cciss.c 147 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332
  1. /*
  2. * Disk Array driver for HP Smart Array controllers.
  3. * (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation; version 2 of the License.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  12. * General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the Free Software
  16. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
  17. * 02111-1307, USA.
  18. *
  19. * Questions/Comments/Bugfixes to iss_storagedev@hp.com
  20. *
  21. */
  22. #include <linux/module.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/types.h>
  25. #include <linux/pci.h>
  26. #include <linux/kernel.h>
  27. #include <linux/slab.h>
  28. #include <linux/delay.h>
  29. #include <linux/major.h>
  30. #include <linux/fs.h>
  31. #include <linux/bio.h>
  32. #include <linux/blkpg.h>
  33. #include <linux/timer.h>
  34. #include <linux/proc_fs.h>
  35. #include <linux/seq_file.h>
  36. #include <linux/init.h>
  37. #include <linux/jiffies.h>
  38. #include <linux/hdreg.h>
  39. #include <linux/spinlock.h>
  40. #include <linux/compat.h>
  41. #include <linux/mutex.h>
  42. #include <asm/uaccess.h>
  43. #include <asm/io.h>
  44. #include <linux/dma-mapping.h>
  45. #include <linux/blkdev.h>
  46. #include <linux/genhd.h>
  47. #include <linux/completion.h>
  48. #include <scsi/scsi.h>
  49. #include <scsi/sg.h>
  50. #include <scsi/scsi_ioctl.h>
  51. #include <linux/cdrom.h>
  52. #include <linux/scatterlist.h>
  53. #include <linux/kthread.h>
  54. #define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
  55. #define DRIVER_NAME "HP CISS Driver (v 3.6.26)"
  56. #define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 26)
  57. /* Embedded module documentation macros - see modules.h */
  58. MODULE_AUTHOR("Hewlett-Packard Company");
  59. MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
  60. MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
  61. MODULE_VERSION("3.6.26");
  62. MODULE_LICENSE("GPL");
  63. static int cciss_tape_cmds = 6;
  64. module_param(cciss_tape_cmds, int, 0644);
  65. MODULE_PARM_DESC(cciss_tape_cmds,
  66. "number of commands to allocate for tape devices (default: 6)");
  67. static DEFINE_MUTEX(cciss_mutex);
  68. static struct proc_dir_entry *proc_cciss;
  69. #include "cciss_cmd.h"
  70. #include "cciss.h"
  71. #include <linux/cciss_ioctl.h>
  72. /* define the PCI info for the cards we can control */
  73. static const struct pci_device_id cciss_pci_device_id[] = {
  74. {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS, 0x0E11, 0x4070},
  75. {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080},
  76. {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082},
  77. {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083},
  78. {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091},
  79. {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A},
  80. {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B},
  81. {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C},
  82. {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D},
  83. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSA, 0x103C, 0x3225},
  84. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3223},
  85. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3234},
  86. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3235},
  87. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3211},
  88. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3212},
  89. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3213},
  90. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3214},
  91. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3215},
  92. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3237},
  93. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x323D},
  94. {0,}
  95. };
  96. MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
  97. /* board_id = Subsystem Device ID & Vendor ID
  98. * product = Marketing Name for the board
  99. * access = Address of the struct of function pointers
  100. */
  101. static struct board_type products[] = {
  102. {0x40700E11, "Smart Array 5300", &SA5_access},
  103. {0x40800E11, "Smart Array 5i", &SA5B_access},
  104. {0x40820E11, "Smart Array 532", &SA5B_access},
  105. {0x40830E11, "Smart Array 5312", &SA5B_access},
  106. {0x409A0E11, "Smart Array 641", &SA5_access},
  107. {0x409B0E11, "Smart Array 642", &SA5_access},
  108. {0x409C0E11, "Smart Array 6400", &SA5_access},
  109. {0x409D0E11, "Smart Array 6400 EM", &SA5_access},
  110. {0x40910E11, "Smart Array 6i", &SA5_access},
  111. {0x3225103C, "Smart Array P600", &SA5_access},
  112. {0x3223103C, "Smart Array P800", &SA5_access},
  113. {0x3234103C, "Smart Array P400", &SA5_access},
  114. {0x3235103C, "Smart Array P400i", &SA5_access},
  115. {0x3211103C, "Smart Array E200i", &SA5_access},
  116. {0x3212103C, "Smart Array E200", &SA5_access},
  117. {0x3213103C, "Smart Array E200i", &SA5_access},
  118. {0x3214103C, "Smart Array E200i", &SA5_access},
  119. {0x3215103C, "Smart Array E200i", &SA5_access},
  120. {0x3237103C, "Smart Array E500", &SA5_access},
  121. {0x3223103C, "Smart Array P800", &SA5_access},
  122. {0x3234103C, "Smart Array P400", &SA5_access},
  123. {0x323D103C, "Smart Array P700m", &SA5_access},
  124. };
  125. /* How long to wait (in milliseconds) for board to go into simple mode */
  126. #define MAX_CONFIG_WAIT 30000
  127. #define MAX_IOCTL_CONFIG_WAIT 1000
  128. /*define how many times we will try a command because of bus resets */
  129. #define MAX_CMD_RETRIES 3
  130. #define MAX_CTLR 32
  131. /* Originally cciss driver only supports 8 major numbers */
  132. #define MAX_CTLR_ORIG 8
  133. static ctlr_info_t *hba[MAX_CTLR];
  134. static struct task_struct *cciss_scan_thread;
  135. static DEFINE_MUTEX(scan_mutex);
  136. static LIST_HEAD(scan_q);
  137. static void do_cciss_request(struct request_queue *q);
  138. static irqreturn_t do_cciss_intx(int irq, void *dev_id);
  139. static irqreturn_t do_cciss_msix_intr(int irq, void *dev_id);
  140. static int cciss_open(struct block_device *bdev, fmode_t mode);
  141. static int cciss_unlocked_open(struct block_device *bdev, fmode_t mode);
  142. static int cciss_release(struct gendisk *disk, fmode_t mode);
  143. static int do_ioctl(struct block_device *bdev, fmode_t mode,
  144. unsigned int cmd, unsigned long arg);
  145. static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
  146. unsigned int cmd, unsigned long arg);
  147. static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo);
  148. static int cciss_revalidate(struct gendisk *disk);
  149. static int rebuild_lun_table(ctlr_info_t *h, int first_time, int via_ioctl);
  150. static int deregister_disk(ctlr_info_t *h, int drv_index,
  151. int clear_all, int via_ioctl);
  152. static void cciss_read_capacity(ctlr_info_t *h, int logvol,
  153. sector_t *total_size, unsigned int *block_size);
  154. static void cciss_read_capacity_16(ctlr_info_t *h, int logvol,
  155. sector_t *total_size, unsigned int *block_size);
  156. static void cciss_geometry_inquiry(ctlr_info_t *h, int logvol,
  157. sector_t total_size,
  158. unsigned int block_size, InquiryData_struct *inq_buff,
  159. drive_info_struct *drv);
  160. static void __devinit cciss_interrupt_mode(ctlr_info_t *);
  161. static void start_io(ctlr_info_t *h);
  162. static int sendcmd_withirq(ctlr_info_t *h, __u8 cmd, void *buff, size_t size,
  163. __u8 page_code, unsigned char scsi3addr[],
  164. int cmd_type);
  165. static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
  166. int attempt_retry);
  167. static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c);
  168. static int add_to_scan_list(struct ctlr_info *h);
  169. static int scan_thread(void *data);
  170. static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c);
  171. static void cciss_hba_release(struct device *dev);
  172. static void cciss_device_release(struct device *dev);
  173. static void cciss_free_gendisk(ctlr_info_t *h, int drv_index);
  174. static void cciss_free_drive_info(ctlr_info_t *h, int drv_index);
  175. static inline u32 next_command(ctlr_info_t *h);
  176. static int __devinit cciss_find_cfg_addrs(struct pci_dev *pdev,
  177. void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
  178. u64 *cfg_offset);
  179. static int __devinit cciss_pci_find_memory_BAR(struct pci_dev *pdev,
  180. unsigned long *memory_bar);
  181. static inline u32 cciss_tag_discard_error_bits(ctlr_info_t *h, u32 tag);
  182. static __devinit int write_driver_ver_to_cfgtable(
  183. CfgTable_struct __iomem *cfgtable);
  184. /* performant mode helper functions */
  185. static void calc_bucket_map(int *bucket, int num_buckets, int nsgs,
  186. int *bucket_map);
  187. static void cciss_put_controller_into_performant_mode(ctlr_info_t *h);
  188. #ifdef CONFIG_PROC_FS
  189. static void cciss_procinit(ctlr_info_t *h);
  190. #else
  191. static void cciss_procinit(ctlr_info_t *h)
  192. {
  193. }
  194. #endif /* CONFIG_PROC_FS */
  195. #ifdef CONFIG_COMPAT
  196. static int cciss_compat_ioctl(struct block_device *, fmode_t,
  197. unsigned, unsigned long);
  198. #endif
  199. static const struct block_device_operations cciss_fops = {
  200. .owner = THIS_MODULE,
  201. .open = cciss_unlocked_open,
  202. .release = cciss_release,
  203. .ioctl = do_ioctl,
  204. .getgeo = cciss_getgeo,
  205. #ifdef CONFIG_COMPAT
  206. .compat_ioctl = cciss_compat_ioctl,
  207. #endif
  208. .revalidate_disk = cciss_revalidate,
  209. };
  210. /* set_performant_mode: Modify the tag for cciss performant
  211. * set bit 0 for pull model, bits 3-1 for block fetch
  212. * register number
  213. */
  214. static void set_performant_mode(ctlr_info_t *h, CommandList_struct *c)
  215. {
  216. if (likely(h->transMethod & CFGTBL_Trans_Performant))
  217. c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
  218. }
  219. /*
  220. * Enqueuing and dequeuing functions for cmdlists.
