intel_mid_dma.c 40 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470
  1. /*
  2. * intel_mid_dma.c - Intel Langwell DMA Drivers
  3. *
  4. * Copyright (C) 2008-10 Intel Corp
  5. * Author: Vinod Koul <vinod.koul@intel.com>
  6. * The driver design is based on dw_dmac driver
  7. * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License as published by
  11. * the Free Software Foundation; version 2 of the License.
  12. *
  13. * This program is distributed in the hope that it will be useful, but
  14. * WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License along
  19. * with this program; if not, write to the Free Software Foundation, Inc.,
  20. * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
  21. *
  22. * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  23. *
  24. *
  25. */
  26. #include <linux/pci.h>
  27. #include <linux/interrupt.h>
  28. #include <linux/pm_runtime.h>
  29. #include <linux/intel_mid_dma.h>
  30. #define MAX_CHAN 4 /*max ch across controllers*/
  31. #include "intel_mid_dma_regs.h"
  32. #define INTEL_MID_DMAC1_ID 0x0814
  33. #define INTEL_MID_DMAC2_ID 0x0813
  34. #define INTEL_MID_GP_DMAC2_ID 0x0827
  35. #define INTEL_MFLD_DMAC1_ID 0x0830
  36. #define LNW_PERIPHRAL_MASK_BASE 0xFFAE8008
  37. #define LNW_PERIPHRAL_MASK_SIZE 0x10
  38. #define LNW_PERIPHRAL_STATUS 0x0
  39. #define LNW_PERIPHRAL_MASK 0x8
  40. struct intel_mid_dma_probe_info {
  41. u8 max_chan;
  42. u8 ch_base;
  43. u16 block_size;
  44. u32 pimr_mask;
  45. };
  46. #define INFO(_max_chan, _ch_base, _block_size, _pimr_mask) \
  47. ((kernel_ulong_t)&(struct intel_mid_dma_probe_info) { \
  48. .max_chan = (_max_chan), \
  49. .ch_base = (_ch_base), \
  50. .block_size = (_block_size), \
  51. .pimr_mask = (_pimr_mask), \
  52. })
  53. /*****************************************************************************
  54. Utility Functions*/
  55. /**
  56. * get_ch_index - convert status to channel
  57. * @status: status mask
  58. * @base: dma ch base value
  59. *
  60. * Modify the status mask and return the channel index needing
  61. * attention (or -1 if neither)
  62. */
  63. static int get_ch_index(int *status, unsigned int base)
  64. {
  65. int i;
  66. for (i = 0; i < MAX_CHAN; i++) {
  67. if (*status & (1 << (i + base))) {
  68. *status = *status & ~(1 << (i + base));
  69. pr_debug("MDMA: index %d New status %x\n", i, *status);
  70. return i;
  71. }
  72. }
  73. return -1;
  74. }
  75. /**
  76. * get_block_ts - calculates dma transaction length
  77. * @len: dma transfer length
  78. * @tx_width: dma transfer src width
  79. * @block_size: dma controller max block size
  80. *
  81. * Based on src width calculate the DMA trsaction length in data items
  82. * return data items or FFFF if exceeds max length for block
  83. */
  84. static int get_block_ts(int len, int tx_width, int block_size)
  85. {
  86. int byte_width = 0, block_ts = 0;
  87. switch (tx_width) {
  88. case DMA_SLAVE_BUSWIDTH_1_BYTE:
  89. byte_width = 1;
  90. break;
  91. case DMA_SLAVE_BUSWIDTH_2_BYTES:
  92. byte_width = 2;
  93. break;
  94. case DMA_SLAVE_BUSWIDTH_4_BYTES:
  95. default:
  96. byte_width = 4;
  97. break;
  98. }
  99. block_ts = len/byte_width;
  100. if (block_ts > block_size)
  101. block_ts = 0xFFFF;
  102. return block_ts;
  103. }
  104. /*****************************************************************************
  105. DMAC1 interrupt Functions*/
  106. /**
  107. * dmac1_mask_periphral_intr - mask the periphral interrupt
  108. * @midc: dma channel for which masking is required
  109. *
  110. * Masks the DMA periphral interrupt
  111. * this is valid for DMAC1 family controllers only
  112. * This controller should have periphral mask registers already mapped
  113. */
  114. static void dmac1_mask_periphral_intr(struct intel_mid_dma_chan *midc)
  115. {
  116. u32 pimr;
  117. struct middma_device *mid = to_middma_device(midc->chan.device);
  118. if (mid->pimr_mask) {
  119. pimr = readl(mid->mask_reg + LNW_PERIPHRAL_MASK);
  120. pimr |= mid->pimr_mask;
  121. writel(pimr, mid->mask_reg + LNW_PERIPHRAL_MASK);
  122. }
  123. return;
  124. }
  125. /**
  126. * dmac1_unmask_periphral_intr - unmask the periphral interrupt
  127. * @midc: dma channel for which masking is required
  128. *
  129. * UnMasks the DMA periphral interrupt,
  130. * this is valid for DMAC1 family controllers only
  131. * This controller should have periphral mask registers already mapped
  132. */
  133. static void dmac1_unmask_periphral_intr(struct intel_mid_dma_chan *midc)
  134. {
  135. u32 pimr;
  136. struct middma_device *mid = to_middma_device(midc->chan.device);
  137. if (mid->pimr_mask) {
  138. pimr = readl(mid->mask_reg + LNW_PERIPHRAL_MASK);
  139. pimr &= ~mid->pimr_mask;
  140. writel(pimr, mid->mask_reg + LNW_PERIPHRAL_MASK);
  141. }
  142. return;
  143. }
  144. /**
  145. * enable_dma_interrupt - enable the periphral interrupt
  146. * @midc: dma channel for which enable interrupt is required
  147. *
  148. * Enable the DMA periphral interrupt,
  149. * this is valid for DMAC1 family controllers only
  150. * This controller should have periphral mask registers already mapped
  151. */
  152. static void enable_dma_interrupt(struct intel_mid_dma_chan *midc)
  153. {
  154. dmac1_unmask_periphral_intr(midc);
  155. /*en ch interrupts*/
  156. iowrite32(UNMASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_TFR);
  157. iowrite32(UNMASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_ERR);
  158. return;
  159. }
  160. /**
  161. * disable_dma_interrupt - disable the periphral interrupt
  162. * @midc: dma channel for which disable interrupt is required
  163. *
  164. * Disable the DMA periphral interrupt,
  165. * this is valid for DMAC1 family controllers only
  166. * This controller should have periphral mask registers already mapped
  167. */
  168. static void disable_dma_interrupt(struct intel_mid_dma_chan *midc)
  169. {
  170. /*Check LPE PISR, make sure fwd is disabled*/
  171. dmac1_mask_periphral_intr(midc);
  172. iowrite32(MASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_BLOCK);
  173. iowrite32(MASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_TFR);
  174. iowrite32(MASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_ERR);
  175. return;
  176. }
  177. /*****************************************************************************
  178. DMA channel helper Functions*/
  179. /**
  180. * mid_desc_get - get a descriptor
  181. * @midc: dma channel for which descriptor is required
  182. *
  183. * Obtain a descriptor for the channel. Returns NULL if none are free.
