random.c 39 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350
  1. /*
  2. * random.c -- A strong random number generator
  3. *
  4. * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
  5. *
  6. * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
  7. * rights reserved.
  8. *
  9. * Redistribution and use in source and binary forms, with or without
  10. * modification, are permitted provided that the following conditions
  11. * are met:
  12. * 1. Redistributions of source code must retain the above copyright
  13. * notice, and the entire permission notice in its entirety,
  14. * including the disclaimer of warranties.
  15. * 2. Redistributions in binary form must reproduce the above copyright
  16. * notice, this list of conditions and the following disclaimer in the
  17. * documentation and/or other materials provided with the distribution.
  18. * 3. The name of the author may not be used to endorse or promote
  19. * products derived from this software without specific prior
  20. * written permission.
  21. *
  22. * ALTERNATIVELY, this product may be distributed under the terms of
  23. * the GNU General Public License, in which case the provisions of the GPL are
  24. * required INSTEAD OF the above restrictions. (This clause is
  25. * necessary due to a potential bad interaction between the GPL and
  26. * the restrictions contained in a BSD-style copyright.)
  27. *
  28. * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
  29. * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  30. * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
  31. * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
  32. * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  33. * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
  34. * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
  35. * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  36. * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  37. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
  38. * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
  39. * DAMAGE.
  40. */
  41. /*
  42. * (now, with legal B.S. out of the way.....)
  43. *
  44. * This routine gathers environmental noise from device drivers, etc.,
  45. * and returns good random numbers, suitable for cryptographic use.
  46. * Besides the obvious cryptographic uses, these numbers are also good
  47. * for seeding TCP sequence numbers, and other places where it is
  48. * desirable to have numbers which are not only random, but hard to
  49. * predict by an attacker.
  50. *
  51. * Theory of operation
  52. * ===================
  53. *
  54. * Computers are very predictable devices. Hence it is extremely hard
  55. * to produce truly random numbers on a computer --- as opposed to
  56. * pseudo-random numbers, which can easily generated by using a
  57. * algorithm. Unfortunately, it is very easy for attackers to guess
  58. * the sequence of pseudo-random number generators, and for some
  59. * applications this is not acceptable. So instead, we must try to
  60. * gather "environmental noise" from the computer's environment, which
  61. * must be hard for outside attackers to observe, and use that to
  62. * generate random numbers. In a Unix environment, this is best done
  63. * from inside the kernel.
  64. *
  65. * Sources of randomness from the environment include inter-keyboard
  66. * timings, inter-interrupt timings from some interrupts, and other
  67. * events which are both (a) non-deterministic and (b) hard for an
  68. * outside observer to measure. Randomness from these sources are
  69. * added to an "entropy pool", which is mixed using a CRC-like function.
  70. * This is not cryptographically strong, but it is adequate assuming
  71. * the randomness is not chosen maliciously, and it is fast enough that
  72. * the overhead of doing it on every interrupt is very reasonable.
  73. * As random bytes are mixed into the entropy pool, the routines keep
  74. * an *estimate* of how many bits of randomness have been stored into
  75. * the random number generator's internal state.
  76. *
  77. * When random bytes are desired, they are obtained by taking the SHA
  78. * hash of the contents of the "entropy pool". The SHA hash avoids
  79. * exposing the internal state of the entropy pool. It is believed to
  80. * be computationally infeasible to derive any useful information
  81. * about the input of SHA from its output. Even if it is possible to
  82. * analyze SHA in some clever way, as long as the amount of data
  83. * returned from the generator is less than the inherent entropy in
  84. * the pool, the output data is totally unpredictable. For this
  85. * reason, the routine decreases its internal estimate of how many
  86. * bits of "true randomness" are contained in the entropy pool as it
  87. * outputs random numbers.
  88. *
  89. * If this estimate goes to zero, the routine can still generate
  90. * random numbers; however, an attacker may (at least in theory) be
  91. * able to infer the future output of the generator from prior
  92. * outputs. This requires successful cryptanalysis of SHA, which is
  93. * not believed to be feasible, but there is a remote possibility.
  94. * Nonetheless, these numbers should be useful for the vast majority
  95. * of purposes.
  96. *
  97. * Exported interfaces ---- output
  98. * ===============================
  99. *
  100. * There are three exported interfaces; the first is one designed to
  101. * be used from within the kernel:
  102. *
  103. * void get_random_bytes(void *buf, int nbytes);
  104. *
  105. * This interface will return the requested number of random bytes,
  106. * and place it in the requested buffer.
  107. *
  108. * The two other interfaces are two character devices /dev/random and
  109. * /dev/urandom. /dev/random is suitable for use when very high
  110. * quality randomness is desired (for example, for key generation or
  111. * one-time pads), as it will only return a maximum of the number of
  112. * bits of randomness (as estimated by the random number generator)
  113. * contained in the entropy pool.
  114. *
  115. * The /dev/urandom device does not have this limit, and will return
  116. * as many bytes as are requested. As more and more random bytes are
  117. * requested without giving time for the entropy pool to recharge,
  118. * this will result in random numbers that are merely cryptographically
  119. * strong. For many applications, however, this is acceptable.
  120. *
  121. * Exported interfaces ---- input
  122. * ==============================
  123. *
  124. * The current exported interfaces for gathering environmental noise
  125. * from the devices are:
  126. *
  127. * void add_input_randomness(unsigned int type, unsigned int code,
  128. * unsigned int value);
  129. * void add_interrupt_randomness(int irq);
  130. * void add_disk_randomness(struct gendisk *disk);
  131. *
  132. * add_input_randomness() uses the input layer interrupt timing, as well as
  133. * the event type information from the hardware.
  134. *
  135. * add_interrupt_randomness() uses the inter-interrupt timing as random
  136. * inputs to the entropy pool. Note that not all interrupts are good
  137. * sources of randomness! For example, the timer interrupts is not a
  138. * good choice, because the periodicity of the interrupts is too
  139. * regular, and hence predictable to an attacker. Network Interface
  140. * Controller interrupts are a better measure, since the timing of the
  141. * NIC interrupts are more unpredictable.
