cpufreq_conservative.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626
  1. /*
  2. * drivers/cpufreq/cpufreq_conservative.c
  3. *
  4. * Copyright (C) 2001 Russell King
  5. * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
  6. * Jun Nakajima <jun.nakajima@intel.com>
  7. * (C) 2009 Alexander Clouter <alex@digriz.org.uk>
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License version 2 as
  11. * published by the Free Software Foundation.
  12. */
  13. #include <linux/kernel.h>
  14. #include <linux/module.h>
  15. #include <linux/init.h>
  16. #include <linux/cpufreq.h>
  17. #include <linux/cpu.h>
  18. #include <linux/jiffies.h>
  19. #include <linux/kernel_stat.h>
  20. #include <linux/mutex.h>
  21. #include <linux/hrtimer.h>
  22. #include <linux/tick.h>
  23. #include <linux/ktime.h>
  24. #include <linux/sched.h>
  25. /*
  26. * dbs is used in this file as a shortform for demandbased switching
  27. * It helps to keep variable names smaller, simpler
  28. */
  29. #define DEF_FREQUENCY_UP_THRESHOLD (80)
  30. #define DEF_FREQUENCY_DOWN_THRESHOLD (20)
  31. /*
  32. * The polling frequency of this governor depends on the capability of
  33. * the processor. Default polling frequency is 1000 times the transition
  34. * latency of the processor. The governor will work on any processor with
  35. * transition latency <= 10mS, using appropriate sampling
  36. * rate.
  37. * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
  38. * this governor will not work.
  39. * All times here are in uS.
  40. */
  41. #define MIN_SAMPLING_RATE_RATIO (2)
  42. static unsigned int min_sampling_rate;
  43. #define LATENCY_MULTIPLIER (1000)
  44. #define MIN_LATENCY_MULTIPLIER (100)
  45. #define DEF_SAMPLING_DOWN_FACTOR (1)
  46. #define MAX_SAMPLING_DOWN_FACTOR (10)
  47. #define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
  48. static void do_dbs_timer(struct work_struct *work);
  49. struct cpu_dbs_info_s {
  50. cputime64_t prev_cpu_idle;
  51. cputime64_t prev_cpu_wall;
  52. cputime64_t prev_cpu_nice;
  53. struct cpufreq_policy *cur_policy;
  54. struct delayed_work work;
  55. unsigned int down_skip;
  56. unsigned int requested_freq;
  57. int cpu;
  58. unsigned int enable:1;
  59. /*
  60. * percpu mutex that serializes governor limit change with
  61. * do_dbs_timer invocation. We do not want do_dbs_timer to run
  62. * when user is changing the governor or limits.
  63. */
  64. struct mutex timer_mutex;
  65. };
  66. static DEFINE_PER_CPU(struct cpu_dbs_info_s, cs_cpu_dbs_info);
  67. static unsigned int dbs_enable; /* number of CPUs using this policy */
  68. /*
  69. * dbs_mutex protects dbs_enable in governor start/stop.