  184. * Once the descriptor is returned it is private until put on another
  185. * list or freed
  186. */
  187. static struct intel_mid_dma_desc *midc_desc_get(struct intel_mid_dma_chan *midc)
  188. {
  189. struct intel_mid_dma_desc *desc, *_desc;
  190. struct intel_mid_dma_desc *ret = NULL;
  191. spin_lock_bh(&midc->lock);
  192. list_for_each_entry_safe(desc, _desc, &midc->free_list, desc_node) {
  193. if (async_tx_test_ack(&desc->txd)) {
  194. list_del(&desc->desc_node);
  195. ret = desc;
  196. break;
  197. }
  198. }
  199. spin_unlock_bh(&midc->lock);
  200. return ret;
  201. }
  202. /**
  203. * mid_desc_put - put a descriptor
  204. * @midc: dma channel for which descriptor is required
  205. * @desc: descriptor to put
  206. *
  207. * Return a descriptor from lwn_desc_get back to the free pool
  208. */
  209. static void midc_desc_put(struct intel_mid_dma_chan *midc,
  210. struct intel_mid_dma_desc *desc)
  211. {
  212. if (desc) {
  213. spin_lock_bh(&midc->lock);
  214. list_add_tail(&desc->desc_node, &midc->free_list);
  215. spin_unlock_bh(&midc->lock);
  216. }
  217. }
  218. /**
  219. * midc_dostart - begin a DMA transaction
  220. * @midc: channel for which txn is to be started
  221. * @first: first descriptor of series
  222. *
  223. * Load a transaction into the engine. This must be called with midc->lock
  224. * held and bh disabled.
  225. */
  226. static void midc_dostart(struct intel_mid_dma_chan *midc,
  227. struct intel_mid_dma_desc *first)
  228. {
  229. struct middma_device *mid = to_middma_device(midc->chan.device);
  230. /* channel is idle */
  231. if (midc->busy && test_ch_en(midc->dma_base, midc->ch_id)) {
  232. /*error*/
  233. pr_err("ERR_MDMA: channel is busy in start\n");
  234. /* The tasklet will hopefully advance the queue... */
  235. return;
  236. }
  237. midc->busy = true;
  238. /*write registers and en*/
  239. iowrite32(first->sar, midc->ch_regs + SAR);
  240. iowrite32(first->dar, midc->ch_regs + DAR);
  241. iowrite32(first->lli_phys, midc->ch_regs + LLP);
  242. iowrite32(first->cfg_hi, midc->ch_regs + CFG_HIGH);
  243. iowrite32(first->cfg_lo, midc->ch_regs + CFG_LOW);
  244. iowrite32(first->ctl_lo, midc->ch_regs + CTL_LOW);
  245. iowrite32(first->ctl_hi, midc->ch_regs + CTL_HIGH);
  246. pr_debug("MDMA:TX SAR %x,DAR %x,CFGL %x,CFGH %x,CTLH %x, CTLL %x\n",
  247. (int)first->sar, (int)first->dar, first->cfg_hi,
  248. first->cfg_lo, first->ctl_hi, first->ctl_lo);
  249. first->status = DMA_IN_PROGRESS;
  250. iowrite32(ENABLE_CHANNEL(midc->ch_id), mid->dma_base + DMA_CHAN_EN);
  251. }
  252. /**
  253. * midc_descriptor_complete - process completed descriptor
  254. * @midc: channel owning the descriptor
  255. * @desc: the descriptor itself
  256. *
  257. * Process a completed descriptor and perform any callbacks upon
  258. * the completion. The completion handling drops the lock during the
  259. * callbacks but must be called with the lock held.
  260. */
  261. static void midc_descriptor_complete(struct intel_mid_dma_chan *midc,
  262. struct intel_mid_dma_desc *desc)
  263. {
  264. struct dma_async_tx_descriptor *txd = &desc->txd;
  265. dma_async_tx_callback callback_txd = NULL;
  266. struct intel_mid_dma_lli *llitem;
  267. void *param_txd = NULL;
  268. midc->completed = txd->cookie;
  269. callback_txd = txd->callback;
  270. param_txd = txd->callback_param;
  271. if (desc->lli != NULL) {
  272. /*clear the DONE bit of completed LLI in memory*/
  273. llitem = desc->lli + desc->current_lli;
  274. llitem->ctl_hi &= CLEAR_DONE;
  275. if (desc->current_lli < desc->lli_length-1)
  276. (desc->current_lli)++;
  277. else
  278. desc->current_lli = 0;
  279. }
  280. spin_unlock_bh(&midc->lock);
  281. if (callback_txd) {
  282. pr_debug("MDMA: TXD callback set ... calling\n");
  283. callback_txd(param_txd);
  284. }
  285. if (midc->raw_tfr) {
  286. desc->status = DMA_SUCCESS;
  287. if (desc->lli != NULL) {
  288. pci_pool_free(desc->lli_pool, desc->lli,
  289. desc->lli_phys);
  290. pci_pool_destroy(desc->lli_pool);
  291. }
  292. list_move(&desc->desc_node, &midc->free_list);
  293. midc->busy = false;
  294. }
  295. spin_lock_bh(&midc->lock);
  296. }
  297. /**
  298. * midc_scan_descriptors - check the descriptors in channel
  299. * mark completed when tx is completete
  300. * @mid: device
  301. * @midc: channel to scan
  302. *
  303. * Walk the descriptor chain for the device and process any entries
  304. * that are complete.
  305. */
  306. static void midc_scan_descriptors(struct middma_device *mid,
  307. struct intel_mid_dma_chan *midc)
  308. {
  309. struct intel_mid_dma_desc *desc = NULL, *_desc = NULL;
  310. /*tx is complete*/
  311. list_for_each_entry_safe(desc, _desc, &midc->active_list, desc_node) {
  312. if (desc->status == DMA_IN_PROGRESS)
  313. midc_descriptor_complete(midc, desc);
  314. }
  315. return;
  316. }
  317. /**
  318. * midc_lli_fill_sg - Helper function to convert
  319. * SG list to Linked List Items.
  320. *@midc: Channel
  321. *@desc: DMA descriptor
  322. *@sglist: Pointer to SG list
  323. *@sglen: SG list length
  324. *@flags: DMA transaction flags
  325. *
  326. * Walk through the SG list and convert the SG list into Linked
  327. * List Items (LLI).