  142. *
  143. * add_disk_randomness() uses what amounts to the seek time of block
  144. * layer request events, on a per-disk_devt basis, as input to the
  145. * entropy pool. Note that high-speed solid state drives with very low
  146. * seek times do not make for good sources of entropy, as their seek
  147. * times are usually fairly consistent.
  148. *
  149. * All of these routines try to estimate how many bits of randomness a
  150. * particular randomness source. They do this by keeping track of the
  151. * first and second order deltas of the event timings.
  152. *
  153. * Ensuring unpredictability at system startup
  154. * ============================================
  155. *
  156. * When any operating system starts up, it will go through a sequence
  157. * of actions that are fairly predictable by an adversary, especially
  158. * if the start-up does not involve interaction with a human operator.
  159. * This reduces the actual number of bits of unpredictability in the
  160. * entropy pool below the value in entropy_count. In order to
  161. * counteract this effect, it helps to carry information in the
  162. * entropy pool across shut-downs and start-ups. To do this, put the
  163. * following lines an appropriate script which is run during the boot
  164. * sequence:
  165. *
  166. * echo "Initializing random number generator..."
  167. * random_seed=/var/run/random-seed
  168. * # Carry a random seed from start-up to start-up
  169. * # Load and then save the whole entropy pool
  170. * if [ -f $random_seed ]; then
  171. * cat $random_seed >/dev/urandom
  172. * else
  173. * touch $random_seed
  174. * fi
  175. * chmod 600 $random_seed
  176. * dd if=/dev/urandom of=$random_seed count=1 bs=512
  177. *
  178. * and the following lines in an appropriate script which is run as
  179. * the system is shutdown:
  180. *
  181. * # Carry a random seed from shut-down to start-up
  182. * # Save the whole entropy pool
  183. * echo "Saving random seed..."
  184. * random_seed=/var/run/random-seed
  185. * touch $random_seed
  186. * chmod 600 $random_seed
  187. * dd if=/dev/urandom of=$random_seed count=1 bs=512
  188. *
  189. * For example, on most modern systems using the System V init
  190. * scripts, such code fragments would be found in
  191. * /etc/rc.d/init.d/random. On older Linux systems, the correct script
  192. * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
  193. *
  194. * Effectively, these commands cause the contents of the entropy pool
  195. * to be saved at shut-down time and reloaded into the entropy pool at
  196. * start-up. (The 'dd' in the addition to the bootup script is to
  197. * make sure that /etc/random-seed is different for every start-up,
  198. * even if the system crashes without executing rc.0.) Even with
  199. * complete knowledge of the start-up activities, predicting the state
  200. * of the entropy pool requires knowledge of the previous history of
  201. * the system.
  202. *
  203. * Configuring the /dev/random driver under Linux
  204. * ==============================================
  205. *
  206. * The /dev/random driver under Linux uses minor numbers 8 and 9 of
  207. * the /dev/mem major number (#1). So if your system does not have
  208. * /dev/random and /dev/urandom created already, they can be created
  209. * by using the commands:
  210. *
  211. * mknod /dev/random c 1 8
  212. * mknod /dev/urandom c 1 9
  213. *
  214. * Acknowledgements:
  215. * =================
  216. *
  217. * Ideas for constructing this random number generator were derived
  218. * from Pretty Good Privacy's random number generator, and from private
  219. * discussions with Phil Karn. Colin Plumb provided a faster random
  220. * number generator, which speed up the mixing function of the entropy
  221. * pool, taken from PGPfone. Dale Worley has also contributed many
  222. * useful ideas and suggestions to improve this driver.
  223. *
  224. * Any flaws in the design are solely my responsibility, and should
  225. * not be attributed to the Phil, Colin, or any of authors of PGP.
  226. *
  227. * Further background information on this topic may be obtained from
  228. * RFC 1750, "Randomness Recommendations for Security", by Donald
  229. * Eastlake, Steve Crocker, and Jeff Schiller.
  230. */
  231. #include <linux/utsname.h>
  232. #include <linux/module.h>
  233. #include <linux/kernel.h>
  234. #include <linux/major.h>
  235. #include <linux/string.h>
  236. #include <linux/fcntl.h>
  237. #include <linux/slab.h>
  238. #include <linux/random.h>
  239. #include <linux/poll.h>
  240. #include <linux/init.h>
  241. #include <linux/fs.h>
  242. #include <linux/genhd.h>
  243. #include <linux/interrupt.h>
  244. #include <linux/mm.h>
  245. #include <linux/spinlock.h>
  246. #include <linux/percpu.h>
  247. #include <linux/cryptohash.h>
  248. #include <linux/fips.h>
  249. #ifdef CONFIG_GENERIC_HARDIRQS
  250. # include <linux/irq.h>
  251. #endif
  252. #include <asm/processor.h>
  253. #include <asm/uaccess.h>
  254. #include <asm/irq.h>
  255. #include <asm/io.h>
  256. /*
  257. * Configuration information
  258. */
  259. #define INPUT_POOL_WORDS 128
  260. #define OUTPUT_POOL_WORDS 32
  261. #define SEC_XFER_SIZE 512
  262. #define EXTRACT_SIZE 10
  263. /*
  264. * The minimum number of bits of entropy before we wake up a read on
  265. * /dev/random. Should be enough to do a significant reseed.
  266. */
  267. static int random_read_wakeup_thresh = 64;
  268. /*
  269. * If the entropy count falls under this number of bits, then we
  270. * should wake up processes which are selecting or polling on write
  271. * access to /dev/random.
  272. */
  273. static int random_write_wakeup_thresh = 128;
  274. /*
  275. * When the input pool goes over trickle_thresh, start dropping most
  276. * samples to avoid wasting CPU time and reduce lock contention.