  221. */
  222. static inline void addQ(struct list_head *list, CommandList_struct *c)
  223. {
  224. list_add_tail(&c->list, list);
  225. }
  226. static inline void removeQ(CommandList_struct *c)
  227. {
  228. /*
  229. * After kexec/dump some commands might still
  230. * be in flight, which the firmware will try
  231. * to complete. Resetting the firmware doesn't work
  232. * with old fw revisions, so we have to mark
  233. * them off as 'stale' to prevent the driver from
  234. * falling over.
  235. */
  236. if (WARN_ON(list_empty(&c->list))) {
  237. c->cmd_type = CMD_MSG_STALE;
  238. return;
  239. }
  240. list_del_init(&c->list);
  241. }
  242. static void enqueue_cmd_and_start_io(ctlr_info_t *h,
  243. CommandList_struct *c)
  244. {
  245. unsigned long flags;
  246. set_performant_mode(h, c);
  247. spin_lock_irqsave(&h->lock, flags);
  248. addQ(&h->reqQ, c);
  249. h->Qdepth++;
  250. if (h->Qdepth > h->maxQsinceinit)
  251. h->maxQsinceinit = h->Qdepth;
  252. start_io(h);
  253. spin_unlock_irqrestore(&h->lock, flags);
  254. }
  255. static void cciss_free_sg_chain_blocks(SGDescriptor_struct **cmd_sg_list,
  256. int nr_cmds)
  257. {
  258. int i;
  259. if (!cmd_sg_list)
  260. return;
  261. for (i = 0; i < nr_cmds; i++) {
  262. kfree(cmd_sg_list[i]);
  263. cmd_sg_list[i] = NULL;
  264. }
  265. kfree(cmd_sg_list);
  266. }
  267. static SGDescriptor_struct **cciss_allocate_sg_chain_blocks(
  268. ctlr_info_t *h, int chainsize, int nr_cmds)
  269. {
  270. int j;
  271. SGDescriptor_struct **cmd_sg_list;
  272. if (chainsize <= 0)
  273. return NULL;
  274. cmd_sg_list = kmalloc(sizeof(*cmd_sg_list) * nr_cmds, GFP_KERNEL);
  275. if (!cmd_sg_list)
  276. return NULL;
  277. /* Build up chain blocks for each command */
  278. for (j = 0; j < nr_cmds; j++) {
  279. /* Need a block of chainsized s/g elements. */
  280. cmd_sg_list[j] = kmalloc((chainsize *
  281. sizeof(*cmd_sg_list[j])), GFP_KERNEL);
  282. if (!cmd_sg_list[j]) {
  283. dev_err(&h->pdev->dev, "Cannot get memory "
  284. "for s/g chains.\n");
  285. goto clean;
  286. }
  287. }
  288. return cmd_sg_list;
  289. clean:
  290. cciss_free_sg_chain_blocks(cmd_sg_list, nr_cmds);
  291. return NULL;
  292. }
  293. static void cciss_unmap_sg_chain_block(ctlr_info_t *h, CommandList_struct *c)
  294. {
  295. SGDescriptor_struct *chain_sg;
  296. u64bit temp64;
  297. if (c->Header.SGTotal <= h->max_cmd_sgentries)
  298. return;
  299. chain_sg = &c->SG[h->max_cmd_sgentries - 1];
  300. temp64.val32.lower = chain_sg->Addr.lower;
  301. temp64.val32.upper = chain_sg->Addr.upper;
  302. pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
  303. }
  304. static void cciss_map_sg_chain_block(ctlr_info_t *h, CommandList_struct *c,
  305. SGDescriptor_struct *chain_block, int len)
  306. {
  307. SGDescriptor_struct *chain_sg;
  308. u64bit temp64;
  309. chain_sg = &c->SG[h->max_cmd_sgentries - 1];
  310. chain_sg->Ext = CCISS_SG_CHAIN;
  311. chain_sg->Len = len;
  312. temp64.val = pci_map_single(h->pdev, chain_block, len,
  313. PCI_DMA_TODEVICE);
  314. chain_sg->Addr.lower = temp64.val32.lower;
  315. chain_sg->Addr.upper = temp64.val32.upper;
  316. }
  317. #include "cciss_scsi.c" /* For SCSI tape support */
  318. static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
  319. "UNKNOWN"
  320. };
  321. #define RAID_UNKNOWN (ARRAY_SIZE(raid_label)-1)
  322. #ifdef CONFIG_PROC_FS
  323. /*
  324. * Report information about this controller.
  325. */
  326. #define ENG_GIG 1000000000
  327. #define ENG_GIG_FACTOR (ENG_GIG/512)
  328. #define ENGAGE_SCSI "engage scsi"
  329. static void cciss_seq_show_header(struct seq_file *seq)
  330. {
  331. ctlr_info_t *h = seq->private;
  332. seq_printf(seq, "%s: HP %s Controller\n"
  333. "Board ID: 0x%08lx\n"
  334. "Firmware Version: %c%c%c%c\n"
  335. "IRQ: %d\n"
  336. "Logical drives: %d\n"
  337. "Current Q depth: %d\n"
  338. "Current # commands on controller: %d\n"
  339. "Max Q depth since init: %d\n"
  340. "Max # commands on controller since init: %d\n"
  341. "Max SG entries since init: %d\n",
  342. h->devname,
  343. h->product_name,
  344. (unsigned long)h->board_id,
  345. h->firm_ver[0], h->firm_ver[1], h->firm_ver[2],
  346. h->firm_ver[3], (unsigned int)h->intr[PERF_MODE_INT],
  347. h->num_luns,
  348. h->Qdepth, h->commands_outstanding,
  349. h->maxQsinceinit, h->max_outstanding, h->maxSG);
  350. #ifdef CONFIG_CISS_SCSI_TAPE
  351. cciss_seq_tape_report(seq, h);
  352. #endif /* CONFIG_CISS_SCSI_TAPE */
  353. }
  354. static void *cciss_seq_start(struct seq_file *seq, loff_t *pos)
  355. {
  356. ctlr_info_t *h = seq->private;
  357. unsigned long flags;
  358. /* prevent displaying bogus info during configuration
  359. * or deconfiguration of a logical volume
  360. */
  361. spin_lock_irqsave(&h->lock, flags);
  362. if (h->busy_configuring) {
  363. spin_unlock_irqrestore(&h->lock, flags);
  364. return ERR_PTR(-EBUSY);
  365. }
  366. h->busy_configuring = 1;
  367. spin_unlock_irqrestore(&h->lock, flags);
  368. if (*pos == 0)
  369. cciss_seq_show_header(seq);
  370. return pos;
  371. }
  372. static int cciss_seq_show(struct seq_file *seq, void *v)
  373. {
  374. sector_t vol_sz, vol_sz_frac;
  375. ctlr_info_t *h = seq->private;
  376. unsigned ctlr = h->ctlr;
  377. loff_t *pos = v;
  378. drive_info_struct *drv = h->drv[*pos];
  379. if (*pos > h->highest_lun)
  380. return 0;
  381. if (drv == NULL) /* it's possible for h->drv[] to have holes. */
  382. return 0;
  383. if (drv->heads == 0)
  384. return 0;
  385. vol_sz = drv->nr_blocks;
  386. vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
  387. vol_sz_frac *= 100;
  388. sector_div(vol_sz_frac, ENG_GIG_FACTOR);
  389. if (drv->raid_level < 0 || drv->raid_level > RAID_UNKNOWN)
  390. drv->raid_level = RAID_UNKNOWN;
  391. seq_printf(seq, "cciss/c%dd%d:"
  392. "\t%4u.%02uGB\tRAID %s\n",
  393. ctlr, (int) *pos, (int)vol_sz, (int)vol_sz_frac,
  394. raid_label[drv->raid_level]);
  395. return 0;
  396. }
  397. static void *cciss_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  398. {
  399. ctlr_info_t *h = seq->private;
  400. if (*pos > h->highest_lun)
  401. return NULL;
  402. *pos += 1;
  403. return pos;
  404. }
  405. static void cciss_seq_stop(struct seq_file *seq, void *v)
  406. {
  407. ctlr_info_t *h = seq->private;
  408. /* Only reset h->busy_configuring if we succeeded in setting
  409. * it during cciss_seq_start. */
  410. if (v == ERR_PTR(-EBUSY))
  411. return;
  412. h->busy_configuring = 0;
  413. }
  414. static const struct seq_operations cciss_seq_ops = {
  415. .start = cciss_seq_start,
  416. .show = cciss_seq_show,
  417. .next = cciss_seq_next,
  418. .stop = cciss_seq_stop,
  419. };
  420. static int cciss_seq_open(struct inode *inode, struct file *file)
  421. {
  422. int ret = seq_open(file, &cciss_seq_ops);
  423. struct seq_file *seq = file->private_data;
  424. if (!ret)
  425. seq->private = PDE(inode)->data;
  426. return ret;
  427. }
  428. static ssize_t
  429. cciss_proc_write(struct file *file, const char __user *buf,
  430. size_t length, loff_t *ppos)
  431. {
  432. int err;
  433. char *buffer;
  434. #ifndef CONFIG_CISS_SCSI_TAPE
  435. return -EINVAL;
  436. #endif
  437. if (!buf || length > PAGE_SIZE - 1)
  438. return -EINVAL;
  439. buffer = (char *)__get_free_page(GFP_KERNEL);
  440. if (!buffer)
  441. return -ENOMEM;
  442. err = -EFAULT;
  443. if (copy_from_user(buffer, buf, length))
  444. goto out;
  445. buffer[length] = '\0';
  446. #ifdef CONFIG_CISS_SCSI_TAPE
  447. if (strncmp(ENGAGE_SCSI, buffer, sizeof ENGAGE_SCSI - 1) == 0) {
  448. struct seq_file *seq = file->private_data;
  449. ctlr_info_t *h = seq->private;
  450. err = cciss_engage_scsi(h);
  451. if (err == 0)
  452. err = length;
  453. } else
  454. #endif /* CONFIG_CISS_SCSI_TAPE */
  455. err = -EINVAL;
  456. /* might be nice to have "disengage" too, but it's not
