST_HEAD(&dma->channels);
  311. dma->chancnt = readb(device->reg_base + IOAT_CHANCNT_OFFSET);
  312. dma->chancnt &= 0x1f; /* bits [4:0] valid */
  313. if (dma->chancnt > ARRAY_SIZE(device->idx)) {
  314. dev_warn(dev, "(%d) exceeds max supported channels (%zu)\n",
  315. dma->chancnt, ARRAY_SIZE(device->idx));
  316. dma->chancnt = ARRAY_SIZE(device->idx);
  317. }
  318. xfercap_log = readb(device->reg_base + IOAT_XFERCAP_OFFSET);
  319. xfercap_log &= 0x1f; /* bits [4:0] valid */
  320. if (xfercap_log == 0)
  321. return 0;
  322. dev_dbg(dev, "%s: xfercap = %d\n", __func__, 1 << xfercap_log);
  323. /* FIXME which i/oat version is i7300? */
  324. #ifdef CONFIG_I7300_IDLE_IOAT_CHANNEL
  325. if (i7300_idle_platform_probe(NULL, NULL, 1) == 0)
  326. dma->chancnt--;
  327. #endif
  328. for (i = 0; i < dma->chancnt; i++) {
  329. ioat = devm_kzalloc(dev, sizeof(*ioat), GFP_KERNEL);
  330. if (!ioat)
  331. break;
  332. ioat_init_channel(device, &ioat->base, i);
  333. ioat->xfercap_log = xfercap_log;
  334. spin_lock_init(&ioat->prep_lock);
  335. if (device->reset_hw(&ioat->base)) {
  336. i = 0;
  337. break;
  338. }
  339. }
  340. dma->chancnt = i;
  341. return i;
  342. }
  343. static dma_cookie_t ioat2_tx_submit_unlock(struct dma_async_tx_descriptor *tx)
  344. {
  345. struct dma_chan *c = tx->chan;
  346. struct ioat2_dma_chan *ioat = to_ioat2_chan(c);
  347. struct ioat_chan_common *chan = &ioat->base;
  348. dma_cookie_t cookie = c->cookie;
  349. cookie++;
  350. if (cookie < 0)
  351. cookie = 1;
  352. tx->cookie = cookie;
  353. c->cookie = cookie;
  354. dev_dbg(to_dev(&ioat->base), "%s: cookie: %d\n", __func__, cookie);
  355. if (!test_and_set_bit(IOAT_COMPLETION_PENDING, &chan->state))
  356. mod_timer(&chan->timer, jiffies + COMPLETION_TIMEOUT);
  357. /* make descriptor updates visible before advancing ioat->head,
  358. * this is purposefully not smp_wmb() since we are also
  359. * publishing the descriptor updates to a dma device
  360. */
  361. wmb();
  362. ioat->head += ioat->produce;
  363. ioat2_update_pending(ioat);
  364. spin_unlock_bh(&ioat->prep_lock);
  365. return cookie;
  366. }
  367. static struct ioat_ring_ent *ioat2_alloc_ring_ent(struct dma_chan *chan, gfp_t flags)
  368. {
  369. struct ioat_dma_descriptor *hw;
  370. struct ioat_ring_ent *desc;
  371. struct ioatdma_device *dma;
  372. dma_addr_t phys;
  373. dma = to_ioatdma_device(chan->device);
  374. hw = pci_pool_alloc(dma->dma_pool, flags, &phys);
  375. if (!hw)
  376. return NULL;
  377. memset(hw, 0, sizeof(*hw));
  378. desc = kmem_cache_alloc(ioat2_cache, flags);
  379. if (!desc) {
  380. pci_pool_free(dma->dma_pool, hw, phys);
  381. return NULL;
  382. }
  383. memset(desc, 0, sizeof(*desc));
  384. dma_async_tx_descriptor_init(&desc->txd, chan);
  385. desc->txd.tx_submit = ioat2_tx_submit_unlock;
  386. desc->hw = hw;
  387. desc->txd.phys = phys;
  388. return desc;
  389. }
  390. static void ioat2_free_ring_ent(struct ioat_ring_ent *desc, struct dma_chan *chan)
  391. {
  392. struct ioatdma_device *dma;
  393. dma = to_ioatdma_device(chan->device);
  394. pci_pool_free(dma->dma_pool, desc->hw, desc->txd.phys);
  395. kmem_cache_free(ioat2_cache, desc);
  396. }
  397. static struct ioat_ring_ent **ioat2_alloc_ring(struct dma_chan *c, int order, gfp_t flags)
  398. {
  399. struct ioat_ring_ent **ring;
  400. int descs = 1 << order;
  401. int i;
  402. if (order > ioat_get_max_alloc_order())