  277. */
  278. static int trickle_thresh __read_mostly = INPUT_POOL_WORDS * 28;
  279. static DEFINE_PER_CPU(int, trickle_count);
  280. /*
  281. * A pool of size .poolwords is stirred with a primitive polynomial
  282. * of degree .poolwords over GF(2). The taps for various sizes are
  283. * defined below. They are chosen to be evenly spaced (minimum RMS
  284. * distance from evenly spaced; the numbers in the comments are a
  285. * scaled squared error sum) except for the last tap, which is 1 to
  286. * get the twisting happening as fast as possible.
  287. */
  288. static struct poolinfo {
  289. int poolwords;
  290. int tap1, tap2, tap3, tap4, tap5;
  291. } poolinfo_table[] = {
  292. /* x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 -- 105 */
  293. { 128, 103, 76, 51, 25, 1 },
  294. /* x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 -- 15 */
  295. { 32, 26, 20, 14, 7, 1 },
  296. #if 0
  297. /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
  298. { 2048, 1638, 1231, 819, 411, 1 },
  299. /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
  300. { 1024, 817, 615, 412, 204, 1 },
  301. /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
  302. { 1024, 819, 616, 410, 207, 2 },
  303. /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
  304. { 512, 411, 308, 208, 104, 1 },
  305. /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
  306. { 512, 409, 307, 206, 102, 2 },
  307. /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
  308. { 512, 409, 309, 205, 103, 2 },
  309. /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
  310. { 256, 205, 155, 101, 52, 1 },
  311. /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
  312. { 128, 103, 78, 51, 27, 2 },
  313. /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
  314. { 64, 52, 39, 26, 14, 1 },
  315. #endif
  316. };
  317. #define POOLBITS poolwords*32
  318. #define POOLBYTES poolwords*4
  319. /*
  320. * For the purposes of better mixing, we use the CRC-32 polynomial as
  321. * well to make a twisted Generalized Feedback Shift Reigster
  322. *
  323. * (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR generators. ACM
  324. * Transactions on Modeling and Computer Simulation 2(3):179-194.
  325. * Also see M. Matsumoto & Y. Kurita, 1994. Twisted GFSR generators
  326. * II. ACM Transactions on Mdeling and Computer Simulation 4:254-266)
  327. *
  328. * Thanks to Colin Plumb for suggesting this.
  329. *
  330. * We have not analyzed the resultant polynomial to prove it primitive;
  331. * in fact it almost certainly isn't. Nonetheless, the irreducible factors
  332. * of a random large-degree polynomial over GF(2) are more than large enough
  333. * that periodicity is not a concern.
  334. *
  335. * The input hash is much less sensitive than the output hash. All
  336. * that we want of it is that it be a good non-cryptographic hash;
  337. * i.e. it not produce collisions when fed "random" data of the sort
  338. * we expect to see. As long as the pool state differs for different
  339. * inputs, we have preserved the input entropy and done a good job.
  340. * The fact that an intelligent attacker can construct inputs that
  341. * will produce controlled alterations to the pool's state is not
  342. * important because we don't consider such inputs to contribute any
  343. * randomness. The only property we need with respect to them is that
  344. * the attacker can't increase his/her knowledge of the pool's state.
  345. * Since all additions are reversible (knowing the final state and the
  346. * input, you can reconstruct the initial state), if an attacker has
  347. * any uncertainty about the initial state, he/she can only shuffle
  348. * that uncertainty about, but never cause any collisions (which would
  349. * decrease the uncertainty).
  350. *
  351. * The chosen system lets the state of the pool be (essentially) the input
  352. * modulo the generator polymnomial. Now, for random primitive polynomials,
  353. * this is a universal class of hash functions, meaning that the chance
  354. * of a collision is limited by the attacker's knowledge of the generator
  355. * polynomail, so if it is chosen at random, an attacker can never force
  356. * a collision. Here, we use a fixed polynomial, but we *can* assume that
  357. * ###--> it is unknown to the processes generating the input entropy. <-###
  358. * Because of this important property, this is a good, collision-resistant
  359. * hash; hash collisions will occur no more often than chance.
  360. */
  361. /*
  362. * Static global variables
  363. */
  364. static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
  365. static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
  366. static struct fasync_struct *fasync;
  367. #if 0
  368. static int debug;
  369. module_param(debug, bool, 0644);
  370. #define DEBUG_ENT(fmt, arg...) do { \
  371. if (debug) \
  372. printk(KERN_DEBUG "random %04d %04d %04d: " \
  373. fmt,\
  374. input_pool.entropy_count,\
  375. blocking_pool.entropy_count,\
  376. nonblocking_pool.entropy_count,\
  377. ## arg); } while (0)
  378. #else
  379. #define DEBUG_ENT(fmt, arg...) do {} while (0)
  380. #endif
  381. /**********************************************************************
  382. *
  383. * OS independent entropy store. Here are the functions which handle
  384. * storing entropy in an entropy pool.
  385. *
  386. **********************************************************************/
  387. struct entropy_store;
  388. struct entropy_store {
  389. /* read-only data: */
  390. struct poolinfo *poolinfo;
  391. __u32 *pool;
  392. const char *name;
  393. struct entropy_store *pull;
  394. int limit;
  395. /* read-write data: */
  396. spinlock_t lock;
  397. unsigned add_ptr;
  398. int entropy_count;
  399. int input_rotate;
  400. __u8 last_data[EXTRACT_SIZE];
  401. };
  402. static __u32 input_pool_data[INPUT_POOL_WORDS];
  403. static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
  404. static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS];
  405. static struct entropy_store input_pool = {
  406. .poolinfo = &poolinfo_table[0],
  407. .name = "input",
  408. .limit = 1,
  409. .lock = __SPIN_LOCK_UNLOCKED(&input_pool.lock),
  410. .pool = input_pool_data
  411. };
  412. static struct entropy_store blocking_pool = {
  413. .poolinfo = &poolinfo_table[1],
  414. .name = "blocking",
  415. .limit = 1,
  416. .pull = &input_pool,
  417. .lock = __SPIN_LOCK_UNLOCKED(&blocking_pool.lock),
  418. .pool = blocking_pool_data
  419. };
  420. static struct entropy_store nonblocking_pool = {
  421. .poolinfo = &poolinfo_table[1],
  422. .name = "nonblocking",
  423. .pull = &input_pool,
  424. .lock = __SPIN_LOCK_UNLOCKED(&nonblocking_pool.lock),
  425. .pool = nonblocking_pool_data
  426. };
  427. /*
  428. * This function adds bytes into the entropy "pool". It does not
  429. * update the entropy estimate. The caller should call
  430. * credit_entropy_bits if this is appropriate.