  457. safely possible. (only 1 module use count, lock issues.) */
  458. out:
  459. free_page((unsigned long)buffer);
  460. return err;
  461. }
  462. static const struct file_operations cciss_proc_fops = {
  463. .owner = THIS_MODULE,
  464. .open = cciss_seq_open,
  465. .read = seq_read,
  466. .llseek = seq_lseek,
  467. .release = seq_release,
  468. .write = cciss_proc_write,
  469. };
  470. static void __devinit cciss_procinit(ctlr_info_t *h)
  471. {
  472. struct proc_dir_entry *pde;
  473. if (proc_cciss == NULL)
  474. proc_cciss = proc_mkdir("driver/cciss", NULL);
  475. if (!proc_cciss)
  476. return;
  477. pde = proc_create_data(h->devname, S_IWUSR | S_IRUSR | S_IRGRP |
  478. S_IROTH, proc_cciss,
  479. &cciss_proc_fops, h);
  480. }
  481. #endif /* CONFIG_PROC_FS */
  482. #define MAX_PRODUCT_NAME_LEN 19
  483. #define to_hba(n) container_of(n, struct ctlr_info, dev)
  484. #define to_drv(n) container_of(n, drive_info_struct, dev)
  485. /* List of controllers which cannot be hard reset on kexec with reset_devices */
  486. static u32 unresettable_controller[] = {
  487. 0x324a103C, /* Smart Array P712m */
  488. 0x324b103C, /* SmartArray P711m */
  489. 0x3223103C, /* Smart Array P800 */
  490. 0x3234103C, /* Smart Array P400 */
  491. 0x3235103C, /* Smart Array P400i */
  492. 0x3211103C, /* Smart Array E200i */
  493. 0x3212103C, /* Smart Array E200 */
  494. 0x3213103C, /* Smart Array E200i */
  495. 0x3214103C, /* Smart Array E200i */
  496. 0x3215103C, /* Smart Array E200i */
  497. 0x3237103C, /* Smart Array E500 */
  498. 0x323D103C, /* Smart Array P700m */
  499. 0x409C0E11, /* Smart Array 6400 */
  500. 0x409D0E11, /* Smart Array 6400 EM */
  501. };
  502. /* List of controllers which cannot even be soft reset */
  503. static u32 soft_unresettable_controller[] = {
  504. 0x409C0E11, /* Smart Array 6400 */
  505. 0x409D0E11, /* Smart Array 6400 EM */
  506. };
  507. static int ctlr_is_hard_resettable(u32 board_id)
  508. {
  509. int i;
  510. for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
  511. if (unresettable_controller[i] == board_id)
  512. return 0;
  513. return 1;
  514. }
  515. static int ctlr_is_soft_resettable(u32 board_id)
  516. {
  517. int i;
  518. for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
  519. if (soft_unresettable_controller[i] == board_id)
  520. return 0;
  521. return 1;
  522. }
  523. static int ctlr_is_resettable(u32 board_id)
  524. {
  525. return ctlr_is_hard_resettable(board_id) ||
  526. ctlr_is_soft_resettable(board_id);
  527. }
  528. static ssize_t host_show_resettable(struct device *dev,
  529. struct device_attribute *attr,
  530. char *buf)
  531. {
  532. struct ctlr_info *h = to_hba(dev);
  533. return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
  534. }
  535. static DEVICE_ATTR(resettable, S_IRUGO, host_show_resettable, NULL);
  536. static ssize_t host_store_rescan(struct device *dev,
  537. struct device_attribute *attr,
  538. const char *buf, size_t count)
  539. {
  540. struct ctlr_info *h = to_hba(dev);
  541. add_to_scan_list(h);
  542. wake_up_process(cciss_scan_thread);
  543. wait_for_completion_interruptible(&h->scan_wait);
  544. return count;
  545. }
  546. static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
  547. static ssize_t dev_show_unique_id(struct device *dev,
  548. struct device_attribute *attr,
  549. char *buf)
  550. {
  551. drive_info_struct *drv = to_drv(dev);
  552. struct ctlr_info *h = to_hba(drv->dev.parent);
  553. __u8 sn[16];
  554. unsigned long flags;
  555. int ret = 0;
  556. spin_lock_irqsave(&h->lock, flags);
  557. if (h->busy_configuring)
  558. ret = -EBUSY;
  559. else
  560. memcpy(sn, drv->serial_no, sizeof(sn));
  561. spin_unlock_irqrestore(&h->lock, flags);
  562. if (ret)
  563. return ret;
  564. else
  565. return snprintf(buf, 16 * 2 + 2,
  566. "%02X%02X%02X%02X%02X%02X%02X%02X"
  567. "%02X%02X%02X%02X%02X%02X%02X%02X\n",
  568. sn[0], sn[1], sn[2], sn[3],
  569. sn[4], sn[5], sn[6], sn[7],
  570. sn[8], sn[9], sn[10], sn[11],
  571. sn[12], sn[13], sn[14], sn[15]);
  572. }
  573. static DEVICE_ATTR(unique_id, S_IRUGO, dev_show_unique_id, NULL);
  574. static ssize_t dev_show_vendor(struct device *dev,
  575. struct device_attribute *attr,
  576. char *buf)
  577. {
  578. drive_info_struct *drv = to_drv(dev);
  579. struct ctlr_info *h = to_hba(drv->dev.parent);
  580. char vendor[VENDOR_LEN + 1];
  581. unsigned long flags;
  582. int ret = 0;
  583. spin_lock_irqsave(&h->lock, flags);
  584. if (h->busy_configuring)
  585. ret = -EBUSY;
  586. else
  587. memcpy(vendor, drv->vendor, VENDOR_LEN + 1);
  588. spin_unlock_irqrestore(&h->lock, flags);
  589. if (ret)
  590. return ret;
  591. else
  592. return snprintf(buf, sizeof(vendor) + 1, "%s\n", drv->vendor);
  593. }
  594. static DEVICE_ATTR(vendor, S_IRUGO, dev_show_vendor, NULL);
  595. static ssize_t dev_show_model(struct device *dev,
  596. struct device_attribute *attr,
  597. char *buf)
  598. {
  599. drive_info_struct *drv = to_drv(dev);
  600. struct ctlr_info *h = to_hba(drv->dev.parent);
  601. char model[MODEL_LEN + 1];
  602. unsigned long flags;
  603. int ret = 0;
  604. spin_lock_irqsave(&h->lock, flags);
  605. if (h->busy_configuring)
  606. ret = -EBUSY;
  607. else
  608. memcpy(model, drv->model, MODEL_LEN + 1);
  609. spin_unlock_irqrestore(&h->lock, flags);
  610. if (ret)
  611. return ret;
  612. else
  613. return snprintf(buf, sizeof(model) + 1, "%s\n", drv->model);
  614. }
  615. static DEVICE_ATTR(model, S_IRUGO, dev_show_model, NULL);
  616. static ssize_t dev_show_rev(struct device *dev,
  617. struct device_attribute *attr,
  618. char *buf)
  619. {
  620. drive_info_struct *drv = to_drv(dev);
  621. struct ctlr_info *h = to_hba(drv->dev.parent);
  622. char rev[REV_LEN + 1];
  623. unsigned long flags;
  624. int ret = 0;
  625. spin_lock_irqsave(&h->lock, flags);
  626. if (h->busy_configuring)
  627. ret = -EBUSY;
  628. else
  629. memcpy(rev, drv->rev, REV_LEN + 1);
  630. spin_unlock_irqrestore(&h->lock, flags);
  631. if (ret)
  632. return ret;
  633. else
  634. return snprintf(buf, sizeof(rev) + 1, "%s\n", drv->rev);
  635. }
  636. static DEVICE_ATTR(rev, S_IRUGO, dev_show_rev, NULL);
  637. static ssize_t cciss_show_lunid(struct device *dev,
  638. struct device_attribute *attr, char *buf)
  639. {
  640. drive_info_struct *drv = to_drv(dev);
  641. struct ctlr_info *h = to_hba(drv->dev.parent);
  642. unsigned long flags;
  643. unsigned char lunid[8];
  644. spin_lock_irqsave(&h->lock, flags);
  645. if (h->busy_configuring) {
  646. spin_unlock_irqrestore(&h->lock, flags);
  647. return -EBUSY;
  648. }
  649. if (!drv->heads) {
  650. spin_unlock_irqrestore(&h->lock, flags);
  651. return -ENOTTY;
  652. }
  653. memcpy(lunid, drv->LunID, sizeof(lunid));
  654. spin_unlock_irqrestore(&h->lock, flags);
  655. return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
  656. lunid[0], lunid[1], lunid[2], lunid[3],
  657. lunid[4], lunid[5], lunid[6], lunid[7]);
  658. }
  659. static DEVICE_ATTR(lunid, S_IRUGO, cciss_show_lunid, NULL);
  660. static ssize_t cciss_show_raid_level(struct device *dev,
  661. struct device_attribute *attr, char *buf)
  662. {
  663. drive_info_struct *drv = to_drv(dev);
  664. struct ctlr_info *h = to_hba(drv->dev.parent);
  665. int raid;
  666. unsigned long flags;
  667. spin_lock_irqsave(&h->lock, flags);
  668. if (h->busy_configuring) {
  669. spin_unlock_irqrestore(&h->lock, flags);
  670. return -EBUSY;
  671. }
  672. raid = drv->raid_level;
  673. spin_unlock_irqrestore(&h->lock, flags);
  674. if (raid < 0 || raid > RAID_UNKNOWN)
  675. raid = RAID_UNKNOWN;
  676. return snprintf(buf, strlen(raid_label[raid]) + 7, "RAID %s\n",
  677. raid_label[raid]);
  678. }
  679. static DEVICE_ATTR(raid_level, S_IRUGO, cciss_show_raid_level, NULL);
  680. static ssize_t cciss_show_usage_count(struct device *dev,
  681. struct device_attribute *attr, char *buf)
  682. {