  403. return NULL;
  404. /* allocate the array to hold the software ring */
  405. ring = kcalloc(descs, sizeof(*ring), flags);
  406. if (!ring)
  407. return NULL;
  408. for (i = 0; i < descs; i++) {
  409. ring[i] = ioat2_alloc_ring_ent(c, flags);
  410. if (!ring[i]) {
  411. while (i--)
  412. ioat2_free_ring_ent(ring[i], c);
  413. kfree(ring);
  414. return NULL;
  415. }
  416. set_desc_id(ring[i], i);
  417. }
  418. /* link descs */
  419. for (i = 0; i < descs-1; i++) {
  420. struct ioat_ring_ent *next = ring[i+1];
  421. struct ioat_dma_descriptor *hw = ring[i]->hw;
  422. hw->next = next->txd.phys;
  423. }
  424. ring[i]->hw->next = ring[0]->txd.phys;
  425. return ring;
  426. }
  427. void ioat2_free_chan_resources(struct dma_chan *c);
  428. /* ioat2_alloc_chan_resources - allocate/initialize ioat2 descriptor ring
  429. * @chan: channel to be initialized
  430. */
  431. int ioat2_alloc_chan_resources(struct dma_chan *c)
  432. {
  433. struct ioat2_dma_chan *ioat = to_ioat2_chan(c);
  434. struct ioat_chan_common *chan = &ioat->base;
  435. struct ioat_ring_ent **ring;
  436. u64 status;
  437. int order;
  438. int i = 0;
  439. /* have we already been set up? */
  440. if (ioat->ring)
  441. return 1 << ioat->alloc_order;
  442. /* Setup register to interrupt and write completion status on error */
  443. writew(IOAT_CHANCTRL_RUN, chan->reg_base + IOAT_CHANCTRL_OFFSET);
  444. /* allocate a completion writeback area */
  445. /* doing 2 32bit writes to mmio since 1 64b write doesn't work */
  446. chan->completion = pci_pool_alloc(chan->device->completion_pool,
  447. GFP_KERNEL, &chan->completion_dma);
  448. if (!chan->completion)
  449. return -ENOMEM;
  450. memset(chan->completion, 0, sizeof(*chan->completion));
  451. writel(((u64) chan->completion_dma) & 0x00000000FFFFFFFF,
  452. chan->reg_base + IOAT_CHANCMP_OFFSET_LOW);
  453. writel(((u64) chan->completion_dma) >> 32,
  454. chan->reg_base + IOAT_CHANCMP_OFFSET_HIGH);
  455. order = ioat_get_alloc_order();
  456. ring = ioat2_alloc_ring(c, order, GFP_KERNEL);
  457. if (!ring)
  458. return -ENOMEM;
  459. spin_lock_bh(&chan->cleanup_lock);
  460. spin_lock_bh(&ioat->prep_lock);
  461. ioat->ring = ring;
  462. ioat->head = 0;
  463. ioat->issued = 0;
  464. ioat->tail = 0;
  465. ioat->alloc_order = order;
  466. spin_unlock_bh(&ioat->prep_lock);
  467. spin_unlock_bh(&chan->cleanup_lock);
  468. tasklet_enable(&chan->cleanup_task);
  469. ioat2_start_null_desc(ioat);
  470. /* check that we got off the ground */
  471. do {
  472. udelay(1);
  473. status = ioat_chansts(chan);
  474. } while (i++ < 20 && !is_ioat_active(status) && !is_ioat_idle(status));
  475. if (is_ioat_active(status) || is_ioat_idle(status)) {
  476. set_bit(IOAT_RUN, &chan->state);
  477. return 1 << ioat->alloc_order;
  478. } else {
  479. u32 chanerr = readl(chan->reg_base + IOAT_CHANERR_OFFSET);
  480. dev_WARN(to_dev(chan),
  481. "failed to start channel chanerr: %#x\n", chanerr);
  482. ioat2_free_chan_resources(c);
  483. return -EFAULT;
  484. }
  485. }
  486. bool reshape_ring(struct ioat2_dma_chan *ioat, int order)
  487. {
  488. /* reshape differs from normal ring allocation in that we want
  489. * to allocate a new software ring while only
  490. * extending/truncating the hardware ring
  491. */
  492. struct ioat_chan_common *chan = &ioat->base;
  493. struct dma_chan *c = &chan->common;