  328. */
  329. static int midc_lli_fill_sg(struct intel_mid_dma_chan *midc,
  330. struct intel_mid_dma_desc *desc,
  331. struct scatterlist *sglist,
  332. unsigned int sglen,
  333. unsigned int flags)
  334. {
  335. struct intel_mid_dma_slave *mids;
  336. struct scatterlist *sg;
  337. dma_addr_t lli_next, sg_phy_addr;
  338. struct intel_mid_dma_lli *lli_bloc_desc;
  339. union intel_mid_dma_ctl_lo ctl_lo;
  340. union intel_mid_dma_ctl_hi ctl_hi;
  341. int i;
  342. pr_debug("MDMA: Entered midc_lli_fill_sg\n");
  343. mids = midc->mid_slave;
  344. lli_bloc_desc = desc->lli;
  345. lli_next = desc->lli_phys;
  346. ctl_lo.ctl_lo = desc->ctl_lo;
  347. ctl_hi.ctl_hi = desc->ctl_hi;
  348. for_each_sg(sglist, sg, sglen, i) {
  349. /*Populate CTL_LOW and LLI values*/
  350. if (i != sglen - 1) {
  351. lli_next = lli_next +
  352. sizeof(struct intel_mid_dma_lli);
  353. } else {
  354. /*Check for circular list, otherwise terminate LLI to ZERO*/
  355. if (flags & DMA_PREP_CIRCULAR_LIST) {
  356. pr_debug("MDMA: LLI is configured in circular mode\n");
  357. lli_next = desc->lli_phys;
  358. } else {
  359. lli_next = 0;
  360. ctl_lo.ctlx.llp_dst_en = 0;
  361. ctl_lo.ctlx.llp_src_en = 0;
  362. }
  363. }
  364. /*Populate CTL_HI values*/
  365. ctl_hi.ctlx.block_ts = get_block_ts(sg->length,
  366. desc->width,
  367. midc->dma->block_size);
  368. /*Populate SAR and DAR values*/
  369. sg_phy_addr = sg_phys(sg);
  370. if (desc->dirn == DMA_TO_DEVICE) {
  371. lli_bloc_desc->sar = sg_phy_addr;
  372. lli_bloc_desc->dar = mids->dma_slave.dst_addr;
  373. } else if (desc->dirn == DMA_FROM_DEVICE) {
  374. lli_bloc_desc->sar = mids->dma_slave.src_addr;
  375. lli_bloc_desc->dar = sg_phy_addr;
  376. }
  377. /*Copy values into block descriptor in system memroy*/
  378. lli_bloc_desc->llp = lli_next;
  379. lli_bloc_desc->ctl_lo = ctl_lo.ctl_lo;
  380. lli_bloc_desc->ctl_hi = ctl_hi.ctl_hi;
  381. lli_bloc_desc++;
  382. }
  383. /*Copy very first LLI values to descriptor*/
  384. desc->ctl_lo = desc->lli->ctl_lo;
  385. desc->ctl_hi = desc->lli->ctl_hi;
  386. desc->sar = desc->lli->sar;
  387. desc->dar = desc->lli->dar;
  388. return 0;
  389. }
  390. /*****************************************************************************
  391. DMA engine callback Functions*/
  392. /**
  393. * intel_mid_dma_tx_submit - callback to submit DMA transaction
  394. * @tx: dma engine descriptor
  395. *
  396. * Submit the DMA trasaction for this descriptor, start if ch idle
  397. */
  398. static dma_cookie_t intel_mid_dma_tx_submit(struct dma_async_tx_descriptor *tx)
  399. {
  400. struct intel_mid_dma_desc *desc = to_intel_mid_dma_desc(tx);
  401. struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(tx->chan);
  402. dma_cookie_t cookie;
  403. spin_lock_bh(&midc->lock);
  404. cookie = midc->chan.cookie;
  405. if (++cookie < 0)
  406. cookie = 1;
  407. midc->chan.cookie = cookie;
  408. desc->txd.cookie = cookie;
  409. if (list_empty(&midc->active_list))
  410. list_add_tail(&desc->desc_node, &midc->active_list);
  411. else
  412. list_add_tail(&desc->desc_node, &midc->queue);
  413. midc_dostart(midc, desc);
  414. spin_unlock_bh(&midc->lock);
  415. return cookie;
  416. }
  417. /**
  418. * intel_mid_dma_issue_pending - callback to issue pending txn
  419. * @chan: chan where pending trascation needs to be checked and submitted
  420. *
  421. * Call for scan to issue pending descriptors
  422. */
  423. static void intel_mid_dma_issue_pending(struct dma_chan *chan)
  424. {
  425. struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan);
  426. spin_lock_bh(&midc->lock);
  427. if (!list_empty(&midc->queue))
  428. midc_scan_descriptors(to_middma_device(chan->device), midc);
  429. spin_unlock_bh(&midc->lock);
  430. }
  431. /**
  432. * intel_mid_dma_tx_status - Return status of txn
  433. * @chan: chan for where status needs to be checked
  434. * @cookie: cookie for txn
  435. * @txstate: DMA txn state
  436. *
  437. * Return status of DMA txn
  438. */
  439. static enum dma_status intel_mid_dma_tx_status(struct dma_chan *chan,
  440. dma_cookie_t cookie,
  441. struct dma_tx_state *txstate)
  442. {
  443. struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan);
  444. dma_cookie_t last_used;
  445. dma_cookie_t last_complete;
  446. int ret;
  447. last_complete = midc->completed;
  448. last_used = chan->cookie;
  449. ret = dma_async_is_complete(cookie, last_complete, last_used);
  450. if (ret != DMA_SUCCESS) {
  451. midc_scan_descriptors(to_middma_device(chan->device), midc);
  452. last_complete = midc->completed;
  453. last_used = chan->cookie;
  454. ret = dma_async_is_complete(cookie, last_complete, last_used);
  455. }
  456. if (txstate) {
  457. txstate->last = last_complete;
  458. txstate->used = last_used;
  459. txstate->residue = 0;
  460. }
  461. return ret;
  462. }
  463. static int dma_slave_control(struct dma_chan *chan, unsigned long arg)
  464. {
  465. struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan);
  466. struct dma_slave_config *slave = (struct dma_slave_config *)arg;
  467. struct intel_mid_dma_slave *mid_slave;
  468. BUG_ON(!midc);
  469. BUG_ON(!slave);
  470. pr_debug("MDMA: slave control called\n");
  471. mid_slave = to_intel_mid_dma_slave(slave);
  472. BUG_ON(!mid_slave);
  473. midc->mid_slave = mid_slave;
  474. return 0;
  475. }
  476. /**
  477. * intel_mid_dma_device_control - DMA device control
  478. * @chan: chan for DMA control
  479. * @cmd: control cmd
  480. * @arg: cmd arg value
  481. *
  482. * Perform DMA control command
  483. */
  484. static int intel_mid_dma_device_control(struct dma_chan *chan,
  485. enum dma_ctrl_cmd cmd, unsigned long arg)
  486. {
  487. struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan);