  683. drive_info_struct *drv = to_drv(dev);
  684. struct ctlr_info *h = to_hba(drv->dev.parent);
  685. unsigned long flags;
  686. int count;
  687. spin_lock_irqsave(&h->lock, flags);
  688. if (h->busy_configuring) {
  689. spin_unlock_irqrestore(&h->lock, flags);
  690. return -EBUSY;
  691. }
  692. count = drv->usage_count;
  693. spin_unlock_irqrestore(&h->lock, flags);
  694. return snprintf(buf, 20, "%d\n", count);
  695. }
  696. static DEVICE_ATTR(usage_count, S_IRUGO, cciss_show_usage_count, NULL);
  697. static struct attribute *cciss_host_attrs[] = {
  698. &dev_attr_rescan.attr,
  699. &dev_attr_resettable.attr,
  700. NULL
  701. };
  702. static struct attribute_group cciss_host_attr_group = {
  703. .attrs = cciss_host_attrs,
  704. };
  705. static const struct attribute_group *cciss_host_attr_groups[] = {
  706. &cciss_host_attr_group,
  707. NULL
  708. };
  709. static struct device_type cciss_host_type = {
  710. .name = "cciss_host",
  711. .groups = cciss_host_attr_groups,
  712. .release = cciss_hba_release,
  713. };
  714. static struct attribute *cciss_dev_attrs[] = {
  715. &dev_attr_unique_id.attr,
  716. &dev_attr_model.attr,
  717. &dev_attr_vendor.attr,
  718. &dev_attr_rev.attr,
  719. &dev_attr_lunid.attr,
  720. &dev_attr_raid_level.attr,
  721. &dev_attr_usage_count.attr,
  722. NULL
  723. };
  724. static struct attribute_group cciss_dev_attr_group = {
  725. .attrs = cciss_dev_attrs,
  726. };
  727. static const struct attribute_group *cciss_dev_attr_groups[] = {
  728. &cciss_dev_attr_group,
  729. NULL
  730. };
  731. static struct device_type cciss_dev_type = {
  732. .name = "cciss_device",
  733. .groups = cciss_dev_attr_groups,
  734. .release = cciss_device_release,
  735. };
  736. static struct bus_type cciss_bus_type = {
  737. .name = "cciss",
  738. };
  739. /*
  740. * cciss_hba_release is called when the reference count
  741. * of h->dev goes to zero.
  742. */
  743. static void cciss_hba_release(struct device *dev)
  744. {
  745. /*
  746. * nothing to do, but need this to avoid a warning
  747. * about not having a release handler from lib/kref.c.
  748. */
  749. }
  750. /*
  751. * Initialize sysfs entry for each controller. This sets up and registers
  752. * the 'cciss#' directory for each individual controller under
  753. * /sys/bus/pci/devices/<dev>/.
  754. */
  755. static int cciss_create_hba_sysfs_entry(struct ctlr_info *h)
  756. {
  757. device_initialize(&h->dev);
  758. h->dev.type = &cciss_host_type;
  759. h->dev.bus = &cciss_bus_type;
  760. dev_set_name(&h->dev, "%s", h->devname);
  761. h->dev.parent = &h->pdev->dev;
  762. return device_add(&h->dev);
  763. }
  764. /*
  765. * Remove sysfs entries for an hba.
  766. */
  767. static void cciss_destroy_hba_sysfs_entry(struct ctlr_info *h)
  768. {
  769. device_del(&h->dev);
  770. put_device(&h->dev); /* final put. */
  771. }
  772. /* cciss_device_release is called when the reference count
  773. * of h->drv[x]dev goes to zero.
  774. */
  775. static void cciss_device_release(struct device *dev)
  776. {
  777. drive_info_struct *drv = to_drv(dev);
  778. kfree(drv);
  779. }
  780. /*
  781. * Initialize sysfs for each logical drive. This sets up and registers
  782. * the 'c#d#' directory for each individual logical drive under
  783. * /sys/bus/pci/devices/<dev/ccis#/. We also create a link from
  784. * /sys/block/cciss!c#d# to this entry.
  785. */
  786. static long cciss_create_ld_sysfs_entry(struct ctlr_info *h,
  787. int drv_index)
  788. {
  789. struct device *dev;
  790. if (h->drv[drv_index]->device_initialized)
  791. return 0;
  792. dev = &h->drv[drv_index]->dev;
  793. device_initialize(dev);
  794. dev->type = &cciss_dev_type;
  795. dev->bus = &cciss_bus_type;
  796. dev_set_name(dev, "c%dd%d", h->ctlr, drv_index);
  797. dev->parent = &h->dev;
  798. h->drv[drv_index]->device_initialized = 1;
  799. return device_add(dev);
  800. }
  801. /*
  802. * Remove sysfs entries for a logical drive.
  803. */
  804. static void cciss_destroy_ld_sysfs_entry(struct ctlr_info *h, int drv_index,
  805. int ctlr_exiting)
  806. {
  807. struct device *dev = &h->drv[drv_index]->dev;
  808. /* special case for c*d0, we only destroy it on controller exit */
  809. if (drv_index == 0 && !ctlr_exiting)
  810. return;
  811. device_del(dev);
  812. put_device(dev); /* the "final" put. */
  813. h->drv[drv_index] = NULL;
  814. }
  815. /*
  816. * For operations that cannot sleep, a command block is allocated at init,
  817. * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
  818. * which ones are free or in use.
  819. */
  820. static CommandList_struct *cmd_alloc(ctlr_info_t *h)
  821. {
  822. CommandList_struct *c;
  823. int i;
  824. u64bit temp64;
  825. dma_addr_t cmd_dma_handle, err_dma_handle;
  826. do {
  827. i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
  828. if (i == h->nr_cmds)
  829. return NULL;
  830. } while (test_and_set_bit(i & (BITS_PER_LONG - 1),
  831. h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
  832. c = h->cmd_pool + i;
  833. memset(c, 0, sizeof(CommandList_struct));
  834. cmd_dma_handle = h->cmd_pool_dhandle + i * sizeof(CommandList_struct);
  835. c->err_info = h->errinfo_pool + i;
  836. memset(c->err_info, 0, sizeof(ErrorInfo_struct));
  837. err_dma_handle = h->errinfo_pool_dhandle
  838. + i * sizeof(ErrorInfo_struct);
  839. h->nr_allocs++;
  840. c->cmdindex = i;
  841. INIT_LIST_HEAD(&c->list);
  842. c->busaddr = (__u32) cmd_dma_handle;
  843. temp64.val = (__u64) err_dma_handle;
  844. c->ErrDesc.Addr.lower = temp64.val32.lower;
  845. c->ErrDesc.Addr.upper = temp64.val32.upper;
  846. c->ErrDesc.Len = sizeof(ErrorInfo_struct);
  847. c->ctlr = h->ctlr;
  848. return c;
  849. }
  850. /* allocate a command using pci_alloc_consistent, used for ioctls,
  851. * etc., not for the main i/o path.
  852. */
  853. static CommandList_struct *cmd_special_alloc(ctlr_info_t *h)
  854. {
  855. CommandList_struct *c;
  856. u64bit temp64;
  857. dma_addr_t cmd_dma_handle, err_dma_handle;
  858. c = (CommandList_struct *) pci_alloc_consistent(h->pdev,
  859. sizeof(CommandList_struct), &cmd_dma_handle);
  860. if (c == NULL)
  861. return NULL;
  862. memset(c, 0, sizeof(CommandList_struct));
  863. c->cmdindex = -1;
  864. c->err_info = (ErrorInfo_struct *)
  865. pci_alloc_consistent(h->pdev, sizeof(ErrorInfo_struct),
  866. &err_dma_handle);
  867. if (c->err_info == NULL) {
  868. pci_free_consistent(h->pdev,
  869. sizeof(CommandList_struct), c, cmd_dma_handle);
  870. return NULL;
  871. }
  872. memset(c->err_info, 0, sizeof(ErrorInfo_struct));
  873. INIT_LIST_HEAD(&c->list);
  874. c->busaddr = (__u32) cmd_dma_handle;
  875. temp64.val = (__u64) err_dma_handle;
  876. c->ErrDesc.Addr.lower = temp64.val32.lower;
  877. c->ErrDesc.Addr.upper = temp64.val32.upper;
  878. c->ErrDesc.Len = sizeof(ErrorInfo_struct);
  879. c->ctlr = h->ctlr;
  880. return c;
  881. }
  882. static void cmd_free(ctlr_info_t *h, CommandList_struct *c)
  883. {
  884. int i;
  885. i = c - h->cmd_pool;
  886. clear_bit(i & (BITS_PER_LONG - 1),
  887. h->cmd_pool_bits + (i / BITS_PER_LONG));
  888. h->nr_frees++;
  889. }
  890. static void cmd_special_free(ctlr_info_t *h, CommandList_struct *c)
  891. {
  892. u64bit temp64;
  893. temp64.val32.lower = c->ErrDesc.Addr.lower;
  894. temp64.val32.upper = c->ErrDesc.Addr.upper;
  895. pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
  896. c->err_info, (dma_addr_t) temp64.val);
  897. pci_free_consistent(h->pdev, sizeof(CommandList_struct), c,
  898. (dma_addr_t) cciss_tag_discard_error_bits(h, (u32) c->busaddr));
  899. }
  900. static inline ctlr_info_t *get_host(struct gendisk *disk)
  901. {
  902. return disk->queue->queuedata;
  903. }
  904. static inline drive_info_struct *get_drv(struct gendisk *disk)
  905. {
  906. return disk->private_data;
  907. }
  908. /*
  909. * Open. Make sure the device is really there.
