sh_tmu.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461
  1. /*
  2. * SuperH Timer Support - TMU
  3. *
  4. * Copyright (C) 2009 Magnus Damm
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. */
  19. #include <linux/init.h>
  20. #include <linux/platform_device.h>
  21. #include <linux/spinlock.h>
  22. #include <linux/interrupt.h>
  23. #include <linux/ioport.h>
  24. #include <linux/delay.h>
  25. #include <linux/io.h>
  26. #include <linux/clk.h>
  27. #include <linux/irq.h>
  28. #include <linux/err.h>
  29. #include <linux/clocksource.h>
  30. #include <linux/clockchips.h>
  31. #include <linux/sh_timer.h>
  32. #include <linux/slab.h>
  33. struct sh_tmu_priv {
  34. void __iomem *mapbase;
  35. struct clk *clk;
  36. struct irqaction irqaction;
  37. struct platform_device *pdev;
  38. unsigned long rate;
  39. unsigned long periodic;
  40. struct clock_event_device ced;
  41. struct clocksource cs;
  42. };
  43. static DEFINE_SPINLOCK(sh_tmu_lock);
  44. #define TSTR -1 /* shared register */
  45. #define TCOR 0 /* channel register */
  46. #define TCNT 1 /* channel register */
  47. #define TCR 2 /* channel register */
  48. static inline unsigned long sh_tmu_read(struct sh_tmu_priv *p, int reg_nr)
  49. {
  50. struct sh_timer_config *cfg = p->pdev->dev.platform_data;
  51. void __iomem *base = p->mapbase;
  52. unsigned long offs;
  53. if (reg_nr == TSTR)
  54. return ioread8(base - cfg->channel_offset);
  55. offs = reg_nr << 2;
  56. if (reg_nr == TCR)
  57. return ioread16(base + offs);
  58. else
  59. return ioread32(base + offs);
  60. }
  61. static inline void sh_tmu_write(struct sh_tmu_priv *p, int reg_nr,
  62. unsigned long value)
  63. {
  64. struct sh_timer_config *cfg = p->pdev->dev.platform_data;
  65. void __iomem *base = p->mapbase;
  66. unsigned long offs;
  67. if (reg_nr == TSTR) {
  68. iowrite8(value, base - cfg->channel_offset);
  69. return;
  70. }
  71. offs = reg_nr << 2;
  72. if (reg_nr == TCR)
  73. iowrite16(value, base + offs);
  74. else
  75. iowrite32(value, base + offs);
  76. }
  77. static void sh_tmu_start_stop_ch(struct sh_tmu_priv *p, int start)
  78. {
  79. struct sh_timer_config *cfg = p->pdev->dev.platform_data;
  80. unsigned long flags, value;
  81. /* start stop register shared by multiple timer channels */
  82. spin_lock_irqsave(&sh_tmu_lock, flags);
  83. value = sh_tmu_read(p, TSTR);
  84. if (start)
  85. value |= 1 << cfg->timer_bit;
  86. else
  87. value &= ~(1 << cfg->timer_bit);
  88. sh_tmu_write(p, TSTR, value);
  89. spin_unlock_irqrestore(&sh_tmu_lock, flags);
  90. }
  91. static int sh_tmu_enable(struct sh_tmu_priv *p)
  92. {
  93. int ret;
  94. /* enable clock */
  95. ret = clk_enable(p->clk);
  96. if (ret) {
  97. dev_err(&p->pdev->dev, "cannot enable clock\n");
  98. return ret;
  99. }
  100. /* make sure channel is disabled */
  101. sh_tmu_start_stop_ch(p, 0);
  102. /* maximum timeout */
  103. sh_tmu_write(p, TCOR, 0xffffffff);
  104. sh_tmu_write(p, TCNT, 0xffffffff);