  488. struct middma_device *mid = to_middma_device(chan->device);
  489. struct intel_mid_dma_desc *desc, *_desc;
  490. union intel_mid_dma_cfg_lo cfg_lo;
  491. if (cmd == DMA_SLAVE_CONFIG)
  492. return dma_slave_control(chan, arg);
  493. if (cmd != DMA_TERMINATE_ALL)
  494. return -ENXIO;
  495. spin_lock_bh(&midc->lock);
  496. if (midc->busy == false) {
  497. spin_unlock_bh(&midc->lock);
  498. return 0;
  499. }
  500. /*Suspend and disable the channel*/
  501. cfg_lo.cfg_lo = ioread32(midc->ch_regs + CFG_LOW);
  502. cfg_lo.cfgx.ch_susp = 1;
  503. iowrite32(cfg_lo.cfg_lo, midc->ch_regs + CFG_LOW);
  504. iowrite32(DISABLE_CHANNEL(midc->ch_id), mid->dma_base + DMA_CHAN_EN);
  505. midc->busy = false;
  506. /* Disable interrupts */
  507. disable_dma_interrupt(midc);
  508. midc->descs_allocated = 0;
  509. spin_unlock_bh(&midc->lock);
  510. list_for_each_entry_safe(desc, _desc, &midc->active_list, desc_node) {
  511. if (desc->lli != NULL) {
  512. pci_pool_free(desc->lli_pool, desc->lli,
  513. desc->lli_phys);
  514. pci_pool_destroy(desc->lli_pool);
  515. }
  516. list_move(&desc->desc_node, &midc->free_list);
  517. }
  518. return 0;
  519. }
  520. /**
  521. * intel_mid_dma_prep_memcpy - Prep memcpy txn
  522. * @chan: chan for DMA transfer
  523. * @dest: destn address
  524. * @src: src address
  525. * @len: DMA transfer len
  526. * @flags: DMA flags
  527. *
  528. * Perform a DMA memcpy. Note we support slave periphral DMA transfers only
  529. * The periphral txn details should be filled in slave structure properly
  530. * Returns the descriptor for this txn
  531. */
  532. static struct dma_async_tx_descriptor *intel_mid_dma_prep_memcpy(
  533. struct dma_chan *chan, dma_addr_t dest,
  534. dma_addr_t src, size_t len, unsigned long flags)
  535. {
  536. struct intel_mid_dma_chan *midc;
  537. struct intel_mid_dma_desc *desc = NULL;
  538. struct intel_mid_dma_slave *mids;
  539. union intel_mid_dma_ctl_lo ctl_lo;
  540. union intel_mid_dma_ctl_hi ctl_hi;
  541. union intel_mid_dma_cfg_lo cfg_lo;
  542. union intel_mid_dma_cfg_hi cfg_hi;
  543. enum dma_slave_buswidth width;
  544. pr_debug("MDMA: Prep for memcpy\n");
  545. BUG_ON(!chan);
  546. if (!len)
  547. return NULL;
  548. midc = to_intel_mid_dma_chan(chan);
  549. BUG_ON(!midc);
  550. mids = midc->mid_slave;
  551. BUG_ON(!mids);
  552. pr_debug("MDMA:called for DMA %x CH %d Length %zu\n",
  553. midc->dma->pci_id, midc->ch_id, len);
  554. pr_debug("MDMA:Cfg passed Mode %x, Dirn %x, HS %x, Width %x\n",
  555. mids->cfg_mode, mids->dma_slave.direction,
  556. mids->hs_mode, mids->dma_slave.src_addr_width);
  557. /*calculate CFG_LO*/
  558. if (mids->hs_mode == LNW_DMA_SW_HS) {
  559. cfg_lo.cfg_lo = 0;
  560. cfg_lo.cfgx.hs_sel_dst = 1;
  561. cfg_lo.cfgx.hs_sel_src = 1;
  562. } else if (mids->hs_mode == LNW_DMA_HW_HS)
  563. cfg_lo.cfg_lo = 0x00000;
  564. /*calculate CFG_HI*/
  565. if (mids->cfg_mode == LNW_DMA_MEM_TO_MEM) {
  566. /*SW HS only*/
  567. cfg_hi.cfg_hi = 0;
  568. } else {
  569. cfg_hi.cfg_hi = 0;
  570. if (midc->dma->pimr_mask) {
  571. cfg_hi.cfgx.protctl = 0x0; /*default value*/
  572. cfg_hi.cfgx.fifo_mode = 1;
  573. if (mids->dma_slave.direction == DMA_TO_DEVICE) {
  574. cfg_hi.cfgx.src_per = 0;
  575. if (mids->device_instance == 0)
  576. cfg_hi.cfgx.dst_per = 3;
  577. if (mids->device_instance == 1)
  578. cfg_hi.cfgx.dst_per = 1;
  579. } else if (mids->dma_slave.direction == DMA_FROM_DEVICE) {
  580. if (mids->device_instance == 0)
  581. cfg_hi.cfgx.src_per = 2;
  582. if (mids->device_instance == 1)
  583. cfg_hi.cfgx.src_per = 0;
  584. cfg_hi.cfgx.dst_per = 0;
  585. }
  586. } else {
  587. cfg_hi.cfgx.protctl = 0x1; /*default value*/
  588. cfg_hi.cfgx.src_per = cfg_hi.cfgx.dst_per =
  589. midc->ch_id - midc->dma->chan_base;
  590. }
  591. }
  592. /*calculate CTL_HI*/
  593. ctl_hi.ctlx.reser = 0;
  594. ctl_hi.ctlx.done = 0;
  595. width = mids->dma_slave.src_addr_width;
  596. ctl_hi.ctlx.block_ts = get_block_ts(len, width, midc->dma->block_size);
  597. pr_debug("MDMA:calc len %d for block size %d\n",
  598. ctl_hi.ctlx.block_ts, midc->dma->block_size);
  599. /*calculate CTL_LO*/
  600. ctl_lo.ctl_lo = 0;
  601. ctl_lo.ctlx.int_en = 1;
  602. ctl_lo.ctlx.dst_msize = mids->dma_slave.src_maxburst;
  603. ctl_lo.ctlx.src_msize = mids->dma_slave.dst_maxburst;
  604. /*
  605. * Here we need some translation from "enum dma_slave_buswidth"
  606. * to the format for our dma controller
  607. * standard intel_mid_dmac's format
  608. * 1 Byte 0b000
  609. * 2 Bytes 0b001
  610. * 4 Bytes 0b010
  611. */
  612. ctl_lo.ctlx.dst_tr_width = mids->dma_slave.dst_addr_width / 2;
  613. ctl_lo.ctlx.src_tr_width = mids->dma_slave.src_addr_width / 2;
  614. if (mids->cfg_mode == LNW_DMA_MEM_TO_MEM) {
  615. ctl_lo.ctlx.tt_fc = 0;
  616. ctl_lo.ctlx.sinc = 0;
  617. ctl_lo.ctlx.dinc = 0;
  618. } else {
  619. if (mids->dma_slave.direction == DMA_TO_DEVICE) {
  620. ctl_lo.ctlx.sinc = 0;
  621. ctl_lo.ctlx.dinc = 2;
  622. ctl_lo.ctlx.tt_fc = 1;
  623. } else if (mids->dma_slave.direction == DMA_FROM_DEVICE) {
  624. ctl_lo.ctlx.sinc = 2;
  625. ctl_lo.ctlx.dinc = 0;
  626. ctl_lo.ctlx.tt_fc = 2;
  627. }
  628. }
  629. pr_debug("MDMA:Calc CTL LO %x, CTL HI %x, CFG LO %x, CFG HI %x\n",
  630. ctl_lo.ctl_lo, ctl_hi.ctl_hi, cfg_lo.cfg_lo, cfg_hi.cfg_hi);
  631. enable_dma_interrupt(midc);
  632. desc = midc_desc_get(midc);
  633. if (desc == NULL)
  634. goto err_desc_get;
  635. desc->sar = src;
  636. desc->dar = dest ;
  637. desc->len = len;
  638. desc->cfg_hi = cfg_hi.cfg_hi;
  639. desc->cfg_lo = cfg_lo.cfg_lo;
  640. desc->ctl_lo = ctl_lo.ctl_lo;
  641. desc->ctl_hi = ctl_hi.ctl_hi;
  642. desc->width = width;
  643. desc->dirn = mids->dma_slave.direction;
  644. desc->lli_phys = 0;
  645. desc->lli = NULL;
  646. desc->lli_pool = NULL;