  910. */
  911. static int cciss_open(struct block_device *bdev, fmode_t mode)
  912. {
  913. ctlr_info_t *h = get_host(bdev->bd_disk);
  914. drive_info_struct *drv = get_drv(bdev->bd_disk);
  915. dev_dbg(&h->pdev->dev, "cciss_open %s\n", bdev->bd_disk->disk_name);
  916. if (drv->busy_configuring)
  917. return -EBUSY;
  918. /*
  919. * Root is allowed to open raw volume zero even if it's not configured
  920. * so array config can still work. Root is also allowed to open any
  921. * volume that has a LUN ID, so it can issue IOCTL to reread the
  922. * disk information. I don't think I really like this
  923. * but I'm already using way to many device nodes to claim another one
  924. * for "raw controller".
  925. */
  926. if (drv->heads == 0) {
  927. if (MINOR(bdev->bd_dev) != 0) { /* not node 0? */
  928. /* if not node 0 make sure it is a partition = 0 */
  929. if (MINOR(bdev->bd_dev) & 0x0f) {
  930. return -ENXIO;
  931. /* if it is, make sure we have a LUN ID */
  932. } else if (memcmp(drv->LunID, CTLR_LUNID,
  933. sizeof(drv->LunID))) {
  934. return -ENXIO;
  935. }
  936. }
  937. if (!capable(CAP_SYS_ADMIN))
  938. return -EPERM;
  939. }
  940. drv->usage_count++;
  941. h->usage_count++;
  942. return 0;
  943. }
  944. static int cciss_unlocked_open(struct block_device *bdev, fmode_t mode)
  945. {
  946. int ret;
  947. mutex_lock(&cciss_mutex);
  948. ret = cciss_open(bdev, mode);
  949. mutex_unlock(&cciss_mutex);
  950. return ret;
  951. }
  952. /*
  953. * Close. Sync first.
  954. */
  955. static int cciss_release(struct gendisk *disk, fmode_t mode)
  956. {
  957. ctlr_info_t *h;
  958. drive_info_struct *drv;
  959. mutex_lock(&cciss_mutex);
  960. h = get_host(disk);
  961. drv = get_drv(disk);
  962. dev_dbg(&h->pdev->dev, "cciss_release %s\n", disk->disk_name);
  963. drv->usage_count--;
  964. h->usage_count--;
  965. mutex_unlock(&cciss_mutex);
  966. return 0;
  967. }
  968. static int do_ioctl(struct block_device *bdev, fmode_t mode,
  969. unsigned cmd, unsigned long arg)
  970. {
  971. int ret;
  972. mutex_lock(&cciss_mutex);
  973. ret = cciss_ioctl(bdev, mode, cmd, arg);
  974. mutex_unlock(&cciss_mutex);
  975. return ret;
  976. }
  977. #ifdef CONFIG_COMPAT
  978. static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
  979. unsigned cmd, unsigned long arg);
  980. static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
  981. unsigned cmd, unsigned long arg);
  982. static int cciss_compat_ioctl(struct block_device *bdev, fmode_t mode,
  983. unsigned cmd, unsigned long arg)
  984. {
  985. switch (cmd) {
  986. case CCISS_GETPCIINFO:
  987. case CCISS_GETINTINFO:
  988. case CCISS_SETINTINFO:
  989. case CCISS_GETNODENAME:
  990. case CCISS_SETNODENAME:
  991. case CCISS_GETHEARTBEAT:
  992. case CCISS_GETBUSTYPES:
  993. case CCISS_GETFIRMVER:
  994. case CCISS_GETDRIVVER:
  995. case CCISS_REVALIDVOLS:
  996. case CCISS_DEREGDISK:
  997. case CCISS_REGNEWDISK:
  998. case CCISS_REGNEWD:
  999. case CCISS_RESCANDISK:
  1000. case CCISS_GETLUNINFO:
  1001. return do_ioctl(bdev, mode, cmd, arg);
  1002. case CCISS_PASSTHRU32:
  1003. return cciss_ioctl32_passthru(bdev, mode, cmd, arg);
  1004. case CCISS_BIG_PASSTHRU32:
  1005. return cciss_ioctl32_big_passthru(bdev, mode, cmd, arg);
  1006. default:
  1007. return -ENOIOCTLCMD;
  1008. }
  1009. }
  1010. static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
  1011. unsigned cmd, unsigned long arg)
  1012. {
  1013. IOCTL32_Command_struct __user *arg32 =
  1014. (IOCTL32_Command_struct __user *) arg;
  1015. IOCTL_Command_struct arg64;
  1016. IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
  1017. int err;
  1018. u32 cp;
  1019. err = 0;
  1020. err |=
  1021. copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
  1022. sizeof(arg64.LUN_info));
  1023. err |=
  1024. copy_from_user(&arg64.Request, &arg32->Request,
  1025. sizeof(arg64.Request));
  1026. err |=
  1027. copy_from_user(&arg64.error_info, &arg32->error_info,
  1028. sizeof(arg64.error_info));
  1029. err |= get_user(arg64.buf_size, &arg32->buf_size);
  1030. err |= get_user(cp, &arg32->buf);
  1031. arg64.buf = compat_ptr(cp);
  1032. err |= copy_to_user(p, &arg64, sizeof(arg64));
  1033. if (err)
  1034. return -EFAULT;
  1035. err = do_ioctl(bdev, mode, CCISS_PASSTHRU, (unsigned long)p);
  1036. if (err)
  1037. return err;
  1038. err |=
  1039. copy_in_user(&arg32->error_info, &p->error_info,
  1040. sizeof(arg32->error_info));
  1041. if (err)
  1042. return -EFAULT;
  1043. return err;
  1044. }
  1045. static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
  1046. unsigned cmd, unsigned long arg)
  1047. {
  1048. BIG_IOCTL32_Command_struct __user *arg32 =
  1049. (BIG_IOCTL32_Command_struct __user *) arg;
  1050. BIG_IOCTL_Command_struct arg64;
  1051. BIG_IOCTL_Command_struct __user *p =
  1052. compat_alloc_user_space(sizeof(arg64));
  1053. int err;
  1054. u32 cp;
  1055. memset(&arg64, 0, sizeof(arg64));
  1056. err = 0;
  1057. err |=
  1058. copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
  1059. sizeof(arg64.LUN_info));
  1060. err |=
  1061. copy_from_user(&arg64.Request, &arg32->Request,
  1062. sizeof(arg64.Request));
  1063. err |=
  1064. copy_from_user(&arg64.error_info, &arg32->error_info,
  1065. sizeof(arg64.error_info));
  1066. err |= get_user(arg64.buf_size, &arg32->buf_size);
  1067. err |= get_user(arg64.malloc_size, &arg32->malloc_size);
  1068. err |= get_user(cp, &arg32->buf);
  1069. arg64.buf = compat_ptr(cp);
  1070. err |= copy_to_user(p, &arg64, sizeof(arg64));
  1071. if (err)
  1072. return -EFAULT;
  1073. err = do_ioctl(bdev, mode, CCISS_BIG_PASSTHRU, (unsigned long)p);
  1074. if (err)
  1075. return err;
  1076. err |=
  1077. copy_in_user(&arg32->error_info, &p->error_info,
  1078. sizeof(arg32->error_info));
  1079. if (err)
  1080. return -EFAULT;
  1081. return err;
  1082. }
  1083. #endif
  1084. static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  1085. {
  1086. drive_info_struct *drv = get_drv(bdev->bd_disk);
  1087. if (!drv->cylinders)
  1088. return -ENXIO;
  1089. geo->heads = drv->heads;
  1090. geo->sectors = drv->sectors;
  1091. geo->cylinders = drv->cylinders;
  1092. return 0;
  1093. }
  1094. static void check_ioctl_unit_attention(ctlr_info_t *h, CommandList_struct *c)
  1095. {
  1096. if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
  1097. c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
  1098. (void)check_for_unit_attention(h, c);
  1099. }
  1100. static int cciss_getpciinfo(ctlr_info_t *h, void __user *argp)
  1101. {
  1102. cciss_pci_info_struct pciinfo;
  1103. if (!argp)
  1104. return -EINVAL;
  1105. pciinfo.domain = pci_domain_nr(h->pdev->bus);
  1106. pciinfo.bus = h->pdev->bus->number;
  1107. pciinfo.dev_fn = h->pdev->devfn;
  1108. pciinfo.board_id = h->board_id;
  1109. if (copy_to_user(argp, &pciinfo, sizeof(cciss_pci_info_struct)))
  1110. return -EFAULT;
  1111. return 0;
  1112. }
  1113. static int cciss_getintinfo(ctlr_info_t *h, void __user *argp)
  1114. {
  1115. cciss_coalint_struct intinfo;
  1116. if (!argp)
  1117. return -EINVAL;
  1118. intinfo.delay = readl(&h->cfgtable->HostWrite.CoalIntDelay);
  1119. intinfo.count = readl(&h->cfgtable->HostWrite.CoalIntCount);
  1120. if (copy_to_user
  1121. (argp, &intinfo, sizeof(cciss_coalint_struct)))
  1122. return -EFAULT;
  1123. return 0;
  1124. }
  1125. static int cciss_setintinfo(ctlr_info_t *h, void __user *argp)
  1126. {