  70. */
  71. static DEFINE_MUTEX(dbs_mutex);
  72. static struct dbs_tuners {
  73. unsigned int sampling_rate;
  74. unsigned int sampling_down_factor;
  75. unsigned int up_threshold;
  76. unsigned int down_threshold;
  77. unsigned int ignore_nice;
  78. unsigned int freq_step;
  79. } dbs_tuners_ins = {
  80. .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
  81. .down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD,
  82. .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
  83. .ignore_nice = 0,
  84. .freq_step = 5,
  85. };
  86. static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
  87. cputime64_t *wall)
  88. {
  89. cputime64_t idle_time;
  90. cputime64_t cur_wall_time;
  91. cputime64_t busy_time;
  92. cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
  93. busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
  94. kstat_cpu(cpu).cpustat.system);
  95. busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
  96. busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
  97. busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
  98. busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice);
  99. idle_time = cputime64_sub(cur_wall_time, busy_time);
  100. if (wall)
  101. *wall = (cputime64_t)jiffies_to_usecs(cur_wall_time);
  102. return (cputime64_t)jiffies_to_usecs(idle_time);
  103. }
  104. static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
  105. {
  106. u64 idle_time = get_cpu_idle_time_us(cpu, wall);
  107. if (idle_time == -1ULL)
  108. return get_cpu_idle_time_jiffy(cpu, wall);
  109. return idle_time;
  110. }
  111. /* keep track of frequency transitions */
  112. static int
  113. dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  114. void *data)
  115. {
  116. struct cpufreq_freqs *freq = data;
  117. struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cs_cpu_dbs_info,
  118. freq->cpu);
  119. struct cpufreq_policy *policy;
  120. if (!this_dbs_info->enable)
  121. return 0;
  122. policy = this_dbs_info->cur_policy;
  123. /*
  124. * we only care if our internally tracked freq moves outside
  125. * the 'valid' ranges of freqency available to us otherwise
  126. * we do not change it
  127. */
  128. if (this_dbs_info->requested_freq > policy->max
  129. || this_dbs_info->requested_freq < policy->min)
  130. this_dbs_info->requested_freq = freq->new;
  131. return 0;
  132. }
  133. static struct notifier_block dbs_cpufreq_notifier_block = {
  134. .notifier_call = dbs_cpufreq_notifier
  135. };
  136. /************************** sysfs interface ************************/
  137. static ssize_t show_sampling_rate_min(struct kobject *kobj,
  138. struct attribute *attr, char *buf)
  139. {
  140. return sprintf(buf, "%u\n", min_sampling_rate);
  141. }
  142. define_one_global_ro(sampling_rate_min);
  143. /* cpufreq_conservative Governor Tunables */
  144. #define show_one(file_name, object) \
  145. static ssize_t show_##file_name \
  146. (struct kobject *kobj, struct attribute *attr, char *buf) \
  147. { \
  148. return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
  149. }
  150. show_one(sampling_rate, sampling_rate);
  151. show_one(sampling_down_factor, sampling_down_factor);
  152. show_one(up_threshold, up_threshold);
  153. show_one(down_threshold, down_threshold);
  154. show_one(ignore_nice_load, ignore_nice);
  155. show_one(freq_step, freq_step);
  156. static ssize_t store_sampling_down_factor(struct kobject *a,
  157. struct attribute *b,
  158. const char *buf, size_t count)
  159. {
  160. unsigned int input;
  161. int ret;
  162. ret = sscanf(buf, "%u", &input);
  163. if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
  164. return -EINVAL;
  165. dbs_tuners_ins.sampling_down_factor = input;
  166. return count;
  167. }
  168. static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
  169. const char *buf, size_t count)
  170. {
  171. unsigned int input;
  172. int ret;
  173. ret = sscanf(buf, "%u", &input);
  174. if (ret != 1)
  175. return -EINVAL;
  176. dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate);