  647. return &desc->txd;
  648. err_desc_get:
  649. pr_err("ERR_MDMA: Failed to get desc\n");
  650. midc_desc_put(midc, desc);
  651. return NULL;
  652. }
  653. /**
  654. * intel_mid_dma_prep_slave_sg - Prep slave sg txn
  655. * @chan: chan for DMA transfer
  656. * @sgl: scatter gather list
  657. * @sg_len: length of sg txn
  658. * @direction: DMA transfer dirtn
  659. * @flags: DMA flags
  660. *
  661. * Prepares LLI based periphral transfer
  662. */
  663. static struct dma_async_tx_descriptor *intel_mid_dma_prep_slave_sg(
  664. struct dma_chan *chan, struct scatterlist *sgl,
  665. unsigned int sg_len, enum dma_data_direction direction,
  666. unsigned long flags)
  667. {
  668. struct intel_mid_dma_chan *midc = NULL;
  669. struct intel_mid_dma_slave *mids = NULL;
  670. struct intel_mid_dma_desc *desc = NULL;
  671. struct dma_async_tx_descriptor *txd = NULL;
  672. union intel_mid_dma_ctl_lo ctl_lo;
  673. pr_debug("MDMA: Prep for slave SG\n");
  674. if (!sg_len) {
  675. pr_err("MDMA: Invalid SG length\n");
  676. return NULL;
  677. }
  678. midc = to_intel_mid_dma_chan(chan);
  679. BUG_ON(!midc);
  680. mids = midc->mid_slave;
  681. BUG_ON(!mids);
  682. if (!midc->dma->pimr_mask) {
  683. /* We can still handle sg list with only one item */
  684. if (sg_len == 1) {
  685. txd = intel_mid_dma_prep_memcpy(chan,
  686. mids->dma_slave.dst_addr,
  687. mids->dma_slave.src_addr,
  688. sgl->length,
  689. flags);
  690. return txd;
  691. } else {
  692. pr_warn("MDMA: SG list is not supported by this controller\n");
  693. return NULL;
  694. }
  695. }
  696. pr_debug("MDMA: SG Length = %d, direction = %d, Flags = %#lx\n",
  697. sg_len, direction, flags);
  698. txd = intel_mid_dma_prep_memcpy(chan, 0, 0, sgl->length, flags);
  699. if (NULL == txd) {
  700. pr_err("MDMA: Prep memcpy failed\n");
  701. return NULL;
  702. }
  703. desc = to_intel_mid_dma_desc(txd);
  704. desc->dirn = direction;
  705. ctl_lo.ctl_lo = desc->ctl_lo;
  706. ctl_lo.ctlx.llp_dst_en = 1;
  707. ctl_lo.ctlx.llp_src_en = 1;
  708. desc->ctl_lo = ctl_lo.ctl_lo;
  709. desc->lli_length = sg_len;
  710. desc->current_lli = 0;
  711. /* DMA coherent memory pool for LLI descriptors*/
  712. desc->lli_pool = pci_pool_create("intel_mid_dma_lli_pool",
  713. midc->dma->pdev,
  714. (sizeof(struct intel_mid_dma_lli)*sg_len),
  715. 32, 0);
  716. if (NULL == desc->lli_pool) {
  717. pr_err("MID_DMA:LLI pool create failed\n");
  718. return NULL;
  719. }
  720. desc->lli = pci_pool_alloc(desc->lli_pool, GFP_KERNEL, &desc->lli_phys);
  721. if (!desc->lli) {
  722. pr_err("MID_DMA: LLI alloc failed\n");
  723. pci_pool_destroy(desc->lli_pool);
  724. return NULL;
  725. }
  726. midc_lli_fill_sg(midc, desc, sgl, sg_len, flags);
  727. if (flags & DMA_PREP_INTERRUPT) {
  728. iowrite32(UNMASK_INTR_REG(midc->ch_id),
  729. midc->dma_base + MASK_BLOCK);
  730. pr_debug("MDMA:Enabled Block interrupt\n");
  731. }
  732. return &desc->txd;
  733. }
  734. /**
  735. * intel_mid_dma_free_chan_resources - Frees dma resources
  736. * @chan: chan requiring attention
  737. *
  738. * Frees the allocated resources on this DMA chan
  739. */
  740. static void intel_mid_dma_free_chan_resources(struct dma_chan *chan)
  741. {
  742. struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan);
  743. struct middma_device *mid = to_middma_device(chan->device);
  744. struct intel_mid_dma_desc *desc, *_desc;
  745. if (true == midc->busy) {
  746. /*trying to free ch in use!!!!!*/
  747. pr_err("ERR_MDMA: trying to free ch in use\n");
  748. }
  749. pm_runtime_put(&mid->pdev->dev);
  750. spin_lock_bh(&midc->lock);
  751. midc->descs_allocated = 0;
  752. list_for_each_entry_safe(desc, _desc, &midc->active_list, desc_node) {
  753. list_del(&desc->desc_node);
  754. pci_pool_free(mid->dma_pool, desc, desc->txd.phys);
  755. }
  756. list_for_each_entry_safe(desc, _desc, &midc->free_list, desc_node) {
  757. list_del(&desc->desc_node);
  758. pci_pool_free(mid->dma_pool, desc, desc->txd.phys);
  759. }
  760. list_for_each_entry_safe(desc, _desc, &midc->queue, desc_node) {
  761. list_del(&desc->desc_node);
  762. pci_pool_free(mid->dma_pool, desc, desc->txd.phys);
  763. }
  764. spin_unlock_bh(&midc->lock);
  765. midc->in_use = false;
  766. midc->busy = false;
  767. /* Disable CH interrupts */
  768. iowrite32(MASK_INTR_REG(midc->ch_id), mid->dma_base + MASK_BLOCK);
  769. iowrite32(MASK_INTR_REG(midc->ch_id), mid->dma_base + MASK_ERR);
  770. }
  771. /**
  772. * intel_mid_dma_alloc_chan_resources - Allocate dma resources
  773. * @chan: chan requiring attention
  774. *
  775. * Allocates DMA resources on this chan
  776. * Return the descriptors allocated
  777. */
  778. static int intel_mid_dma_alloc_chan_resources(struct dma_chan *chan)
  779. {
  780. struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan);
  781. struct middma_device *mid = to_middma_device(chan->device);
  782. struct intel_mid_dma_desc *desc;
  783. dma_addr_t phys;
  784. int i = 0;
  785. pm_runtime_get_sync(&mid->pdev->dev);
  786. if (mid->state == SUSPENDED) {
  787. if (dma_resume(mid->pdev)) {
  788. pr_err("ERR_MDMA: resume failed");
  789. return -EFAULT;
  790. }
  791. }
  792. /* ASSERT: channel is idle */
  793. if (test_ch_en(mid->dma_base, midc->ch_id)) {
  794. /*ch is not idle*/
  795. pr_err("ERR_MDMA: ch not idle\n");
  796. pm_runtime_put(&mid->pdev->dev);
  797. return -EIO;
  798. }
  799. midc->completed = chan->cookie = 1;
  800. spin_lock_bh(&midc->lock);
  801. while (midc->descs_allocated < DESCS_PER_CHANNEL) {
  802. spin_unlock_bh(&midc->lock);
  803. desc = pci_pool_alloc(mid->dma_pool, GFP_KERNEL, &phys);
  804. if (!desc) {
  805. pr_err("ERR_MDMA: desc failed\n");
  806. pm_runtime_put(&mid->pdev->dev);
  807. return -ENOMEM;
  808. /*check*/