  105. /* configure channel to parent clock / 4, irq off */
  106. p->rate = clk_get_rate(p->clk) / 4;
  107. sh_tmu_write(p, TCR, 0x0000);
  108. /* enable channel */
  109. sh_tmu_start_stop_ch(p, 1);
  110. return 0;
  111. }
  112. static void sh_tmu_disable(struct sh_tmu_priv *p)
  113. {
  114. /* disable channel */
  115. sh_tmu_start_stop_ch(p, 0);
  116. /* disable interrupts in TMU block */
  117. sh_tmu_write(p, TCR, 0x0000);
  118. /* stop clock */
  119. clk_disable(p->clk);
  120. }
  121. static void sh_tmu_set_next(struct sh_tmu_priv *p, unsigned long delta,
  122. int periodic)
  123. {
  124. /* stop timer */
  125. sh_tmu_start_stop_ch(p, 0);
  126. /* acknowledge interrupt */
  127. sh_tmu_read(p, TCR);
  128. /* enable interrupt */
  129. sh_tmu_write(p, TCR, 0x0020);
  130. /* reload delta value in case of periodic timer */
  131. if (periodic)
  132. sh_tmu_write(p, TCOR, delta);
  133. else
  134. sh_tmu_write(p, TCOR, 0xffffffff);
  135. sh_tmu_write(p, TCNT, delta);
  136. /* start timer */
  137. sh_tmu_start_stop_ch(p, 1);
  138. }
  139. static irqreturn_t sh_tmu_interrupt(int irq, void *dev_id)
  140. {
  141. struct sh_tmu_priv *p = dev_id;
  142. /* disable or acknowledge interrupt */
  143. if (p->ced.mode == CLOCK_EVT_MODE_ONESHOT)
  144. sh_tmu_write(p, TCR, 0x0000);
  145. else
  146. sh_tmu_write(p, TCR, 0x0020);
  147. /* notify clockevent layer */
  148. p->ced.event_handler(&p->ced);
  149. return IRQ_HANDLED;
  150. }
  151. static struct sh_tmu_priv *cs_to_sh_tmu(struct clocksource *cs)
  152. {
  153. return container_of(cs, struct sh_tmu_priv, cs);
  154. }
  155. static cycle_t sh_tmu_clocksource_read(struct clocksource *cs)
  156. {
  157. struct sh_tmu_priv *p = cs_to_sh_tmu(cs);
  158. return sh_tmu_read(p, TCNT) ^ 0xffffffff;
  159. }
  160. static int sh_tmu_clocksource_enable(struct clocksource *cs)
  161. {
  162. struct sh_tmu_priv *p = cs_to_sh_tmu(cs);
  163. int ret;
  164. ret = sh_tmu_enable(p);
  165. if (!ret)
  166. __clocksource_updatefreq_hz(cs, p->rate);
  167. return ret;
  168. }
  169. static void sh_tmu_clocksource_disable(struct clocksource *cs)
  170. {
  171. sh_tmu_disable(cs_to_sh_tmu(cs));
  172. }
  173. static int sh_tmu_register_clocksource(struct sh_tmu_priv *p,
  174. char *name, unsigned long rating)
  175. {
  176. struct clocksource *cs = &p->cs;
  177. cs->name = name;
  178. cs->rating = rating;
  179. cs->read = sh_tmu_clocksource_read;
  180. cs->enable = sh_tmu_clocksource_enable;
  181. cs->disable = sh_tmu_clocksource_disable;
  182. cs->mask = CLOCKSOURCE_MASK(32);
  183. cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
  184. dev_info(&p->pdev->dev, "used as clock source\n");
  185. /* Register with dummy 1 Hz value, gets updated in ->enable() */
  186. clocksource_register_hz(cs, 1);
  187. return 0;
  188. }
  189. static struct sh_tmu_priv *ced_to_sh_tmu(struct clock_event_device *ced)
  190. {
  191. return container_of(ced, struct sh_tmu_priv, ced);
  192. }
  193. static void sh_tmu_clock_event_start(struct sh_tmu_priv *p, int periodic)