  177. return count;
  178. }
  179. static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
  180. const char *buf, size_t count)
  181. {
  182. unsigned int input;
  183. int ret;
  184. ret = sscanf(buf, "%u", &input);
  185. if (ret != 1 || input > 100 ||
  186. input <= dbs_tuners_ins.down_threshold)
  187. return -EINVAL;
  188. dbs_tuners_ins.up_threshold = input;
  189. return count;
  190. }
  191. static ssize_t store_down_threshold(struct kobject *a, struct attribute *b,
  192. const char *buf, size_t count)
  193. {
  194. unsigned int input;
  195. int ret;
  196. ret = sscanf(buf, "%u", &input);
  197. /* cannot be lower than 11 otherwise freq will not fall */
  198. if (ret != 1 || input < 11 || input > 100 ||
  199. input >= dbs_tuners_ins.up_threshold)
  200. return -EINVAL;
  201. dbs_tuners_ins.down_threshold = input;
  202. return count;
  203. }
  204. static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
  205. const char *buf, size_t count)
  206. {
  207. unsigned int input;
  208. int ret;
  209. unsigned int j;
  210. ret = sscanf(buf, "%u", &input);
  211. if (ret != 1)
  212. return -EINVAL;
  213. if (input > 1)
  214. input = 1;
  215. if (input == dbs_tuners_ins.ignore_nice) /* nothing to do */
  216. return count;
  217. dbs_tuners_ins.ignore_nice = input;
  218. /* we need to re-evaluate prev_cpu_idle */
  219. for_each_online_cpu(j) {
  220. struct cpu_dbs_info_s *dbs_info;
  221. dbs_info = &per_cpu(cs_cpu_dbs_info, j);
  222. dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
  223. &dbs_info->prev_cpu_wall);
  224. if (dbs_tuners_ins.ignore_nice)
  225. dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
  226. }
  227. return count;
  228. }
  229. static ssize_t store_freq_step(struct kobject *a, struct attribute *b,
  230. const char *buf, size_t count)
  231. {
  232. unsigned int input;
  233. int ret;
  234. ret = sscanf(buf, "%u", &input);
  235. if (ret != 1)
  236. return -EINVAL;
  237. if (input > 100)
  238. input = 100;
  239. /* no need to test here if freq_step is zero as the user might actually
  240. * want this, they would be crazy though :) */
  241. dbs_tuners_ins.freq_step = input;
  242. return count;
  243. }
  244. define_one_global_rw(sampling_rate);
  245. define_one_global_rw(sampling_down_factor);
  246. define_one_global_rw(up_threshold);
  247. define_one_global_rw(down_threshold);
  248. define_one_global_rw(ignore_nice_load);
  249. define_one_global_rw(freq_step);
  250. static struct attribute *dbs_attributes[] = {
  251. &sampling_rate_min.attr,
  252. &sampling_rate.attr,
  253. &sampling_down_factor.attr,
  254. &up_threshold.attr,
  255. &down_threshold.attr,
  256. &ignore_nice_load.attr,
  257. &freq_step.attr,
  258. NULL
  259. };
  260. static struct attribute_group dbs_attr_group = {
  261. .attrs = dbs_attributes,
  262. .name = "conservative",
  263. };
  264. /************************** sysfs end ************************/
  265. static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
  266. {
  267. unsigned int load = 0;
  268. unsigned int max_load = 0;
  269. unsigned int freq_target;
  270. struct cpufreq_policy *policy;
  271. unsigned int j;
  272. policy = this_dbs_info->cur_policy;
  273. /*
  274. * Every sampling_rate, we check, if current idle time is less
  275. * than 20% (default), then we try to increase frequency
  276. * Every sampling_rate*sampling_down_factor, we check, if current
  277. * idle time is more than 80%, then we try to decrease frequency
  278. *
  279. * Any frequency increase takes it to the maximum frequency.
  280. * Frequency reduction happens at minimum steps of
  281. * 5% (default) of maximum frequency
  282. */
  283. /* Get Absolute Load */
  284. for_each_cpu(j, policy->cpus) {
  285. struct cpu_dbs_info_s *j_dbs_info;
  286. cputime64_t cur_wall_time, cur_idle_time;
  287. unsigned int idle_time, wall_time;
  288. j_dbs_info = &per_cpu(cs_cpu_dbs_info, j);
  289. cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