  431. *
  432. * The pool is stirred with a primitive polynomial of the appropriate
  433. * degree, and then twisted. We twist by three bits at a time because
  434. * it's cheap to do so and helps slightly in the expected case where
  435. * the entropy is concentrated in the low-order bits.
  436. */
  437. static void mix_pool_bytes_extract(struct entropy_store *r, const void *in,
  438. int nbytes, __u8 out[64])
  439. {
  440. static __u32 const twist_table[8] = {
  441. 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
  442. 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
  443. unsigned long i, j, tap1, tap2, tap3, tap4, tap5;
  444. int input_rotate;
  445. int wordmask = r->poolinfo->poolwords - 1;
  446. const char *bytes = in;
  447. __u32 w;
  448. unsigned long flags;
  449. /* Taps are constant, so we can load them without holding r->lock. */
  450. tap1 = r->poolinfo->tap1;
  451. tap2 = r->poolinfo->tap2;
  452. tap3 = r->poolinfo->tap3;
  453. tap4 = r->poolinfo->tap4;
  454. tap5 = r->poolinfo->tap5;
  455. spin_lock_irqsave(&r->lock, flags);
  456. input_rotate = r->input_rotate;
  457. i = r->add_ptr;
  458. /* mix one byte at a time to simplify size handling and churn faster */
  459. while (nbytes--) {
  460. w = rol32(*bytes++, input_rotate & 31);
  461. i = (i - 1) & wordmask;
  462. /* XOR in the various taps */
  463. w ^= r->pool[i];
  464. w ^= r->pool[(i + tap1) & wordmask];
  465. w ^= r->pool[(i + tap2) & wordmask];
  466. w ^= r->pool[(i + tap3) & wordmask];
  467. w ^= r->pool[(i + tap4) & wordmask];
  468. w ^= r->pool[(i + tap5) & wordmask];
  469. /* Mix the result back in with a twist */
  470. r->pool[i] = (w >> 3) ^ twist_table[w & 7];
  471. /*
  472. * Normally, we add 7 bits of rotation to the pool.
  473. * At the beginning of the pool, add an extra 7 bits
  474. * rotation, so that successive passes spread the
  475. * input bits across the pool evenly.
  476. */
  477. input_rotate += i ? 7 : 14;
  478. }
  479. r->input_rotate = input_rotate;
  480. r->add_ptr = i;
  481. if (out)
  482. for (j = 0; j < 16; j++)
  483. ((__u32 *)out)[j] = r->pool[(i - j) & wordmask];
  484. spin_unlock_irqrestore(&r->lock, flags);
  485. }
  486. static void mix_pool_bytes(struct entropy_store *r, const void *in, int bytes)
  487. {
  488. mix_pool_bytes_extract(r, in, bytes, NULL);
  489. }
  490. /*
  491. * Credit (or debit) the entropy store with n bits of entropy
  492. */
  493. static void credit_entropy_bits(struct entropy_store *r, int nbits)
  494. {
  495. unsigned long flags;
  496. int entropy_count;
  497. if (!nbits)
  498. return;
  499. spin_lock_irqsave(&r->lock, flags);
  500. DEBUG_ENT("added %d entropy credits to %s\n", nbits, r->name);
  501. entropy_count = r->entropy_count;
  502. entropy_count += nbits;
  503. if (entropy_count < 0) {
  504. DEBUG_ENT("negative entropy/overflow\n");
  505. entropy_count = 0;
  506. } else if (entropy_count > r->poolinfo->POOLBITS)
  507. entropy_count = r->poolinfo->POOLBITS;
  508. r->entropy_count = entropy_count;
  509. /* should we wake readers? */
  510. if (r == &input_pool && entropy_count >= random_read_wakeup_thresh) {
  511. wake_up_interruptible(&random_read_wait);
  512. kill_fasync(&fasync, SIGIO, POLL_IN);
  513. }
  514. spin_unlock_irqrestore(&r->lock, flags);
  515. }
  516. /*********************************************************************
  517. *
  518. * Entropy input management
  519. *
  520. *********************************************************************/
  521. /* There is one of these per entropy source */
  522. struct timer_rand_state {
  523. cycles_t last_time;
  524. long last_delta, last_delta2;
  525. unsigned dont_count_entropy:1;
  526. };
  527. #ifndef CONFIG_GENERIC_HARDIRQS
  528. static struct timer_rand_state *irq_timer_state[NR_IRQS];
  529. static struct timer_rand_state *get_timer_rand_state(unsigned int irq)
  530. {
  531. return irq_timer_state[irq];
  532. }
  533. static void set_timer_rand_state(unsigned int irq,
  534. struct timer_rand_state *state)
  535. {
  536. irq_timer_state[irq] = state;
  537. }
  538. #else
  539. static struct timer_rand_state *get_timer_rand_state(unsigned int irq)
  540. {
  541. struct irq_desc *desc;
  542. desc = irq_to_desc(irq);
  543. return desc->timer_rand_state;
  544. }
  545. static void set_timer_rand_state(unsigned int irq,
  546. struct timer_rand_state *state)
  547. {
  548. struct irq_desc *desc;
  549. desc = irq_to_desc(irq);
  550. desc->timer_rand_state = state;
  551. }
  552. #endif
  553. static struct timer_rand_state input_timer_state;
  554. /*
  555. * This function adds entropy to the entropy "pool" by using timing
  556. * delays. It uses the timer_rand_state structure to make an estimate
  557. * of how many bits of entropy this call has added to the pool.