  194. {
  195. struct clock_event_device *ced = &p->ced;
  196. sh_tmu_enable(p);
  197. /* TODO: calculate good shift from rate and counter bit width */
  198. ced->shift = 32;
  199. ced->mult = div_sc(p->rate, NSEC_PER_SEC, ced->shift);
  200. ced->max_delta_ns = clockevent_delta2ns(0xffffffff, ced);
  201. ced->min_delta_ns = 5000;
  202. if (periodic) {
  203. p->periodic = (p->rate + HZ/2) / HZ;
  204. sh_tmu_set_next(p, p->periodic, 1);
  205. }
  206. }
  207. static void sh_tmu_clock_event_mode(enum clock_event_mode mode,
  208. struct clock_event_device *ced)
  209. {
  210. struct sh_tmu_priv *p = ced_to_sh_tmu(ced);
  211. int disabled = 0;
  212. /* deal with old setting first */
  213. switch (ced->mode) {
  214. case CLOCK_EVT_MODE_PERIODIC:
  215. case CLOCK_EVT_MODE_ONESHOT:
  216. sh_tmu_disable(p);
  217. disabled = 1;
  218. break;
  219. default:
  220. break;
  221. }
  222. switch (mode) {
  223. case CLOCK_EVT_MODE_PERIODIC:
  224. dev_info(&p->pdev->dev, "used for periodic clock events\n");
  225. sh_tmu_clock_event_start(p, 1);
  226. break;
  227. case CLOCK_EVT_MODE_ONESHOT:
  228. dev_info(&p->pdev->dev, "used for oneshot clock events\n");
  229. sh_tmu_clock_event_start(p, 0);
  230. break;
  231. case CLOCK_EVT_MODE_UNUSED:
  232. if (!disabled)
  233. sh_tmu_disable(p);
  234. break;
  235. case CLOCK_EVT_MODE_SHUTDOWN:
  236. default:
  237. break;
  238. }
  239. }
  240. static int sh_tmu_clock_event_next(unsigned long delta,
  241. struct clock_event_device *ced)
  242. {
  243. struct sh_tmu_priv *p = ced_to_sh_tmu(ced);
  244. BUG_ON(ced->mode != CLOCK_EVT_MODE_ONESHOT);
  245. /* program new delta value */
  246. sh_tmu_set_next(p, delta, 0);
  247. return 0;
  248. }
  249. static void sh_tmu_register_clockevent(struct sh_tmu_priv *p,
  250. char *name, unsigned long rating)
  251. {
  252. struct clock_event_device *ced = &p->ced;
  253. int ret;
  254. memset(ced, 0, sizeof(*ced));
  255. ced->name = name;
  256. ced->features = CLOCK_EVT_FEAT_PERIODIC;
  257. ced->features |= CLOCK_EVT_FEAT_ONESHOT;
  258. ced->rating = rating;
  259. ced->cpumask = cpumask_of(0);
  260. ced->set_next_event = sh_tmu_clock_event_next;
  261. ced->set_mode = sh_tmu_clock_event_mode;
  262. dev_info(&p->pdev->dev, "used for clock events\n");
  263. clockevents_register_device(ced);
  264. ret = setup_irq(p->irqaction.irq, &p->irqaction);
  265. if (ret) {
  266. dev_err(&p->pdev->dev, "failed to request irq %d\n",
  267. p->irqaction.irq);
  268. return;
  269. }
  270. }
  271. static int sh_tmu_register(struct sh_tmu_priv *p, char *name,
  272. unsigned long clockevent_rating,
  273. unsigned long clocksource_rating)
  274. {
  275. if (clockevent_rating)
  276. sh_tmu_register_clockevent(p, name, clockevent_rating);
  277. else if (clocksource_rating)
  278. sh_tmu_register_clocksource(p, name, clocksource_rating);
  279. return 0;
  280. }
  281. static int sh_tmu_setup(struct sh_tmu_priv *p, struct platform_device *pdev)
  282. {
  283. struct sh_timer_config *cfg = pdev->dev.platform_data;