  290. wall_time = (unsigned int) cputime64_sub(cur_wall_time,
  291. j_dbs_info->prev_cpu_wall);
  292. j_dbs_info->prev_cpu_wall = cur_wall_time;
  293. idle_time = (unsigned int) cputime64_sub(cur_idle_time,
  294. j_dbs_info->prev_cpu_idle);
  295. j_dbs_info->prev_cpu_idle = cur_idle_time;
  296. if (dbs_tuners_ins.ignore_nice) {
  297. cputime64_t cur_nice;
  298. unsigned long cur_nice_jiffies;
  299. cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice,
  300. j_dbs_info->prev_cpu_nice);
  301. /*
  302. * Assumption: nice time between sampling periods will
  303. * be less than 2^32 jiffies for 32 bit sys
  304. */
  305. cur_nice_jiffies = (unsigned long)
  306. cputime64_to_jiffies64(cur_nice);
  307. j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
  308. idle_time += jiffies_to_usecs(cur_nice_jiffies);
  309. }
  310. if (unlikely(!wall_time || wall_time < idle_time))
  311. continue;
  312. load = 100 * (wall_time - idle_time) / wall_time;
  313. if (load > max_load)
  314. max_load = load;
  315. }
  316. /*
  317. * break out if we 'cannot' reduce the speed as the user might
  318. * want freq_step to be zero
  319. */
  320. if (dbs_tuners_ins.freq_step == 0)
  321. return;
  322. /* Check for frequency increase */
  323. if (max_load > dbs_tuners_ins.up_threshold) {
  324. this_dbs_info->down_skip = 0;
  325. /* if we are already at full speed then break out early */
  326. if (this_dbs_info->requested_freq == policy->max)
  327. return;
  328. freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
  329. /* max freq cannot be less than 100. But who knows.... */
  330. if (unlikely(freq_target == 0))
  331. freq_target = 5;
  332. this_dbs_info->requested_freq += freq_target;
  333. if (this_dbs_info->requested_freq > policy->max)
  334. this_dbs_info->requested_freq = policy->max;
  335. __cpufreq_driver_target(policy, this_dbs_info->requested_freq,
  336. CPUFREQ_RELATION_H);
  337. return;
  338. }
  339. /*
  340. * The optimal frequency is the frequency that is the lowest that
  341. * can support the current CPU usage without triggering the up
  342. * policy. To be safe, we focus 10 points under the threshold.
  343. */
  344. if (max_load < (dbs_tuners_ins.down_threshold - 10)) {
  345. freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
  346. this_dbs_info->requested_freq -= freq_target;
  347. if (this_dbs_info->requested_freq < policy->min)
  348. this_dbs_info->requested_freq = policy->min;
  349. /*
  350. * if we cannot reduce the frequency anymore, break out early
  351. */
  352. if (policy->cur == policy->min)
  353. return;
  354. __cpufreq_driver_target(policy, this_dbs_info->requested_freq,
  355. CPUFREQ_RELATION_H);
  356. return;
  357. }
  358. }
  359. static void do_dbs_timer(struct work_struct *work)
  360. {
  361. struct cpu_dbs_info_s *dbs_info =
  362. container_of(work, struct cpu_dbs_info_s, work.work);
  363. unsigned int cpu = dbs_info->cpu;
  364. /* We want all CPUs to do sampling nearly on same jiffy */
  365. int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
  366. delay -= jiffies % delay;
  367. mutex_lock(&dbs_info->timer_mutex);
  368. dbs_check_cpu(dbs_info);
  369. schedule_delayed_work_on(cpu, &dbs_info->work, delay);
  370. mutex_unlock(&dbs_info->timer_mutex);
  371. }
  372. static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
  373. {
  374. /* We want all CPUs to do sampling nearly on same jiffy */
  375. int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
  376. delay -= jiffies % delay;
  377. dbs_info->enable = 1;
  378. INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
  379. schedule_delayed_work_on(dbs_info->cpu, &dbs_info->work, delay);
  380. }
  381. static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
  382. {
  383. dbs_info->enable = 0;
  384. cancel_delayed_work_sync(&dbs_info->work);
  385. }
  386. static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
  387. unsigned int event)
  388. {
  389. unsigned int cpu = policy->cpu;
  390. struct cpu_dbs_info_s *this_dbs_info;
  391. unsigned int j;