  558. *
  559. * The number "num" is also added to the pool - it should somehow describe
  560. * the type of event which just happened. This is currently 0-255 for
  561. * keyboard scan codes, and 256 upwards for interrupts.
  562. *
  563. */
  564. static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
  565. {
  566. struct {
  567. cycles_t cycles;
  568. long jiffies;
  569. unsigned num;
  570. } sample;
  571. long delta, delta2, delta3;
  572. preempt_disable();
  573. /* if over the trickle threshold, use only 1 in 4096 samples */
  574. if (input_pool.entropy_count > trickle_thresh &&
  575. ((__this_cpu_inc_return(trickle_count) - 1) & 0xfff))
  576. goto out;
  577. sample.jiffies = jiffies;
  578. sample.cycles = get_cycles();
  579. sample.num = num;
  580. mix_pool_bytes(&input_pool, &sample, sizeof(sample));
  581. /*
  582. * Calculate number of bits of randomness we probably added.
  583. * We take into account the first, second and third-order deltas
  584. * in order to make our estimate.
  585. */
  586. if (!state->dont_count_entropy) {
  587. delta = sample.jiffies - state->last_time;
  588. state->last_time = sample.jiffies;
  589. delta2 = delta - state->last_delta;
  590. state->last_delta = delta;
  591. delta3 = delta2 - state->last_delta2;
  592. state->last_delta2 = delta2;
  593. if (delta < 0)
  594. delta = -delta;
  595. if (delta2 < 0)
  596. delta2 = -delta2;
  597. if (delta3 < 0)
  598. delta3 = -delta3;
  599. if (delta > delta2)
  600. delta = delta2;
  601. if (delta > delta3)
  602. delta = delta3;
  603. /*
  604. * delta is now minimum absolute delta.
  605. * Round down by 1 bit on general principles,
  606. * and limit entropy entimate to 12 bits.
  607. */
  608. credit_entropy_bits(&input_pool,
  609. min_t(int, fls(delta>>1), 11));
  610. }
  611. out:
  612. preempt_enable();
  613. }
  614. void add_input_randomness(unsigned int type, unsigned int code,
  615. unsigned int value)
  616. {
  617. static unsigned char last_value;
  618. /* ignore autorepeat and the like */
  619. if (value == last_value)
  620. return;
  621. DEBUG_ENT("input event\n");
  622. last_value = value;
  623. add_timer_randomness(&input_timer_state,
  624. (type << 4) ^ code ^ (code >> 4) ^ value);
  625. }
  626. EXPORT_SYMBOL_GPL(add_input_randomness);
  627. void add_interrupt_randomness(int irq)
  628. {
  629. struct timer_rand_state *state;
  630. state = get_timer_rand_state(irq);
  631. if (state == NULL)
  632. return;
  633. DEBUG_ENT("irq event %d\n", irq);
  634. add_timer_randomness(state, 0x100 + irq);
  635. }
  636. #ifdef CONFIG_BLOCK
  637. void add_disk_randomness(struct gendisk *disk)
  638. {
  639. if (!disk || !disk->random)
  640. return;
  641. /* first major is 1, so we get >= 0x200 here */
  642. DEBUG_ENT("disk event %d:%d\n",
  643. MAJOR(disk_devt(disk)), MINOR(disk_devt(disk)));
  644. add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
  645. }
  646. #endif
  647. /*********************************************************************
  648. *
  649. * Entropy extraction routines
  650. *
  651. *********************************************************************/
  652. static ssize_t extract_entropy(struct entropy_store *r, void *buf,
  653. size_t nbytes, int min, int rsvd);
  654. /*
  655. * This utility inline function is responsible for transferring entropy
  656. * from the primary pool to the secondary extraction pool. We make
  657. * sure we pull enough for a 'catastrophic reseed'.
  658. */
  659. static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
  660. {
  661. __u32 tmp[OUTPUT_POOL_WORDS];
  662. if (r->pull && r->entropy_count < nbytes * 8 &&
  663. r->entropy_count < r->poolinfo->POOLBITS) {
  664. /* If we're limited, always leave two wakeup worth's BITS */
  665. int rsvd = r->limit ? 0 : random_read_wakeup_thresh/4;
  666. int bytes = nbytes;
  667. /* pull at least as many as BYTES as wakeup BITS */
  668. bytes = max_t(int, bytes, random_read_wakeup_thresh / 8);
  669. /* but never more than the buffer size */
  670. bytes = min_t(int, bytes, sizeof(tmp));
  671. DEBUG_ENT("going to reseed %s with %d bits "
  672. "(%d of %d requested)\n",
  673. r->name, bytes * 8, nbytes * 8, r->entropy_count);
  674. bytes = extract_entropy(r->pull, tmp, bytes,
  675. random_read_wakeup_thresh / 8, rsvd);
  676. mix_pool_bytes(r, tmp, bytes);
  677. credit_entropy_bits(r, bytes*8);
  678. }
  679. }
  680. /*
  681. * These functions extracts randomness from the "entropy pool", and
  682. * returns it in a buffer.
  683. *
  684. * The min parameter specifies the minimum amount we can pull before
  685. * failing to avoid races that defeat catastrophic reseeding while the
  686. * reserved parameter indicates how much entropy we must leave in the
  687. * pool after each pull to avoid starving other readers.
  688. *
  689. * Note: extract_entropy() assumes that .poolwords is a multiple of 16 words.