  284. struct resource *res;
  285. int irq, ret;
  286. ret = -ENXIO;
  287. memset(p, 0, sizeof(*p));
  288. p->pdev = pdev;
  289. if (!cfg) {
  290. dev_err(&p->pdev->dev, "missing platform data\n");
  291. goto err0;
  292. }
  293. platform_set_drvdata(pdev, p);
  294. res = platform_get_resource(p->pdev, IORESOURCE_MEM, 0);
  295. if (!res) {
  296. dev_err(&p->pdev->dev, "failed to get I/O memory\n");
  297. goto err0;
  298. }
  299. irq = platform_get_irq(p->pdev, 0);
  300. if (irq < 0) {
  301. dev_err(&p->pdev->dev, "failed to get irq\n");
  302. goto err0;
  303. }
  304. /* map memory, let mapbase point to our channel */
  305. p->mapbase = ioremap_nocache(res->start, resource_size(res));
  306. if (p->mapbase == NULL) {
  307. dev_err(&p->pdev->dev, "failed to remap I/O memory\n");
  308. goto err0;
  309. }
  310. /* setup data for setup_irq() (too early for request_irq()) */
  311. p->irqaction.name = dev_name(&p->pdev->dev);
  312. p->irqaction.handler = sh_tmu_interrupt;
  313. p->irqaction.dev_id = p;
  314. p->irqaction.irq = irq;
  315. p->irqaction.flags = IRQF_DISABLED | IRQF_TIMER | \
  316. IRQF_IRQPOLL | IRQF_NOBALANCING;
  317. /* get hold of clock */
  318. p->clk = clk_get(&p->pdev->dev, "tmu_fck");
  319. if (IS_ERR(p->clk)) {
  320. dev_err(&p->pdev->dev, "cannot get clock\n");
  321. ret = PTR_ERR(p->clk);
  322. goto err1;
  323. }
  324. return sh_tmu_register(p, (char *)dev_name(&p->pdev->dev),
  325. cfg->clockevent_rating,
  326. cfg->clocksource_rating);
  327. err1:
  328. iounmap(p->mapbase);
  329. err0:
  330. return ret;
  331. }
  332. static int __devinit sh_tmu_probe(struct platform_device *pdev)
  333. {
  334. struct sh_tmu_priv *p = platform_get_drvdata(pdev);
  335. int ret;
  336. if (p) {
  337. dev_info(&pdev->dev, "kept as earlytimer\n");
  338. return 0;
  339. }
  340. p = kmalloc(sizeof(*p), GFP_KERNEL);
  341. if (p == NULL) {
  342. dev_err(&pdev->dev, "failed to allocate driver data\n");
  343. return -ENOMEM;
  344. }
  345. ret = sh_tmu_setup(p, pdev);
  346. if (ret) {
  347. kfree(p);
  348. platform_set_drvdata(pdev, NULL);
  349. }
  350. return ret;
  351. }
  352. static int __devexit sh_tmu_remove(struct platform_device *pdev)
  353. {
  354. return -EBUSY; /* cannot unregister clockevent and clocksource */
  355. }
  356. static struct platform_driver sh_tmu_device_driver = {
  357. .probe = sh_tmu_probe,
  358. .remove = __devexit_p(sh_tmu_remove),
  359. .driver = {
  360. .name = "sh_tmu",
  361. }
  362. };
  363. static int __init sh_tmu_init(void)
  364. {
  365. return platform_driver_register(&sh_tmu_device_driver);
  366. }
  367. static void __exit sh_tmu_exit(void)
  368. {
  369. platform_driver_unregister(&sh_tmu_device_driver);
  370. }
  371. early_platform_init("earlytimer", &sh_tmu_device_driver);
  372. module_init(sh_tmu_init);
  373. module_exit(sh_tmu_exit);
  374. MODULE_AUTHOR("Magnus Damm");
  375. MODULE_DESCRIPTION("SuperH TMU Timer Driver");
  376. MODULE_LICENSE("GPL v2");