  392. int rc;
  393. this_dbs_info = &per_cpu(cs_cpu_dbs_info, cpu);
  394. switch (event) {
  395. case CPUFREQ_GOV_START:
  396. if ((!cpu_online(cpu)) || (!policy->cur))
  397. return -EINVAL;
  398. mutex_lock(&dbs_mutex);
  399. for_each_cpu(j, policy->cpus) {
  400. struct cpu_dbs_info_s *j_dbs_info;
  401. j_dbs_info = &per_cpu(cs_cpu_dbs_info, j);
  402. j_dbs_info->cur_policy = policy;
  403. j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
  404. &j_dbs_info->prev_cpu_wall);
  405. if (dbs_tuners_ins.ignore_nice) {
  406. j_dbs_info->prev_cpu_nice =
  407. kstat_cpu(j).cpustat.nice;
  408. }
  409. }
  410. this_dbs_info->down_skip = 0;
  411. this_dbs_info->requested_freq = policy->cur;
  412. mutex_init(&this_dbs_info->timer_mutex);
  413. dbs_enable++;
  414. /*
  415. * Start the timerschedule work, when this governor
  416. * is used for first time
  417. */
  418. if (dbs_enable == 1) {
  419. unsigned int latency;
  420. /* policy latency is in nS. Convert it to uS first */
  421. latency = policy->cpuinfo.transition_latency / 1000;
  422. if (latency == 0)
  423. latency = 1;
  424. rc = sysfs_create_group(cpufreq_global_kobject,
  425. &dbs_attr_group);
  426. if (rc) {
  427. mutex_unlock(&dbs_mutex);
  428. return rc;
  429. }
  430. /*
  431. * conservative does not implement micro like ondemand
  432. * governor, thus we are bound to jiffes/HZ
  433. */
  434. min_sampling_rate =
  435. MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
  436. /* Bring kernel and HW constraints together */
  437. min_sampling_rate = max(min_sampling_rate,
  438. MIN_LATENCY_MULTIPLIER * latency);
  439. dbs_tuners_ins.sampling_rate =
  440. max(min_sampling_rate,
  441. latency * LATENCY_MULTIPLIER);
  442. cpufreq_register_notifier(
  443. &dbs_cpufreq_notifier_block,
  444. CPUFREQ_TRANSITION_NOTIFIER);
  445. }
  446. mutex_unlock(&dbs_mutex);
  447. dbs_timer_init(this_dbs_info);
  448. break;
  449. case CPUFREQ_GOV_STOP:
  450. dbs_timer_exit(this_dbs_info);
  451. mutex_lock(&dbs_mutex);
  452. dbs_enable--;
  453. mutex_destroy(&this_dbs_info->timer_mutex);
  454. /*
  455. * Stop the timerschedule work, when this governor
  456. * is used for first time
  457. */
  458. if (dbs_enable == 0)
  459. cpufreq_unregister_notifier(
  460. &dbs_cpufreq_notifier_block,
  461. CPUFREQ_TRANSITION_NOTIFIER);
  462. mutex_unlock(&dbs_mutex);
  463. if (!dbs_enable)
  464. sysfs_remove_group(cpufreq_global_kobject,
  465. &dbs_attr_group);
  466. break;
  467. case CPUFREQ_GOV_LIMITS:
  468. mutex_lock(&this_dbs_info->timer_mutex);
  469. if (policy->max < this_dbs_info->cur_policy->cur)
  470. __cpufreq_driver_target(
  471. this_dbs_info->cur_policy,
  472. policy->max, CPUFREQ_RELATION_H);
  473. else if (policy->min > this_dbs_info->cur_policy->cur)
  474. __cpufreq_driver_target(
  475. this_dbs_info->cur_policy,
  476. policy->min, CPUFREQ_RELATION_L);
  477. mutex_unlock(&this_dbs_info->timer_mutex);
  478. break;
  479. }
  480. return 0;
  481. }
  482. #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
  483. static
  484. #endif
  485. struct cpufreq_governor cpufreq_gov_conservative = {
  486. .name = "conservative",
  487. .governor = cpufreq_governor_dbs,
  488. .max_transition_latency = TRANSITION_LATENCY_LIMIT,
  489. .owner = THIS_MODULE,
  490. };
  491. static int __init cpufreq_gov_dbs_init(void)
  492. {
  493. return cpufreq_register_governor(&cpufreq_gov_conservative);
  494. }
  495. static void __exit cpufreq_gov_dbs_exit(void)
  496. {
  497. cpufreq_unregister_governor(&cpufreq_gov_conservative);
  498. }
  499. MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
  500. MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
  501. "Low Latency Frequency Transition capable processors "
  502. "optimised for use in a battery environment");
  503. MODULE_LICENSE("GPL");
  504. #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
  505. fs_initcall(cpufreq_gov_dbs_init);
  506. #else
  507. module_init(cpufreq_gov_dbs_init);
  508. #endif
  509. module_exit(cpufreq_gov_dbs_exit);