  1127. cciss_coalint_struct intinfo;
  1128. unsigned long flags;
  1129. int i;
  1130. if (!argp)
  1131. return -EINVAL;
  1132. if (!capable(CAP_SYS_ADMIN))
  1133. return -EPERM;
  1134. if (copy_from_user(&intinfo, argp, sizeof(intinfo)))
  1135. return -EFAULT;
  1136. if ((intinfo.delay == 0) && (intinfo.count == 0))
  1137. return -EINVAL;
  1138. spin_lock_irqsave(&h->lock, flags);
  1139. /* Update the field, and then ring the doorbell */
  1140. writel(intinfo.delay, &(h->cfgtable->HostWrite.CoalIntDelay));
  1141. writel(intinfo.count, &(h->cfgtable->HostWrite.CoalIntCount));
  1142. writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
  1143. for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
  1144. if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
  1145. break;
  1146. udelay(1000); /* delay and try again */
  1147. }
  1148. spin_unlock_irqrestore(&h->lock, flags);
  1149. if (i >= MAX_IOCTL_CONFIG_WAIT)
  1150. return -EAGAIN;
  1151. return 0;
  1152. }
  1153. static int cciss_getnodename(ctlr_info_t *h, void __user *argp)
  1154. {
  1155. NodeName_type NodeName;
  1156. int i;
  1157. if (!argp)
  1158. return -EINVAL;
  1159. for (i = 0; i < 16; i++)
  1160. NodeName[i] = readb(&h->cfgtable->ServerName[i]);
  1161. if (copy_to_user(argp, NodeName, sizeof(NodeName_type)))
  1162. return -EFAULT;
  1163. return 0;
  1164. }
  1165. static int cciss_setnodename(ctlr_info_t *h, void __user *argp)
  1166. {
  1167. NodeName_type NodeName;
  1168. unsigned long flags;
  1169. int i;
  1170. if (!argp)
  1171. return -EINVAL;
  1172. if (!capable(CAP_SYS_ADMIN))
  1173. return -EPERM;
  1174. if (copy_from_user(NodeName, argp, sizeof(NodeName_type)))
  1175. return -EFAULT;
  1176. spin_lock_irqsave(&h->lock, flags);
  1177. /* Update the field, and then ring the doorbell */
  1178. for (i = 0; i < 16; i++)
  1179. writeb(NodeName[i], &h->cfgtable->ServerName[i]);
  1180. writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
  1181. for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
  1182. if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
  1183. break;
  1184. udelay(1000); /* delay and try again */
  1185. }
  1186. spin_unlock_irqrestore(&h->lock, flags);
  1187. if (i >= MAX_IOCTL_CONFIG_WAIT)
  1188. return -EAGAIN;
  1189. return 0;
  1190. }
  1191. static int cciss_getheartbeat(ctlr_info_t *h, void __user *argp)
  1192. {
  1193. Heartbeat_type heartbeat;
  1194. if (!argp)
  1195. return -EINVAL;
  1196. heartbeat = readl(&h->cfgtable->HeartBeat);
  1197. if (copy_to_user(argp, &heartbeat, sizeof(Heartbeat_type)))
  1198. return -EFAULT;
  1199. return 0;
  1200. }
  1201. static int cciss_getbustypes(ctlr_info_t *h, void __user *argp)
  1202. {
  1203. BusTypes_type BusTypes;
  1204. if (!argp)
  1205. return -EINVAL;
  1206. BusTypes = readl(&h->cfgtable->BusTypes);
  1207. if (copy_to_user(argp, &BusTypes, sizeof(BusTypes_type)))
  1208. return -EFAULT;
  1209. return 0;
  1210. }
  1211. static int cciss_getfirmver(ctlr_info_t *h, void __user *argp)
  1212. {
  1213. FirmwareVer_type firmware;
  1214. if (!argp)
  1215. return -EINVAL;
  1216. memcpy(firmware, h->firm_ver, 4);
  1217. if (copy_to_user
  1218. (argp, firmware, sizeof(FirmwareVer_type)))
  1219. return -EFAULT;
  1220. return 0;
  1221. }
  1222. static int cciss_getdrivver(ctlr_info_t *h, void __user *argp)
  1223. {
  1224. DriverVer_type DriverVer = DRIVER_VERSION;
  1225. if (!argp)
  1226. return -EINVAL;
  1227. if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
  1228. return -EFAULT;
  1229. return 0;
  1230. }
  1231. static int cciss_getluninfo(ctlr_info_t *h,
  1232. struct gendisk *disk, void __user *argp)
  1233. {
  1234. LogvolInfo_struct luninfo;
  1235. drive_info_struct *drv = get_drv(disk);
  1236. if (!argp)
  1237. return -EINVAL;
  1238. memcpy(&luninfo.LunID, drv->LunID, sizeof(luninfo.LunID));
  1239. luninfo.num_opens = drv->usage_count;
  1240. luninfo.num_parts = 0;
  1241. if (copy_to_user(argp, &luninfo, sizeof(LogvolInfo_struct)))
  1242. return -EFAULT;
  1243. return 0;
  1244. }
  1245. static int cciss_passthru(ctlr_info_t *h, void __user *argp)
  1246. {
  1247. IOCTL_Command_struct iocommand;
  1248. CommandList_struct *c;
  1249. char *buff = NULL;
  1250. u64bit temp64;
  1251. DECLARE_COMPLETION_ONSTACK(wait);
  1252. if (!argp)
  1253. return -EINVAL;
  1254. if (!capable(CAP_SYS_RAWIO))
  1255. return -EPERM;
  1256. if (copy_from_user
  1257. (&iocommand, argp, sizeof(IOCTL_Command_struct)))
  1258. return -EFAULT;
  1259. if ((iocommand.buf_size < 1) &&
  1260. (iocommand.Request.Type.Direction != XFER_NONE)) {
  1261. return -EINVAL;
  1262. }
  1263. if (iocommand.buf_size > 0) {
  1264. buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
  1265. if (buff == NULL)
  1266. return -EFAULT;
  1267. }
  1268. if (iocommand.Request.Type.Direction == XFER_WRITE) {
  1269. /* Copy the data into the buffer we created */
  1270. if (copy_from_user(buff, iocommand.buf, iocommand.buf_size)) {
  1271. kfree(buff);
  1272. return -EFAULT;
  1273. }
  1274. } else {
  1275. memset(buff, 0, iocommand.buf_size);
  1276. }
  1277. c = cmd_special_alloc(h);
  1278. if (!c) {
  1279. kfree(buff);
  1280. return -ENOMEM;
  1281. }
  1282. /* Fill in the command type */
  1283. c->cmd_type = CMD_IOCTL_PEND;
  1284. /* Fill in Command Header */
  1285. c->Header.ReplyQueue = 0; /* unused in simple mode */
  1286. if (iocommand.buf_size > 0) { /* buffer to fill */
  1287. c->Header.SGList = 1;
  1288. c->Header.SGTotal = 1;
  1289. } else { /* no buffers to fill */
  1290. c->Header.SGList = 0;
  1291. c->Header.SGTotal = 0;
  1292. }
  1293. c->Header.LUN = iocommand.LUN_info;
  1294. /* use the kernel address the cmd block for tag */
  1295. c->Header.Tag.lower = c->busaddr;
  1296. /* Fill in Request block */
  1297. c->Request = iocommand.Request;
  1298. /* Fill in the scatter gather information */
  1299. if (iocommand.buf_size > 0) {
  1300. temp64.val = pci_map_single(h->pdev, buff,
  1301. iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
  1302. c->SG[0].Addr.lower = temp64.val32.lower;
  1303. c->SG[0].Addr.upper = temp64.val32.upper;
  1304. c->SG[0].Len = iocommand.buf_size;
  1305. c->SG[0].Ext = 0; /* we are not chaining */
  1306. }
  1307. c->waiting = &wait;
  1308. enqueue_cmd_and_start_io(h, c);
  1309. wait_for_completion(&wait);
  1310. /* unlock the buffers from DMA */
  1311. temp64.val32.lower = c->SG[0].Addr.lower;
  1312. temp64.val32.upper = c->SG[0].Addr.upper;
  1313. pci_unmap_single(h->pdev, (dma_addr_t) temp64.val, iocommand.buf_size,
  1314. PCI_DMA_BIDIRECTIONAL);
  1315. check_ioctl_unit_attention(h, c);
  1316. /* Copy the error information out */
  1317. iocommand.error_info = *(c->err_info);
  1318. if (copy_to_user(argp, &iocommand, sizeof(IOCTL_Command_struct))) {
  1319. kfree(buff);
  1320. cmd_special_free(h, c);
  1321. return -EFAULT;
  1322. }
  1323. if (iocommand.Request.Type.Direction == XFER_READ) {
  1324. /* Copy the data out of the buffer we created */
  1325. if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
  1326. kfree(buff);
  1327. cmd_special_free(h, c);
  1328. return -EFAULT;
  1329. }
  1330. }
  1331. kfree(buff);
  1332. cmd_special_free(h, c);
  1333. return 0;
  1334. }
  1335. static int cciss_bigpassthru(ctlr_info_t *h, void __user *argp)
  1336. {
  1337. BIG_IOCTL_Command_struct *ioc;
  1338. CommandList_struct *c;
  1339. unsigned char **buff = NULL;
  1340. int *buff_size = NULL;