  809. }
  810. dma_async_tx_descriptor_init(&desc->txd, chan);
  811. desc->txd.tx_submit = intel_mid_dma_tx_submit;
  812. desc->txd.flags = DMA_CTRL_ACK;
  813. desc->txd.phys = phys;
  814. spin_lock_bh(&midc->lock);
  815. i = ++midc->descs_allocated;
  816. list_add_tail(&desc->desc_node, &midc->free_list);
  817. }
  818. spin_unlock_bh(&midc->lock);
  819. midc->in_use = true;
  820. midc->busy = false;
  821. pr_debug("MID_DMA: Desc alloc done ret: %d desc\n", i);
  822. return i;
  823. }
  824. /**
  825. * midc_handle_error - Handle DMA txn error
  826. * @mid: controller where error occurred
  827. * @midc: chan where error occurred
  828. *
  829. * Scan the descriptor for error
  830. */
  831. static void midc_handle_error(struct middma_device *mid,
  832. struct intel_mid_dma_chan *midc)
  833. {
  834. midc_scan_descriptors(mid, midc);
  835. }
  836. /**
  837. * dma_tasklet - DMA interrupt tasklet
  838. * @data: tasklet arg (the controller structure)
  839. *
  840. * Scan the controller for interrupts for completion/error
  841. * Clear the interrupt and call for handling completion/error
  842. */
  843. static void dma_tasklet(unsigned long data)
  844. {
  845. struct middma_device *mid = NULL;
  846. struct intel_mid_dma_chan *midc = NULL;
  847. u32 status, raw_tfr, raw_block;
  848. int i;
  849. mid = (struct middma_device *)data;
  850. if (mid == NULL) {
  851. pr_err("ERR_MDMA: tasklet Null param\n");
  852. return;
  853. }
  854. pr_debug("MDMA: in tasklet for device %x\n", mid->pci_id);
  855. raw_tfr = ioread32(mid->dma_base + RAW_TFR);
  856. raw_block = ioread32(mid->dma_base + RAW_BLOCK);
  857. status = raw_tfr | raw_block;
  858. status &= mid->intr_mask;
  859. while (status) {
  860. /*txn interrupt*/
  861. i = get_ch_index(&status, mid->chan_base);
  862. if (i < 0) {
  863. pr_err("ERR_MDMA:Invalid ch index %x\n", i);
  864. return;
  865. }
  866. midc = &mid->ch[i];
  867. if (midc == NULL) {
  868. pr_err("ERR_MDMA:Null param midc\n");
  869. return;
  870. }
  871. pr_debug("MDMA:Tx complete interrupt %x, Ch No %d Index %d\n",
  872. status, midc->ch_id, i);
  873. midc->raw_tfr = raw_tfr;
  874. midc->raw_block = raw_block;
  875. spin_lock_bh(&midc->lock);
  876. /*clearing this interrupts first*/
  877. iowrite32((1 << midc->ch_id), mid->dma_base + CLEAR_TFR);
  878. if (raw_block) {
  879. iowrite32((1 << midc->ch_id),
  880. mid->dma_base + CLEAR_BLOCK);
  881. }
  882. midc_scan_descriptors(mid, midc);
  883. pr_debug("MDMA:Scan of desc... complete, unmasking\n");
  884. iowrite32(UNMASK_INTR_REG(midc->ch_id),
  885. mid->dma_base + MASK_TFR);
  886. if (raw_block) {
  887. iowrite32(UNMASK_INTR_REG(midc->ch_id),
  888. mid->dma_base + MASK_BLOCK);
  889. }
  890. spin_unlock_bh(&midc->lock);
  891. }
  892. status = ioread32(mid->dma_base + RAW_ERR);
  893. status &= mid->intr_mask;
  894. while (status) {
  895. /*err interrupt*/
  896. i = get_ch_index(&status, mid->chan_base);
  897. if (i < 0) {
  898. pr_err("ERR_MDMA:Invalid ch index %x\n", i);
  899. return;
  900. }
  901. midc = &mid->ch[i];
  902. if (midc == NULL) {
  903. pr_err("ERR_MDMA:Null param midc\n");
  904. return;
  905. }
  906. pr_debug("MDMA:Tx complete interrupt %x, Ch No %d Index %d\n",
  907. status, midc->ch_id, i);
  908. iowrite32((1 << midc->ch_id), mid->dma_base + CLEAR_ERR);
  909. spin_lock_bh(&midc->lock);
  910. midc_handle_error(mid, midc);
  911. iowrite32(UNMASK_INTR_REG(midc->ch_id),
  912. mid->dma_base + MASK_ERR);
  913. spin_unlock_bh(&midc->lock);
  914. }
  915. pr_debug("MDMA:Exiting takslet...\n");
  916. return;
  917. }
  918. static void dma_tasklet1(unsigned long data)
  919. {
  920. pr_debug("MDMA:in takslet1...\n");
  921. return dma_tasklet(data);
  922. }
  923. static void dma_tasklet2(unsigned long data)
  924. {
  925. pr_debug("MDMA:in takslet2...\n");
  926. return dma_tasklet(data);
  927. }
  928. /**
  929. * intel_mid_dma_interrupt - DMA ISR
  930. * @irq: IRQ where interrupt occurred
  931. * @data: ISR cllback data (the controller structure)
  932. *
  933. * See if this is our interrupt if so then schedule the tasklet
  934. * otherwise ignore
  935. */
  936. static irqreturn_t intel_mid_dma_interrupt(int irq, void *data)
  937. {
  938. struct middma_device *mid = data;
  939. u32 tfr_status, err_status;
  940. int call_tasklet = 0;
  941. tfr_status = ioread32(mid->dma_base + RAW_TFR);
  942. err_status = ioread32(mid->dma_base + RAW_ERR);
  943. if (!tfr_status && !err_status)
  944. return IRQ_NONE;
  945. /*DMA Interrupt*/
  946. pr_debug("MDMA:Got an interrupt on irq %d\n", irq);
  947. pr_debug("MDMA: Status %x, Mask %x\n", tfr_status, mid->intr_mask);
  948. tfr_status &= mid->intr_mask;
  949. if (tfr_status) {
  950. /*need to disable intr*/
  951. iowrite32((tfr_status << INT_MASK_WE), mid->dma_base + MASK_TFR);
  952. iowrite32((tfr_status << INT_MASK_WE), mid->dma_base + MASK_BLOCK);
  953. pr_debug("MDMA: Calling tasklet %x\n", tfr_status);
  954. call_tasklet = 1;
  955. }
  956. err_status &= mid->intr_mask;
  957. if (err_status) {
  958. iowrite32(MASK_INTR_REG(err_status), mid->dma_base + MASK_ERR);
  959. call_tasklet = 1;
  960. }
  961. if (call_tasklet)
  962. tasklet_schedule(&mid->tasklet);
  963. return IRQ_HANDLED;
  964. }
  965. static irqreturn_t intel_mid_dma_interrupt1(int irq, void *data)
  966. {
  967. return intel_mid_dma_interrupt(irq, data);
  968. }
  969. static irqreturn_t intel_mid_dma_interrupt2(int irq, void *data)
  970. {
  971. return intel_mid_dma_interrupt(irq, data);
  972. }
  973. /**
  974. * mid_setup_dma - Setup the DMA controller
  975. * @pdev: Controller PCI device structure
  976. *
  977. * Initialize the DMA controller, channels, registers with DMA engine,
  978. * ISR. Initialize DMA controller channels.