  690. */
  691. static size_t account(struct entropy_store *r, size_t nbytes, int min,
  692. int reserved)
  693. {
  694. unsigned long flags;
  695. /* Hold lock while accounting */
  696. spin_lock_irqsave(&r->lock, flags);
  697. BUG_ON(r->entropy_count > r->poolinfo->POOLBITS);
  698. DEBUG_ENT("trying to extract %d bits from %s\n",
  699. nbytes * 8, r->name);
  700. /* Can we pull enough? */
  701. if (r->entropy_count / 8 < min + reserved) {
  702. nbytes = 0;
  703. } else {
  704. /* If limited, never pull more than available */
  705. if (r->limit && nbytes + reserved >= r->entropy_count / 8)
  706. nbytes = r->entropy_count/8 - reserved;
  707. if (r->entropy_count / 8 >= nbytes + reserved)
  708. r->entropy_count -= nbytes*8;
  709. else
  710. r->entropy_count = reserved;
  711. if (r->entropy_count < random_write_wakeup_thresh) {
  712. wake_up_interruptible(&random_write_wait);
  713. kill_fasync(&fasync, SIGIO, POLL_OUT);
  714. }
  715. }
  716. DEBUG_ENT("debiting %d entropy credits from %s%s\n",
  717. nbytes * 8, r->name, r->limit ? "" : " (unlimited)");
  718. spin_unlock_irqrestore(&r->lock, flags);
  719. return nbytes;
  720. }
  721. static void extract_buf(struct entropy_store *r, __u8 *out)
  722. {
  723. int i;
  724. __u32 hash[5], workspace[SHA_WORKSPACE_WORDS];
  725. __u8 extract[64];
  726. /* Generate a hash across the pool, 16 words (512 bits) at a time */
  727. sha_init(hash);
  728. for (i = 0; i < r->poolinfo->poolwords; i += 16)
  729. sha_transform(hash, (__u8 *)(r->pool + i), workspace);
  730. /*
  731. * We mix the hash back into the pool to prevent backtracking
  732. * attacks (where the attacker knows the state of the pool
  733. * plus the current outputs, and attempts to find previous
  734. * ouputs), unless the hash function can be inverted. By
  735. * mixing at least a SHA1 worth of hash data back, we make
  736. * brute-forcing the feedback as hard as brute-forcing the
  737. * hash.
  738. */
  739. mix_pool_bytes_extract(r, hash, sizeof(hash), extract);
  740. /*
  741. * To avoid duplicates, we atomically extract a portion of the
  742. * pool while mixing, and hash one final time.
  743. */
  744. sha_transform(hash, extract, workspace);
  745. memset(extract, 0, sizeof(extract));
  746. memset(workspace, 0, sizeof(workspace));
  747. /*
  748. * In case the hash function has some recognizable output
  749. * pattern, we fold it in half. Thus, we always feed back
  750. * twice as much data as we output.
  751. */
  752. hash[0] ^= hash[3];
  753. hash[1] ^= hash[4];
  754. hash[2] ^= rol32(hash[2], 16);
  755. memcpy(out, hash, EXTRACT_SIZE);
  756. memset(hash, 0, sizeof(hash));
  757. }
  758. static ssize_t extract_entropy(struct entropy_store *r, void *buf,
  759. size_t nbytes, int min, int reserved)
  760. {
  761. ssize_t ret = 0, i;
  762. __u8 tmp[EXTRACT_SIZE];
  763. unsigned long flags;
  764. xfer_secondary_pool(r, nbytes);
  765. nbytes = account(r, nbytes, min, reserved);
  766. while (nbytes) {
  767. extract_buf(r, tmp);
  768. if (fips_enabled) {
  769. spin_lock_irqsave(&r->lock, flags);
  770. if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
  771. panic("Hardware RNG duplicated output!\n");
  772. memcpy(r->last_data, tmp, EXTRACT_SIZE);
  773. spin_unlock_irqrestore(&r->lock, flags);
  774. }
  775. i = min_t(int, nbytes, EXTRACT_SIZE);
  776. memcpy(buf, tmp, i);
  777. nbytes -= i;
  778. buf += i;
  779. ret += i;
  780. }
  781. /* Wipe data just returned from memory */
  782. memset(tmp, 0, sizeof(tmp));
  783. return ret;
  784. }
  785. static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
  786. size_t nbytes)
  787. {
  788. ssize_t ret = 0, i;
  789. __u8 tmp[EXTRACT_SIZE];
  790. xfer_secondary_pool(r, nbytes);
  791. nbytes = account(r, nbytes, 0, 0);
  792. while (nbytes) {
  793. if (need_resched()) {
  794. if (signal_pending(current)) {
  795. if (ret == 0)
  796. ret = -ERESTARTSYS;
  797. break;
  798. }
  799. schedule();
  800. }
  801. extract_buf(r, tmp);
  802. i = min_t(int, nbytes, EXTRACT_SIZE);
  803. if (copy_to_user(buf, tmp, i)) {
  804. ret = -EFAULT;
  805. break;
  806. }
  807. nbytes -= i;
  808. buf += i;
  809. ret += i;
  810. }
  811. /* Wipe data just returned from memory */
  812. memset(tmp, 0, sizeof(tmp));
  813. return ret;
  814. }
  815. /*
  816. * This function is the exported kernel interface. It returns some
  817. * number of good random numbers, suitable for seeding TCP sequence
  818. * numbers, etc.
  819. */
  820. void get_random_bytes(void *buf, int nbytes)
  821. {
  822. extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0);
  823. }
  824. EXPORT_SYMBOL(get_random_bytes);
  825. /*
  826. * init_std_data - initialize pool with system data
  827. *
  828. * @r: pool to initialize
  829. *
  830. * This function clears the pool's entropy count and mixes some system
  831. * data into the pool to prepare it for use. The pool is not cleared
  832. * as that can only decrease the entropy in the pool.
  833. */
  834. static void init_std_data(struct entropy_store *r)
  835. {
  836. ktime_t now;
  837. unsigned long flags;
  838. spin_lock_irqsave(&r->lock, flags);
  839. r->entropy_count = 0;
  840. spin_unlock_irqrestore(&r->lock, flags);
  841. now = ktime_get_real();
  842. mix_pool_bytes(r, &now, sizeof(now));
  843. mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
  844. }
  845. static int rand_initialize(void)
  846. {
  847. init_std_data(&input_pool);
  848. init_std_data(&blocking_pool);
  849. init_std_data(&nonblocking_pool);
  850. return 0;
  851. }
  852. module_init(rand_initialize);
  853. void rand_initialize_irq(int irq)
  854. {
  855. struct timer_rand_state *state;
  856. state = get_timer_rand_state(irq);
  857. if (state)
  858. return;
  859. /*
  860. * If kzalloc returns null, we just won't use that entropy
  861. * source.