  494. const u16 curr_size = ioat2_ring_size(ioat);
  495. const u16 active = ioat2_ring_active(ioat);
  496. const u16 new_size = 1 << order;
  497. struct ioat_ring_ent **ring;
  498. u16 i;
  499. if (order > ioat_get_max_alloc_order())
  500. return false;
  501. /* double check that we have at least 1 free descriptor */
  502. if (active == curr_size)
  503. return false;
  504. /* when shrinking, verify that we can hold the current active
  505. * set in the new ring
  506. */
  507. if (active >= new_size)
  508. return false;
  509. /* allocate the array to hold the software ring */
  510. ring = kcalloc(new_size, sizeof(*ring), GFP_NOWAIT);
  511. if (!ring)
  512. return false;
  513. /* allocate/trim descriptors as needed */
  514. if (new_size > curr_size) {
  515. /* copy current descriptors to the new ring */
  516. for (i = 0; i < curr_size; i++) {
  517. u16 curr_idx = (ioat->tail+i) & (curr_size-1);
  518. u16 new_idx = (ioat->tail+i) & (new_size-1);
  519. ring[new_idx] = ioat->ring[curr_idx];
  520. set_desc_id(ring[new_idx], new_idx);
  521. }
  522. /* add new descriptors to the ring */
  523. for (i = curr_size; i < new_size; i++) {
  524. u16 new_idx = (ioat->tail+i) & (new_size-1);
  525. ring[new_idx] = ioat2_alloc_ring_ent(c, GFP_NOWAIT);
  526. if (!ring[new_idx]) {
  527. while (i--) {
  528. u16 new_idx = (ioat->tail+i) & (new_size-1);
  529. ioat2_free_ring_ent(ring[new_idx], c);
  530. }
  531. kfree(ring);
  532. return false;
  533. }
  534. set_desc_id(ring[new_idx], new_idx);
  535. }
  536. /* hw link new descriptors */
  537. for (i = curr_size-1; i < new_size; i++) {
  538. u16 new_idx = (ioat->tail+i) & (new_size-1);
  539. struct ioat_ring_ent *next = ring[(new_idx+1) & (new_size-1)];
  540. struct ioat_dma_descriptor *hw = ring[new_idx]->hw;
  541. hw->next = next->txd.phys;
  542. }
  543. } else {
  544. struct ioat_dma_descriptor *hw;
  545. struct ioat_ring_ent *next;
  546. /* copy current descriptors to the new ring, dropping the
  547. * removed descriptors
  548. */
  549. for (i = 0; i < new_size; i++) {
  550. u16 curr_idx = (ioat->tail+i) & (curr_size-1);
  551. u16 new_idx = (ioat->tail+i) & (new_size-1);
  552. ring[new_idx] = ioat->ring[curr_idx];
  553. set_desc_id(ring[new_idx], new_idx);
  554. }
  555. /* free deleted descriptors */
  556. for (i = new_size; i < curr_size; i++) {
  557. struct ioat_ring_ent *ent;
  558. ent = ioat2_get_ring_ent(ioat, ioat->tail+i);
  559. ioat2_free_ring_ent(ent, c);
  560. }
  561. /* fix up hardware ring */
  562. hw = ring[(ioat->tail+new_size-1) & (new_size-1)]->hw;
  563. next = ring[(ioat->tail+new_size) & (new_size-1)];
  564. hw->next = next->txd.phys;
  565. }
  566. dev_dbg(to_dev(chan), "%s: allocated %d descriptors\n",
  567. __func__, new_size);
  568. kfree(ioat->ring);
  569. ioat->ring = ring;
  570. ioat->alloc_order = order;
  571. return true;
  572. }
  573. /**
  574. * ioat2_check_space_lock - verify space and grab ring producer lock
  575. * @ioat: ioat2,3 channel (ring) to operate on
  576. * @num_descs: allocation length
  577. */
  578. int ioat2_check_space_lock(struct ioat2_dma_chan *ioat, int num_descs)
  579. {
  580. struct ioat_chan_common *chan = &ioat->base;
  581. bool retry;
  582. retry:
  583. spin_lock_bh(&ioat->prep_lock);
  584. /* never allow the last descriptor to be consumed, we need at
  585. * least one free at all times to allow for on-the-fly ring
  586. * resizing.