  979. */
  980. static int mid_setup_dma(struct pci_dev *pdev)
  981. {
  982. struct middma_device *dma = pci_get_drvdata(pdev);
  983. int err, i;
  984. /* DMA coherent memory pool for DMA descriptor allocations */
  985. dma->dma_pool = pci_pool_create("intel_mid_dma_desc_pool", pdev,
  986. sizeof(struct intel_mid_dma_desc),
  987. 32, 0);
  988. if (NULL == dma->dma_pool) {
  989. pr_err("ERR_MDMA:pci_pool_create failed\n");
  990. err = -ENOMEM;
  991. goto err_dma_pool;
  992. }
  993. INIT_LIST_HEAD(&dma->common.channels);
  994. dma->pci_id = pdev->device;
  995. if (dma->pimr_mask) {
  996. dma->mask_reg = ioremap(LNW_PERIPHRAL_MASK_BASE,
  997. LNW_PERIPHRAL_MASK_SIZE);
  998. if (dma->mask_reg == NULL) {
  999. pr_err("ERR_MDMA:Can't map periphral intr space !!\n");
  1000. return -ENOMEM;
  1001. }
  1002. } else
  1003. dma->mask_reg = NULL;
  1004. pr_debug("MDMA:Adding %d channel for this controller\n", dma->max_chan);
  1005. /*init CH structures*/
  1006. dma->intr_mask = 0;
  1007. dma->state = RUNNING;
  1008. for (i = 0; i < dma->max_chan; i++) {
  1009. struct intel_mid_dma_chan *midch = &dma->ch[i];
  1010. midch->chan.device = &dma->common;
  1011. midch->chan.cookie = 1;
  1012. midch->chan.chan_id = i;
  1013. midch->ch_id = dma->chan_base + i;
  1014. pr_debug("MDMA:Init CH %d, ID %d\n", i, midch->ch_id);
  1015. midch->dma_base = dma->dma_base;
  1016. midch->ch_regs = dma->dma_base + DMA_CH_SIZE * midch->ch_id;
  1017. midch->dma = dma;
  1018. dma->intr_mask |= 1 << (dma->chan_base + i);
  1019. spin_lock_init(&midch->lock);
  1020. INIT_LIST_HEAD(&midch->active_list);
  1021. INIT_LIST_HEAD(&midch->queue);
  1022. INIT_LIST_HEAD(&midch->free_list);
  1023. /*mask interrupts*/
  1024. iowrite32(MASK_INTR_REG(midch->ch_id),
  1025. dma->dma_base + MASK_BLOCK);
  1026. iowrite32(MASK_INTR_REG(midch->ch_id),
  1027. dma->dma_base + MASK_SRC_TRAN);
  1028. iowrite32(MASK_INTR_REG(midch->ch_id),
  1029. dma->dma_base + MASK_DST_TRAN);
  1030. iowrite32(MASK_INTR_REG(midch->ch_id),
  1031. dma->dma_base + MASK_ERR);
  1032. iowrite32(MASK_INTR_REG(midch->ch_id),
  1033. dma->dma_base + MASK_TFR);
  1034. disable_dma_interrupt(midch);
  1035. list_add_tail(&midch->chan.device_node, &dma->common.channels);
  1036. }
  1037. pr_debug("MDMA: Calc Mask as %x for this controller\n", dma->intr_mask);
  1038. /*init dma structure*/
  1039. dma_cap_zero(dma->common.cap_mask);
  1040. dma_cap_set(DMA_MEMCPY, dma->common.cap_mask);
  1041. dma_cap_set(DMA_SLAVE, dma->common.cap_mask);
  1042. dma_cap_set(DMA_PRIVATE, dma->common.cap_mask);
  1043. dma->common.dev = &pdev->dev;
  1044. dma->common.chancnt = dma->max_chan;
  1045. dma->common.device_alloc_chan_resources =
  1046. intel_mid_dma_alloc_chan_resources;
  1047. dma->common.device_free_chan_resources =
  1048. intel_mid_dma_free_chan_resources;
  1049. dma->common.device_tx_status = intel_mid_dma_tx_status;
  1050. dma->common.device_prep_dma_memcpy = intel_mid_dma_prep_memcpy;
  1051. dma->common.device_issue_pending = intel_mid_dma_issue_pending;
  1052. dma->common.device_prep_slave_sg = intel_mid_dma_prep_slave_sg;
  1053. dma->common.device_control = intel_mid_dma_device_control;
  1054. /*enable dma cntrl*/
  1055. iowrite32(REG_BIT0, dma->dma_base + DMA_CFG);
  1056. /*register irq */
  1057. if (dma->pimr_mask) {
  1058. pr_debug("MDMA:Requesting irq shared for DMAC1\n");
  1059. err = request_irq(pdev->irq, intel_mid_dma_interrupt1,
  1060. IRQF_SHARED, "INTEL_MID_DMAC1", dma);
  1061. if (0 != err)
  1062. goto err_irq;
  1063. } else {
  1064. dma->intr_mask = 0x03;
  1065. pr_debug("MDMA:Requesting irq for DMAC2\n");
  1066. err = request_irq(pdev->irq, intel_mid_dma_interrupt2,
  1067. IRQF_SHARED, "INTEL_MID_DMAC2", dma);
  1068. if (0 != err)
  1069. goto err_irq;
  1070. }
  1071. /*register device w/ engine*/
  1072. err = dma_async_device_register(&dma->common);
  1073. if (0 != err) {
  1074. pr_err("ERR_MDMA:device_register failed: %d\n", err);
  1075. goto err_engine;
  1076. }
  1077. if (dma->pimr_mask) {
  1078. pr_debug("setting up tasklet1 for DMAC1\n");
  1079. tasklet_init(&dma->tasklet, dma_tasklet1, (unsigned long)dma);
  1080. } else {
  1081. pr_debug("setting up tasklet2 for DMAC2\n");
  1082. tasklet_init(&dma->tasklet, dma_tasklet2, (unsigned long)dma);
  1083. }
  1084. return 0;
  1085. err_engine:
  1086. free_irq(pdev->irq, dma);
  1087. err_irq:
  1088. pci_pool_destroy(dma->dma_pool);
  1089. err_dma_pool:
  1090. pr_err("ERR_MDMA:setup_dma failed: %d\n", err);
  1091. return err;
  1092. }
  1093. /**
  1094. * middma_shutdown - Shutdown the DMA controller
  1095. * @pdev: Controller PCI device structure
  1096. *
  1097. * Called by remove
  1098. * Unregister DMa controller, clear all structures and free interrupt
  1099. */
  1100. static void middma_shutdown(struct pci_dev *pdev)
  1101. {
  1102. struct middma_device *device = pci_get_drvdata(pdev);
  1103. dma_async_device_unregister(&device->common);
  1104. pci_pool_destroy(device->dma_pool);
  1105. if (device->mask_reg)
  1106. iounmap(device->mask_reg);
  1107. if (device->dma_base)
  1108. iounmap(device->dma_base);
  1109. free_irq(pdev->irq, device);
  1110. return;
  1111. }
  1112. /**
  1113. * intel_mid_dma_probe - PCI Probe
  1114. * @pdev: Controller PCI device structure
  1115. * @id: pci device id structure
  1116. *
  1117. * Initialize the PCI device, map BARs, query driver data.