  862. */
  863. state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
  864. if (state)
  865. set_timer_rand_state(irq, state);
  866. }
  867. #ifdef CONFIG_BLOCK
  868. void rand_initialize_disk(struct gendisk *disk)
  869. {
  870. struct timer_rand_state *state;
  871. /*
  872. * If kzalloc returns null, we just won't use that entropy
  873. * source.
  874. */
  875. state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
  876. if (state)
  877. disk->random = state;
  878. }
  879. #endif
  880. static ssize_t
  881. random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
  882. {
  883. ssize_t n, retval = 0, count = 0;
  884. if (nbytes == 0)
  885. return 0;
  886. while (nbytes > 0) {
  887. n = nbytes;
  888. if (n > SEC_XFER_SIZE)
  889. n = SEC_XFER_SIZE;
  890. DEBUG_ENT("reading %d bits\n", n*8);
  891. n = extract_entropy_user(&blocking_pool, buf, n);
  892. DEBUG_ENT("read got %d bits (%d still needed)\n",
  893. n*8, (nbytes-n)*8);
  894. if (n == 0) {
  895. if (file->f_flags & O_NONBLOCK) {
  896. retval = -EAGAIN;
  897. break;
  898. }
  899. DEBUG_ENT("sleeping?\n");
  900. wait_event_interruptible(random_read_wait,
  901. input_pool.entropy_count >=
  902. random_read_wakeup_thresh);
  903. DEBUG_ENT("awake\n");
  904. if (signal_pending(current)) {
  905. retval = -ERESTARTSYS;
  906. break;
  907. }
  908. continue;
  909. }
  910. if (n < 0) {
  911. retval = n;
  912. break;
  913. }
  914. count += n;
  915. buf += n;
  916. nbytes -= n;
  917. break; /* This break makes the device work */
  918. /* like a named pipe */
  919. }
  920. return (count ? count : retval);
  921. }
  922. static ssize_t
  923. urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
  924. {
  925. return extract_entropy_user(&nonblocking_pool, buf, nbytes);
  926. }
  927. static unsigned int
  928. random_poll(struct file *file, poll_table * wait)
  929. {
  930. unsigned int mask;
  931. poll_wait(file, &random_read_wait, wait);
  932. poll_wait(file, &random_write_wait, wait);
  933. mask = 0;
  934. if (input_pool.entropy_count >= random_read_wakeup_thresh)
  935. mask |= POLLIN | POLLRDNORM;
  936. if (input_pool.entropy_count < random_write_wakeup_thresh)
  937. mask |= POLLOUT | POLLWRNORM;
  938. return mask;
  939. }
  940. static int
  941. write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
  942. {
  943. size_t bytes;
  944. __u32 buf[16];
  945. const char __user *p = buffer;
  946. while (count > 0) {
  947. bytes = min(count, sizeof(buf));
  948. if (copy_from_user(&buf, p, bytes))
  949. return -EFAULT;
  950. count -= bytes;
  951. p += bytes;
  952. mix_pool_bytes(r, buf, bytes);
  953. cond_resched();
  954. }
  955. return 0;
  956. }
  957. static ssize_t random_write(struct file *file, const char __user *buffer,
  958. size_t count, loff_t *ppos)
  959. {
  960. size_t ret;
  961. ret = write_pool(&blocking_pool, buffer, count);
  962. if (ret)
  963. return ret;
  964. ret = write_pool(&nonblocking_pool, buffer, count);
  965. if (ret)
  966. return ret;
  967. return (ssize_t)count;
  968. }
  969. static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
  970. {
  971. int size, ent_count;
  972. int __user *p = (int __user *)arg;
  973. int retval;
  974. switch (cmd) {
  975. case RNDGETENTCNT:
  976. /* inherently racy, no point locking */
  977. if (put_user(input_pool.entropy_count, p))
  978. return -EFAULT;
  979. return 0;
  980. case RNDADDTOENTCNT:
  981. if (!capable(CAP_SYS_ADMIN))
  982. return -EPERM;
  983. if (get_user(ent_count, p))
  984. return -EFAULT;
  985. credit_entropy_bits(&input_pool, ent_count);
  986. return 0;
  987. case RNDADDENTROPY:
  988. if (!capable(CAP_SYS_ADMIN))
  989. return -EPERM;
  990. if (get_user(ent_count, p++))
  991. return -EFAULT;
  992. if (ent_count < 0)
  993. return -EINVAL;
  994. if (get_user(size, p++))
  995. return -EFAULT;
  996. retval = write_pool(&input_pool, (const char __user *)p,
  997. size);
  998. if (retval < 0)
  999. return retval;
  1000. credit_entropy_bits(&input_pool, ent_count);
  1001. return 0;
  1002. case RNDZAPENTCNT:
  1003. case RNDCLEARPOOL:
  1004. /* Clear the entropy pool counters. */
  1005. if (!capable(CAP_SYS_ADMIN))
  1006. return -EPERM;
  1007. rand_initialize();
  1008. return 0;
  1009. default:
  1010. return -EINVAL;
  1011. }
  1012. }
  1013. static int random_fasync(int fd, struct file *filp, int on)
  1014. {
  1015. return fasync_helper(fd, filp, on, &fasync);
  1016. }
  1017. const struct file_operations random_fops = {
  1018. .read = random_read,
  1019. .write = random_write,
  1020. .poll = random_poll,
  1021. .unlocked_ioctl = random_ioctl,
  1022. .fasync = random_fasync,
  1023. .llseek = noop_llseek,
  1024. };
  1025. const struct file_operations urandom_fops = {
  1026. .read = urandom_read,
  1027. .write = random_write,
  1028. .unlocked_ioctl = random_ioctl,
  1029. .fasync = random_fasync,
  1030. .llseek = noop_llseek,
  1031. };
  1032. /***************************************************************
  1033. * Random UUID interface
  1034. *
  1035. * Used here for a Boot ID, but can be useful for other kernel
  1036. * drivers.