  587. */
  588. if (likely(ioat2_ring_space(ioat) > num_descs)) {
  589. dev_dbg(to_dev(chan), "%s: num_descs: %d (%x:%x:%x)\n",
  590. __func__, num_descs, ioat->head, ioat->tail, ioat->issued);
  591. ioat->produce = num_descs;
  592. return 0; /* with ioat->prep_lock held */
  593. }
  594. retry = test_and_set_bit(IOAT_RESHAPE_PENDING, &chan->state);
  595. spin_unlock_bh(&ioat->prep_lock);
  596. /* is another cpu already trying to expand the ring? */
  597. if (retry)
  598. goto retry;
  599. spin_lock_bh(&chan->cleanup_lock);
  600. spin_lock_bh(&ioat->prep_lock);
  601. retry = reshape_ring(ioat, ioat->alloc_order + 1);
  602. clear_bit(IOAT_RESHAPE_PENDING, &chan->state);
  603. spin_unlock_bh(&ioat->prep_lock);
  604. spin_unlock_bh(&chan->cleanup_lock);
  605. /* if we were able to expand the ring retry the allocation */
  606. if (retry)
  607. goto retry;
  608. if (printk_ratelimit())
  609. dev_dbg(to_dev(chan), "%s: ring full! num_descs: %d (%x:%x:%x)\n",
  610. __func__, num_descs, ioat->head, ioat->tail, ioat->issued);
  611. /* progress reclaim in the allocation failure case we may be
  612. * called under bh_disabled so we need to trigger the timer
  613. * event directly
  614. */
  615. if (jiffies > chan->timer.expires && timer_pending(&chan->timer)) {
  616. struct ioatdma_device *device = chan->device;
  617. mod_timer(&chan->timer, jiffies + COMPLETION_TIMEOUT);
  618. device->timer_fn((unsigned long) &chan->common);
  619. }
  620. return -ENOMEM;
  621. }
  622. struct dma_async_tx_descriptor *
  623. ioat2_dma_prep_memcpy_lock(struct dma_chan *c, dma_addr_t dma_dest,
  624. dma_addr_t dma_src, size_t len, unsigned long flags)
  625. {
  626. struct ioat2_dma_chan *ioat = to_ioat2_chan(c);
  627. struct ioat_dma_descriptor *hw;
  628. struct ioat_ring_ent *desc;
  629. dma_addr_t dst = dma_dest;
  630. dma_addr_t src = dma_src;
  631. size_t total_len = len;
  632. int num_descs, idx, i;
  633. num_descs = ioat2_xferlen_to_descs(ioat, len);
  634. if (likely(num_descs) && ioat2_check_space_lock(ioat, num_descs) == 0)
  635. idx = ioat->head;
  636. else
  637. return NULL;
  638. i = 0;
  639. do {
  640. size_t copy = min_t(size_t, len, 1 << ioat->xfercap_log);
  641. desc = ioat2_get_ring_ent(ioat, idx + i);
  642. hw = desc->hw;
  643. hw->size = copy;
  644. hw->ctl = 0;
  645. hw->src_addr = src;
  646. hw->dst_addr = dst;
  647. len -= copy;
  648. dst += copy;
  649. src += copy;
  650. dump_desc_dbg(ioat, desc);
  651. } while (++i < num_descs);
  652. desc->txd.flags = flags;
  653. desc->len = total_len;
  654. hw->ctl_f.int_en = !!(flags & DMA_PREP_INTERRUPT);
  655. hw->ctl_f.fence = !!(flags & DMA_PREP_FENCE);
  656. hw->ctl_f.compl_write = 1;
  657. dump_desc_dbg(ioat, desc);
  658. /* we leave the channel locked to ensure in order submission */
  659. return &desc->txd;
  660. }
  661. /**
  662. * ioat2_free_chan_resources - release all the descriptors
  663. * @chan: the channel to be cleaned
  664. */
  665. void ioat2_free_chan_resources(struct dma_chan *c)
  666. {
  667. struct ioat2_dma_chan *ioat = to_ioat2_chan(c);
  668. struct ioat_chan_common *chan = &ioat->base;
  669. struct ioatdma_device *device = chan->device;
  670. struct ioat_ring_ent *desc;
  671. const u16 total_descs = 1 << ioat->alloc_order;
  672. int descs;
  673. int i;
  674. /* Before freeing channel resources first check
  675. * if they have been previously allocated for this channel.