  1341. u64bit temp64;
  1342. BYTE sg_used = 0;
  1343. int status = 0;
  1344. int i;
  1345. DECLARE_COMPLETION_ONSTACK(wait);
  1346. __u32 left;
  1347. __u32 sz;
  1348. BYTE __user *data_ptr;
  1349. if (!argp)
  1350. return -EINVAL;
  1351. if (!capable(CAP_SYS_RAWIO))
  1352. return -EPERM;
  1353. ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
  1354. if (!ioc) {
  1355. status = -ENOMEM;
  1356. goto cleanup1;
  1357. }
  1358. if (copy_from_user(ioc, argp, sizeof(*ioc))) {
  1359. status = -EFAULT;
  1360. goto cleanup1;
  1361. }
  1362. if ((ioc->buf_size < 1) &&
  1363. (ioc->Request.Type.Direction != XFER_NONE)) {
  1364. status = -EINVAL;
  1365. goto cleanup1;
  1366. }
  1367. /* Check kmalloc limits using all SGs */
  1368. if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
  1369. status = -EINVAL;
  1370. goto cleanup1;
  1371. }
  1372. if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
  1373. status = -EINVAL;
  1374. goto cleanup1;
  1375. }
  1376. buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
  1377. if (!buff) {
  1378. status = -ENOMEM;
  1379. goto cleanup1;
  1380. }
  1381. buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
  1382. if (!buff_size) {
  1383. status = -ENOMEM;
  1384. goto cleanup1;
  1385. }
  1386. left = ioc->buf_size;
  1387. data_ptr = ioc->buf;
  1388. while (left) {
  1389. sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
  1390. buff_size[sg_used] = sz;
  1391. buff[sg_used] = kmalloc(sz, GFP_KERNEL);
  1392. if (buff[sg_used] == NULL) {
  1393. status = -ENOMEM;
  1394. goto cleanup1;
  1395. }
  1396. if (ioc->Request.Type.Direction == XFER_WRITE) {
  1397. if (copy_from_user(buff[sg_used], data_ptr, sz)) {
  1398. status = -EFAULT;
  1399. goto cleanup1;
  1400. }
  1401. } else {
  1402. memset(buff[sg_used], 0, sz);
  1403. }
  1404. left -= sz;
  1405. data_ptr += sz;
  1406. sg_used++;
  1407. }
  1408. c = cmd_special_alloc(h);
  1409. if (!c) {
  1410. status = -ENOMEM;
  1411. goto cleanup1;
  1412. }
  1413. c->cmd_type = CMD_IOCTL_PEND;
  1414. c->Header.ReplyQueue = 0;
  1415. c->Header.SGList = sg_used;
  1416. c->Header.SGTotal = sg_used;
  1417. c->Header.LUN = ioc->LUN_info;
  1418. c->Header.Tag.lower = c->busaddr;
  1419. c->Request = ioc->Request;
  1420. for (i = 0; i < sg_used; i++) {
  1421. temp64.val = pci_map_single(h->pdev, buff[i], buff_size[i],
  1422. PCI_DMA_BIDIRECTIONAL);
  1423. c->SG[i].Addr.lower = temp64.val32.lower;
  1424. c->SG[i].Addr.upper = temp64.val32.upper;
  1425. c->SG[i].Len = buff_size[i];
  1426. c->SG[i].Ext = 0; /* we are not chaining */
  1427. }
  1428. c->waiting = &wait;
  1429. enqueue_cmd_and_start_io(h, c);
  1430. wait_for_completion(&wait);
  1431. /* unlock the buffers from DMA */
  1432. for (i = 0; i < sg_used; i++) {
  1433. temp64.val32.lower = c->SG[i].Addr.lower;
  1434. temp64.val32.upper = c->SG[i].Addr.upper;
  1435. pci_unmap_single(h->pdev,
  1436. (dma_addr_t) temp64.val, buff_size[i],
  1437. PCI_DMA_BIDIRECTIONAL);
  1438. }
  1439. check_ioctl_unit_attention(h, c);
  1440. /* Copy the error information out */
  1441. ioc->error_info = *(c->err_info);
  1442. if (copy_to_user(argp, ioc, sizeof(*ioc))) {
  1443. cmd_special_free(h, c);
  1444. status = -EFAULT;
  1445. goto cleanup1;
  1446. }
  1447. if (ioc->Request.Type.Direction == XFER_READ) {
  1448. /* Copy the data out of the buffer we created */
  1449. BYTE __user *ptr = ioc->buf;
  1450. for (i = 0; i < sg_used; i++) {
  1451. if (copy_to_user(ptr, buff[i], buff_size[i])) {
  1452. cmd_special_free(h, c);
  1453. status = -EFAULT;
  1454. goto cleanup1;
  1455. }
  1456. ptr += buff_size[i];
  1457. }
  1458. }
  1459. cmd_special_free(h, c);
  1460. status = 0;
  1461. cleanup1:
  1462. if (buff) {
  1463. for (i = 0; i < sg_used; i++)
  1464. kfree(buff[i]);
  1465. kfree(buff);
  1466. }
  1467. kfree(buff_size);
  1468. kfree(ioc);
  1469. return status;
  1470. }
  1471. static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
  1472. unsigned int cmd, unsigned long arg)
  1473. {
  1474. struct gendisk *disk = bdev->bd_disk;
  1475. ctlr_info_t *h = get_host(disk);
  1476. void __user *argp = (void __user *)arg;
  1477. dev_dbg(&h->pdev->dev, "cciss_ioctl: Called with cmd=%x %lx\n",
  1478. cmd, arg);
  1479. switch (cmd) {
  1480. case CCISS_GETPCIINFO:
  1481. return cciss_getpciinfo(h, argp);
  1482. case CCISS_GETINTINFO:
  1483. return cciss_getintinfo(h, argp);
  1484. case CCISS_SETINTINFO:
  1485. return cciss_setintinfo(h, argp);
  1486. case CCISS_GETNODENAME:
  1487. return cciss_getnodename(h, argp);
  1488. case CCISS_SETNODENAME:
  1489. return cciss_setnodename(h, argp);
  1490. case CCISS_GETHEARTBEAT:
  1491. return cciss_getheartbeat(h, argp);
  1492. case CCISS_GETBUSTYPES:
  1493. return cciss_getbustypes(h, argp);
  1494. case CCISS_GETFIRMVER:
  1495. return cciss_getfirmver(h, argp);
  1496. case CCISS_GETDRIVVER:
  1497. return cciss_getdrivver(h, argp);
  1498. case CCISS_DEREGDISK:
  1499. case CCISS_REGNEWD:
  1500. case CCISS_REVALIDVOLS:
  1501. return rebuild_lun_table(h, 0, 1);
  1502. case CCISS_GETLUNINFO:
  1503. return cciss_getluninfo(h, disk, argp);
  1504. case CCISS_PASSTHRU:
  1505. return cciss_passthru(h, argp);
  1506. case CCISS_BIG_PASSTHRU:
  1507. return cciss_bigpassthru(h, argp);
  1508. /* scsi_cmd_blk_ioctl handles these, below, though some are not */
  1509. /* very meaningful for cciss. SG_IO is the main one people want. */
  1510. case SG_GET_VERSION_NUM:
  1511. case SG_SET_TIMEOUT:
  1512. case SG_GET_TIMEOUT:
  1513. case SG_GET_RESERVED_SIZE:
  1514. case SG_SET_RESERVED_SIZE:
  1515. case SG_EMULATED_HOST:
  1516. case SG_IO:
  1517. case SCSI_IOCTL_SEND_COMMAND:
  1518. return scsi_cmd_blk_ioctl(bdev, mode, cmd, argp);
  1519. /* scsi_cmd_blk_ioctl would normally handle these, below, but */
  1520. /* they aren't a good fit for cciss, as CD-ROMs are */
  1521. /* not supported, and we don't have any bus/target/lun */
  1522. /* which we present to the kernel. */
  1523. case CDROM_SEND_PACKET:
  1524. case CDROMCLOSETRAY:
  1525. case CDROMEJECT:
  1526. case SCSI_IOCTL_GET_IDLUN:
  1527. case SCSI_IOCTL_GET_BUS_NUMBER:
  1528. default:
  1529. return -ENOTTY;
  1530. }
  1531. }
  1532. static void cciss_check_queues(ctlr_info_t *h)
  1533. {
  1534. int start_queue = h->next_to_run;
  1535. int i;
  1536. /* check to see if we have maxed out the number of commands that can
  1537. * be placed on the queue. If so then exit. We do this check here
  1538. * in case the interrupt we serviced was from an ioctl and did not
  1539. * free any new commands.
  1540. */
  1541. if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds)
  1542. return;
  1543. /* We have room on the queue for more commands. Now we need to queue
  1544. * them up. We will also keep track of the next queue to run so
  1545. * that every queue gets a chance to be started first.
  1546. */
  1547. for (i = 0; i < h->highest_lun + 1; i++) {
  1548. int curr_queue = (start_queue + i) % (h->highest_lun + 1);
  1549. /* make sure the disk has been added and the drive is real
  1550. * because this can be called from the middle of init_one.
  1551. */
  1552. if (!h->drv[curr_queue])
  1553. continue;
  1554. if (!(h->drv[curr_queue]->queue) ||
  1555. !(h->drv[curr_queue]->heads))
  1556. continue;
  1557. blk_start_queue(h->gendisk[curr_queue]->queue);
  1558. /* check to see if we have maxed out the number of commands
  1559. * that can be placed on the queue.