  1037. ***************************************************************/
  1038. /*
  1039. * Generate random UUID
  1040. */
  1041. void generate_random_uuid(unsigned char uuid_out[16])
  1042. {
  1043. get_random_bytes(uuid_out, 16);
  1044. /* Set UUID version to 4 --- truly random generation */
  1045. uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
  1046. /* Set the UUID variant to DCE */
  1047. uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
  1048. }
  1049. EXPORT_SYMBOL(generate_random_uuid);
  1050. /********************************************************************
  1051. *
  1052. * Sysctl interface
  1053. *
  1054. ********************************************************************/
  1055. #ifdef CONFIG_SYSCTL
  1056. #include <linux/sysctl.h>
  1057. static int min_read_thresh = 8, min_write_thresh;
  1058. static int max_read_thresh = INPUT_POOL_WORDS * 32;
  1059. static int max_write_thresh = INPUT_POOL_WORDS * 32;
  1060. static char sysctl_bootid[16];
  1061. /*
  1062. * These functions is used to return both the bootid UUID, and random
  1063. * UUID. The difference is in whether table->data is NULL; if it is,
  1064. * then a new UUID is generated and returned to the user.
  1065. *
  1066. * If the user accesses this via the proc interface, it will be returned
  1067. * as an ASCII string in the standard UUID format. If accesses via the
  1068. * sysctl system call, it is returned as 16 bytes of binary data.
  1069. */
  1070. static int proc_do_uuid(ctl_table *table, int write,
  1071. void __user *buffer, size_t *lenp, loff_t *ppos)
  1072. {
  1073. ctl_table fake_table;
  1074. unsigned char buf[64], tmp_uuid[16], *uuid;
  1075. uuid = table->data;
  1076. if (!uuid) {
  1077. uuid = tmp_uuid;
  1078. uuid[8] = 0;
  1079. }
  1080. if (uuid[8] == 0)
  1081. generate_random_uuid(uuid);
  1082. sprintf(buf, "%pU", uuid);
  1083. fake_table.data = buf;
  1084. fake_table.maxlen = sizeof(buf);
  1085. return proc_dostring(&fake_table, write, buffer, lenp, ppos);
  1086. }
  1087. static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
  1088. ctl_table random_table[] = {
  1089. {
  1090. .procname = "poolsize",
  1091. .data = &sysctl_poolsize,
  1092. .maxlen = sizeof(int),
  1093. .mode = 0444,
  1094. .proc_handler = proc_dointvec,
  1095. },
  1096. {
  1097. .procname = "entropy_avail",
  1098. .maxlen = sizeof(int),
  1099. .mode = 0444,
  1100. .proc_handler = proc_dointvec,
  1101. .data = &input_pool.entropy_count,
  1102. },
  1103. {
  1104. .procname = "read_wakeup_threshold",
  1105. .data = &random_read_wakeup_thresh,
  1106. .maxlen = sizeof(int),
  1107. .mode = 0644,
  1108. .proc_handler = proc_dointvec_minmax,
  1109. .extra1 = &min_read_thresh,
  1110. .extra2 = &max_read_thresh,
  1111. },
  1112. {
  1113. .procname = "write_wakeup_threshold",
  1114. .data = &random_write_wakeup_thresh,
  1115. .maxlen = sizeof(int),
  1116. .mode = 0644,
  1117. .proc_handler = proc_dointvec_minmax,
  1118. .extra1 = &min_write_thresh,
  1119. .extra2 = &max_write_thresh,
  1120. },
  1121. {
  1122. .procname = "boot_id",
  1123. .data = &sysctl_bootid,
  1124. .maxlen = 16,
  1125. .mode = 0444,
  1126. .proc_handler = proc_do_uuid,
  1127. },
  1128. {
  1129. .procname = "uuid",
  1130. .maxlen = 16,
  1131. .mode = 0444,
  1132. .proc_handler = proc_do_uuid,
  1133. },
  1134. { }
  1135. };
  1136. #endif /* CONFIG_SYSCTL */
  1137. static u32 random_int_secret[MD5_MESSAGE_BYTES / 4] ____cacheline_aligned;
  1138. static int __init random_int_secret_init(void)
  1139. {
  1140. get_random_bytes(random_int_secret, sizeof(random_int_secret));
  1141. return 0;
  1142. }
  1143. late_initcall(random_int_secret_init);
  1144. /*
  1145. * Get a random word for internal kernel use only. Similar to urandom but
  1146. * with the goal of minimal entropy pool depletion. As a result, the random
  1147. * value is not cryptographically secure but for several uses the cost of
  1148. * depleting entropy is too high
  1149. */
  1150. DEFINE_PER_CPU(__u32 [MD5_DIGEST_WORDS], get_random_int_hash);
  1151. unsigned int get_random_int(void)
  1152. {
  1153. __u32 *hash = get_cpu_var(get_random_int_hash);
  1154. unsigned int ret;
  1155. hash[0] += current->pid + jiffies + get_cycles();
  1156. md5_transform(hash, random_int_secret);
  1157. ret = hash[0];
  1158. put_cpu_var(get_random_int_hash);
  1159. return ret;
  1160. }
  1161. /*
  1162. * randomize_range() returns a start address such that
  1163. *
  1164. * [...... <range> .....]
  1165. * start end
  1166. *
  1167. * a <range> with size "len" starting at the return value is inside in the
  1168. * area defined by [start, end], but is otherwise randomized.
  1169. */
  1170. unsigned long
  1171. randomize_range(unsigned long start, unsigned long end, unsigned long len)
  1172. {
  1173. unsigned long range = end - len - start;
  1174. if (end <= start + len)
  1175. return 0;
  1176. return PAGE_ALIGN(get_random_int() % range + start);
  1177. }