  676. */
  677. if (!ioat->ring)
  678. return;
  679. tasklet_disable(&chan->cleanup_task);
  680. del_timer_sync(&chan->timer);
  681. device->cleanup_fn((unsigned long) c);
  682. device->reset_hw(chan);
  683. clear_bit(IOAT_RUN, &chan->state);
  684. spin_lock_bh(&chan->cleanup_lock);
  685. spin_lock_bh(&ioat->prep_lock);
  686. descs = ioat2_ring_space(ioat);
  687. dev_dbg(to_dev(chan), "freeing %d idle descriptors\n", descs);
  688. for (i = 0; i < descs; i++) {
  689. desc = ioat2_get_ring_ent(ioat, ioat->head + i);
  690. ioat2_free_ring_ent(desc, c);
  691. }
  692. if (descs < total_descs)
  693. dev_err(to_dev(chan), "Freeing %d in use descriptors!\n",
  694. total_descs - descs);
  695. for (i = 0; i < total_descs - descs; i++) {
  696. desc = ioat2_get_ring_ent(ioat, ioat->tail + i);
  697. dump_desc_dbg(ioat, desc);
  698. ioat2_free_ring_ent(desc, c);
  699. }
  700. kfree(ioat->ring);
  701. ioat->ring = NULL;
  702. ioat->alloc_order = 0;
  703. pci_pool_free(device->completion_pool, chan->completion,
  704. chan->completion_dma);
  705. spin_unlock_bh(&ioat->prep_lock);
  706. spin_unlock_bh(&chan->cleanup_lock);
  707. chan->last_completion = 0;
  708. chan->completion_dma = 0;
  709. ioat->dmacount = 0;
  710. }
  711. static ssize_t ring_size_show(struct dma_chan *c, char *page)
  712. {
  713. struct ioat2_dma_chan *ioat = to_ioat2_chan(c);
  714. return sprintf(page, "%d\n", (1 << ioat->alloc_order) & ~1);
  715. }
  716. static struct ioat_sysfs_entry ring_size_attr = __ATTR_RO(ring_size);
  717. static ssize_t ring_active_show(struct dma_chan *c, char *page)
  718. {
  719. struct ioat2_dma_chan *ioat = to_ioat2_chan(c);
  720. /* ...taken outside the lock, no need to be precise */
  721. return sprintf(page, "%d\n", ioat2_ring_active(ioat));
  722. }
  723. static struct ioat_sysfs_entry ring_active_attr = __ATTR_RO(ring_active);
  724. static struct attribute *ioat2_attrs[] = {
  725. &ring_size_attr.attr,
  726. &ring_active_attr.attr,
  727. &ioat_cap_attr.attr,
  728. &ioat_version_attr.attr,
  729. NULL,
  730. };
  731. struct kobj_type ioat2_ktype = {
  732. .sysfs_ops = &ioat_sysfs_ops,
  733. .default_attrs = ioat2_attrs,
  734. };
  735. int __devinit ioat2_dma_probe(struct ioatdma_device *device, int dca)
  736. {
  737. struct pci_dev *pdev = device->pdev;
  738. struct dma_device *dma;
  739. struct dma_chan *c;
  740. struct ioat_chan_common *chan;
  741. int err;
  742. device->enumerate_channels = ioat2_enumerate_channels;
  743. device->reset_hw = ioat2_reset_hw;
  744. device->cleanup_fn = ioat2_cleanup_event;
  745. device->timer_fn = ioat2_timer_event;
  746. device->self_test = ioat_dma_self_test;
  747. dma = &device->common;
  748. dma->device_prep_dma_memcpy = ioat2_dma_prep_memcpy_lock;
  749. dma->device_issue_pending = ioat2_issue_pending;
  750. dma->device_alloc_chan_resources = ioat2_alloc_chan_resources;
  751. dma->device_free_chan_resources = ioat2_free_chan_resources;
  752. dma->device_tx_status = ioat_dma_tx_status;
  753. err = ioat_probe(device);
  754. if (err)
  755. return err;
  756. ioat_set_tcp_copy_break(2048);
  757. list_for_each_entry(c, &dma->channels, device_node) {
  758. chan = to_chan_common(c);
  759. writel(IOAT_DCACTRL_CMPL_WRITE_ENABLE | IOAT_DMA_DCA_ANY_CPU,
  760. chan->reg_base + IOAT_DCACTRL_OFFSET);
  761. }
  762. err = ioat_register(device);
  763. if (err)
  764. return err;
  765. ioat_kobject_add(device, &ioat2_ktype);
  766. if (dca)
  767. device->dca = ioat2_dca_init(pdev, device->reg_base);
  768. return err;
  769. }