  1118. * Call setup_dma to complete contoller and chan initilzation
  1119. */
  1120. static int __devinit intel_mid_dma_probe(struct pci_dev *pdev,
  1121. const struct pci_device_id *id)
  1122. {
  1123. struct middma_device *device;
  1124. u32 base_addr, bar_size;
  1125. struct intel_mid_dma_probe_info *info;
  1126. int err;
  1127. pr_debug("MDMA: probe for %x\n", pdev->device);
  1128. info = (void *)id->driver_data;
  1129. pr_debug("MDMA: CH %d, base %d, block len %d, Periphral mask %x\n",
  1130. info->max_chan, info->ch_base,
  1131. info->block_size, info->pimr_mask);
  1132. err = pci_enable_device(pdev);
  1133. if (err)
  1134. goto err_enable_device;
  1135. err = pci_request_regions(pdev, "intel_mid_dmac");
  1136. if (err)
  1137. goto err_request_regions;
  1138. err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
  1139. if (err)
  1140. goto err_set_dma_mask;
  1141. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
  1142. if (err)
  1143. goto err_set_dma_mask;
  1144. device = kzalloc(sizeof(*device), GFP_KERNEL);
  1145. if (!device) {
  1146. pr_err("ERR_MDMA:kzalloc failed probe\n");
  1147. err = -ENOMEM;
  1148. goto err_kzalloc;
  1149. }
  1150. device->pdev = pci_dev_get(pdev);
  1151. base_addr = pci_resource_start(pdev, 0);
  1152. bar_size = pci_resource_len(pdev, 0);
  1153. device->dma_base = ioremap_nocache(base_addr, DMA_REG_SIZE);
  1154. if (!device->dma_base) {
  1155. pr_err("ERR_MDMA:ioremap failed\n");
  1156. err = -ENOMEM;
  1157. goto err_ioremap;
  1158. }
  1159. pci_set_drvdata(pdev, device);
  1160. pci_set_master(pdev);
  1161. device->max_chan = info->max_chan;
  1162. device->chan_base = info->ch_base;
  1163. device->block_size = info->block_size;
  1164. device->pimr_mask = info->pimr_mask;
  1165. err = mid_setup_dma(pdev);
  1166. if (err)
  1167. goto err_dma;
  1168. pm_runtime_put_noidle(&pdev->dev);
  1169. pm_runtime_allow(&pdev->dev);
  1170. return 0;
  1171. err_dma:
  1172. iounmap(device->dma_base);
  1173. err_ioremap:
  1174. pci_dev_put(pdev);
  1175. kfree(device);
  1176. err_kzalloc:
  1177. err_set_dma_mask:
  1178. pci_release_regions(pdev);
  1179. pci_disable_device(pdev);
  1180. err_request_regions:
  1181. err_enable_device:
  1182. pr_err("ERR_MDMA:Probe failed %d\n", err);
  1183. return err;
  1184. }
  1185. /**
  1186. * intel_mid_dma_remove - PCI remove
  1187. * @pdev: Controller PCI device structure
  1188. *
  1189. * Free up all resources and data
  1190. * Call shutdown_dma to complete contoller and chan cleanup
  1191. */
  1192. static void __devexit intel_mid_dma_remove(struct pci_dev *pdev)
  1193. {
  1194. struct middma_device *device = pci_get_drvdata(pdev);
  1195. pm_runtime_get_noresume(&pdev->dev);
  1196. pm_runtime_forbid(&pdev->dev);
  1197. middma_shutdown(pdev);
  1198. pci_dev_put(pdev);
  1199. kfree(device);
  1200. pci_release_regions(pdev);
  1201. pci_disable_device(pdev);
  1202. }
  1203. /* Power Management */
  1204. /*
  1205. * dma_suspend - PCI suspend function
  1206. *
  1207. * @pci: PCI device structure
  1208. * @state: PM message
  1209. *
  1210. * This function is called by OS when a power event occurs
  1211. */
  1212. int dma_suspend(struct pci_dev *pci, pm_message_t state)
  1213. {
  1214. int i;
  1215. struct middma_device *device = pci_get_drvdata(pci);
  1216. pr_debug("MDMA: dma_suspend called\n");
  1217. for (i = 0; i < device->max_chan; i++) {
  1218. if (device->ch[i].in_use)
  1219. return -EAGAIN;
  1220. }
  1221. device->state = SUSPENDED;
  1222. pci_set_drvdata(pci, device);
  1223. pci_save_state(pci);
  1224. pci_disable_device(pci);
  1225. pci_set_power_state(pci, PCI_D3hot);
  1226. return 0;
  1227. }
  1228. /**
  1229. * dma_resume - PCI resume function
  1230. *
  1231. * @pci: PCI device structure
  1232. *
  1233. * This function is called by OS when a power event occurs
  1234. */
  1235. int dma_resume(struct pci_dev *pci)
  1236. {
  1237. int ret;
  1238. struct middma_device *device = pci_get_drvdata(pci);
  1239. pr_debug("MDMA: dma_resume called\n");
  1240. pci_set_power_state(pci, PCI_D0);
  1241. pci_restore_state(pci);
  1242. ret = pci_enable_device(pci);
  1243. if (ret) {
  1244. pr_err("MDMA: device can't be enabled for %x\n", pci->device);
  1245. return ret;
  1246. }
  1247. device->state = RUNNING;
  1248. iowrite32(REG_BIT0, device->dma_base + DMA_CFG);
  1249. pci_set_drvdata(pci, device);
  1250. return 0;
  1251. }
  1252. static int dma_runtime_suspend(struct device *dev)
  1253. {
  1254. struct pci_dev *pci_dev = to_pci_dev(dev);
  1255. struct middma_device *device = pci_get_drvdata(pci_dev);
  1256. device->state = SUSPENDED;
  1257. return 0;
  1258. }
  1259. static int dma_runtime_resume(struct device *dev)
  1260. {
  1261. struct pci_dev *pci_dev = to_pci_dev(dev);
  1262. struct middma_device *device = pci_get_drvdata(pci_dev);
  1263. device->state = RUNNING;
  1264. iowrite32(REG_BIT0, device->dma_base + DMA_CFG);
  1265. return 0;
  1266. }
  1267. static int dma_runtime_idle(struct device *dev)
  1268. {
  1269. struct pci_dev *pdev = to_pci_dev(dev);
  1270. struct middma_device *device = pci_get_drvdata(pdev);
  1271. int i;
  1272. for (i = 0; i < device->max_chan; i++) {
  1273. if (device->ch[i].in_use)
  1274. return -EAGAIN;
  1275. }
  1276. return pm_schedule_suspend(dev, 0);
  1277. }
  1278. /******************************************************************************
  1279. * PCI stuff
  1280. */
  1281. static struct pci_device_id intel_mid_dma_ids[] = {
  1282. { PCI_VDEVICE(INTEL, INTEL_MID_DMAC1_ID), INFO(2, 6, 4095, 0x200020)},
  1283. { PCI_VDEVICE(INTEL, INTEL_MID_DMAC2_ID), INFO(2, 0, 2047, 0)},
  1284. { PCI_VDEVICE(INTEL, INTEL_MID_GP_DMAC2_ID), INFO(2, 0, 2047, 0)},
  1285. { PCI_VDEVICE(INTEL, INTEL_MFLD_DMAC1_ID), INFO(4, 0, 4095, 0x400040)},
  1286. { 0, }
  1287. };
  1288. MODULE_DEVICE_TABLE(pci, intel_mid_dma_ids);
  1289. static const struct dev_pm_ops intel_mid_dma_pm = {
  1290. .runtime_suspend = dma_runtime_suspend,
  1291. .runtime_resume = dma_runtime_resume,
  1292. .runtime_idle = dma_runtime_idle,
  1293. };
  1294. static struct pci_driver intel_mid_dma_pci_driver = {
  1295. .name = "Intel MID DMA",
  1296. .id_table = intel_mid_dma_ids,
  1297. .probe = intel_mid_dma_probe,
  1298. .remove = __devexit_p(intel_mid_dma_remove),
  1299. #ifdef CONFIG_PM
  1300. .suspend = dma_suspend,
  1301. .resume = dma_resume,
  1302. .driver = {
  1303. .pm = &intel_mid_dma_pm,
  1304. },
  1305. #endif
  1306. };
  1307. static int __init intel_mid_dma_init(void)
  1308. {
  1309. pr_debug("INFO_MDMA: LNW DMA Driver Version %s\n",
  1310. INTEL_MID_DMA_DRIVER_VERSION);
  1311. return pci_register_driver(&intel_mid_dma_pci_driver);
  1312. }
  1313. fs_initcall(intel_mid_dma_init);
  1314. static void __exit intel_mid_dma_exit(void)
  1315. {
  1316. pci_unregister_driver(&intel_mid_dma_pci_driver);
  1317. }
  1318. module_exit(intel_mid_dma_exit);
  1319. MODULE_AUTHOR("Vinod Koul <vinod.koul@intel.com>");
  1320. MODULE_DESCRIPTION("Intel (R) MID DMAC Driver");
  1321. MODULE_LICENSE("GPL v2");
  1322. MODULE_VERSION(INTEL_MID_DMA_DRIVER_VERSION);