  1560. */
  1561. if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) {
  1562. if (curr_queue == start_queue) {
  1563. h->next_to_run =
  1564. (start_queue + 1) % (h->highest_lun + 1);
  1565. break;
  1566. } else {
  1567. h->next_to_run = curr_queue;
  1568. break;
  1569. }
  1570. }
  1571. }
  1572. }
  1573. static void cciss_softirq_done(struct request *rq)
  1574. {
  1575. CommandList_struct *c = rq->completion_data;
  1576. ctlr_info_t *h = hba[c->ctlr];
  1577. SGDescriptor_struct *curr_sg = c->SG;
  1578. u64bit temp64;
  1579. unsigned long flags;
  1580. int i, ddir;
  1581. int sg_index = 0;
  1582. if (c->Request.Type.Direction == XFER_READ)
  1583. ddir = PCI_DMA_FROMDEVICE;
  1584. else
  1585. ddir = PCI_DMA_TODEVICE;
  1586. /* command did not need to be retried */
  1587. /* unmap the DMA mapping for all the scatter gather elements */
  1588. for (i = 0; i < c->Header.SGList; i++) {
  1589. if (curr_sg[sg_index].Ext == CCISS_SG_CHAIN) {
  1590. cciss_unmap_sg_chain_block(h, c);
  1591. /* Point to the next block */
  1592. curr_sg = h->cmd_sg_list[c->cmdindex];
  1593. sg_index = 0;
  1594. }
  1595. temp64.val32.lower = curr_sg[sg_index].Addr.lower;
  1596. temp64.val32.upper = curr_sg[sg_index].Addr.upper;
  1597. pci_unmap_page(h->pdev, temp64.val, curr_sg[sg_index].Len,
  1598. ddir);
  1599. ++sg_index;
  1600. }
  1601. dev_dbg(&h->pdev->dev, "Done with %p\n", rq);
  1602. /* set the residual count for pc requests */
  1603. if (rq->cmd_type == REQ_TYPE_BLOCK_PC)
  1604. rq->resid_len = c->err_info->ResidualCnt;
  1605. blk_end_request_all(rq, (rq->errors == 0) ? 0 : -EIO);
  1606. spin_lock_irqsave(&h->lock, flags);
  1607. cmd_free(h, c);
  1608. cciss_check_queues(h);
  1609. spin_unlock_irqrestore(&h->lock, flags);
  1610. }
  1611. static inline void log_unit_to_scsi3addr(ctlr_info_t *h,
  1612. unsigned char scsi3addr[], uint32_t log_unit)
  1613. {
  1614. memcpy(scsi3addr, h->drv[log_unit]->LunID,
  1615. sizeof(h->drv[log_unit]->LunID));
  1616. }
  1617. /* This function gets the SCSI vendor, model, and revision of a logical drive
  1618. * via the inquiry page 0. Model, vendor, and rev are set to empty strings if
  1619. * they cannot be read.
  1620. */
  1621. static void cciss_get_device_descr(ctlr_info_t *h, int logvol,
  1622. char *vendor, char *model, char *rev)
  1623. {
  1624. int rc;
  1625. InquiryData_struct *inq_buf;
  1626. unsigned char scsi3addr[8];
  1627. *vendor = '\0';
  1628. *model = '\0';
  1629. *rev = '\0';
  1630. inq_buf = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
  1631. if (!inq_buf)
  1632. return;
  1633. log_unit_to_scsi3addr(h, scsi3addr, logvol);
  1634. rc = sendcmd_withirq(h, CISS_INQUIRY, inq_buf, sizeof(*inq_buf), 0,
  1635. scsi3addr, TYPE_CMD);
  1636. if (rc == IO_OK) {
  1637. memcpy(vendor, &inq_buf->data_byte[8], VENDOR_LEN);
  1638. vendor[VENDOR_LEN] = '\0';
  1639. memcpy(model, &inq_buf->data_byte[16], MODEL_LEN);
  1640. model[MODEL_LEN] = '\0';
  1641. memcpy(rev, &inq_buf->data_byte[32], REV_LEN);
  1642. rev[REV_LEN] = '\0';
  1643. }
  1644. kfree(inq_buf);
  1645. return;
  1646. }
  1647. /* This function gets the serial number of a logical drive via
  1648. * inquiry page 0x83. Serial no. is 16 bytes. If the serial
  1649. * number cannot be had, for whatever reason, 16 bytes of 0xff
  1650. * are returned instead.
  1651. */
  1652. static void cciss_get_serial_no(ctlr_info_t *h, int logvol,
  1653. unsigned char *serial_no, int buflen)
  1654. {
  1655. #define PAGE_83_INQ_BYTES 64
  1656. int rc;
  1657. unsigned char *buf;
  1658. unsigned char scsi3addr[8];
  1659. if (buflen > 16)
  1660. buflen = 16;
  1661. memset(serial_no, 0xff, buflen);
  1662. buf = kzalloc(PAGE_83_INQ_BYTES, GFP_KERNEL);
  1663. if (!buf)
  1664. return;
  1665. memset(serial_no, 0, buflen);
  1666. log_unit_to_scsi3addr(h, scsi3addr, logvol);
  1667. rc = sendcmd_withirq(h, CISS_INQUIRY, buf,
  1668. PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD);
  1669. if (rc == IO_OK)
  1670. memcpy(serial_no, &buf[8], buflen);
  1671. kfree(buf);
  1672. return;
  1673. }
  1674. /*
  1675. * cciss_add_disk sets up the block device queue for a logical drive
  1676. */
  1677. static int cciss_add_disk(ctlr_info_t *h, struct gendisk *disk,
  1678. int drv_index)
  1679. {
  1680. disk->queue = blk_init_queue(do_cciss_request, &h->lock);
  1681. if (!disk->queue)
  1682. goto init_queue_failure;
  1683. sprintf(disk->disk_name, "cciss/c%dd%d", h->ctlr, drv_index);
  1684. disk->major = h->major;
  1685. disk->first_minor = drv_index << NWD_SHIFT;
  1686. disk->fops = &cciss_fops;
  1687. if (cciss_create_ld_sysfs_entry(h, drv_index))
  1688. goto cleanup_queue;
  1689. disk->private_data = h->drv[drv_index];
  1690. disk->driverfs_dev = &h->drv[drv_index]->dev;
  1691. /* Set up queue information */
  1692. blk_queue_bounce_limit(disk->queue, h->pdev->dma_mask);
  1693. /* This is a hardware imposed limit. */
  1694. blk_queue_max_segments(disk->queue, h->maxsgentries);
  1695. blk_queue_max_hw_sectors(disk->queue, h->cciss_max_sectors);
  1696. blk_queue_softirq_done(disk->queue, cciss_softirq_done);
  1697. disk->queue->queuedata = h;
  1698. blk_queue_logical_block_size(disk->queue,
  1699. h->drv[drv_index]->block_size);
  1700. /* Make sure all queue data is written out before */
  1701. /* setting h->drv[drv_index]->queue, as setting this */
  1702. /* allows the interrupt handler to start the queue */
  1703. wmb();
  1704. h->drv[drv_index]->queue = disk->queue;
  1705. add_disk(disk);
  1706. return 0;
  1707. cleanup_queue:
  1708. blk_cleanup_queue(disk->queue);
  1709. disk->queue = NULL;
  1710. init_queue_failure:
  1711. return -1;
  1712. }
  1713. /* This function will check the usage_count of the drive to be updated/added.
  1714. * If the usage_count is zero and it is a heretofore unknown drive, or,
  1715. * the drive's capacity, geometry, or serial number has changed,
  1716. * then the drive information will be updated and the disk will be
  1717. * re-registered with the kernel. If these conditions don't hold,
  1718. * then it will be left alone for the next reboot. The exception to this
  1719. * is disk 0 which will always be left registered with the kernel since it
  1720. * is also the controller node. Any changes to disk 0 will show up on
  1721. * the next reboot.
  1722. */
  1723. static void cciss_update_drive_info(ctlr_info_t *h, int drv_index,
  1724. int first_time, int via_ioctl)
  1725. {
  1726. struct gendisk *disk;
  1727. InquiryData_struct *inq_buff = NULL;
  1728. unsigned int block_size;
  1729. sector_t total_size;
  1730. unsigned long flags = 0;
  1731. int ret = 0;
  1732. drive_info_struct *drvinfo;
  1733. /* Get information about the disk and modify the driver structure */
  1734. inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
  1735. drvinfo = kzalloc(sizeof(*drvinfo), GFP_KERNEL);
  1736. if (inq_buff == NULL || drvinfo == NULL)
  1737. goto mem_msg;
  1738. /* testing to see if 16-byte CDBs are already being used */
  1739. if (h->cciss_read == CCISS_READ_16) {
  1740. cciss_read_capacity_16(h, drv_index,
  1741. &total_size, &block_size);
  1742. } else {
  1743. cciss_read_capacity(h, drv_index, &total_size, &block_size);
  1744. /* if read_capacity returns all F's this volume is >2TB */
  1745. /* in size so we switch to 16-byte CDB's for all */
  1746. /* read/write ops */
  1747. if (total_size == 0xFFFFFFFFULL) {
  1748. cciss_read_capacity_16(h, drv_index,
  1749. &total_size, &block_size);
  1750. h->cciss_read = CCISS_READ_16;
  1751. h->cciss_write = CCISS_WRITE_16;
  1752. } else {
  1753. h->cciss_read = CCISS_READ_10;
  1754. h->cciss_write = CCISS_WRITE_10;
  1755. }
  1756. }
  1757. cciss_geometry_inquiry(h, drv_index, total_size, block_size,
  1758. inq_buff, drvinfo);
  1759. drvinfo->block_size = block_size;
  1760. drvinfo->nr_blocks = total_size + 1;
  1761. cciss_get_device_descr(h, drv_index, drvinfo->vendor,
  1762. drvinfo->model, drvinfo->rev);
  1763. cciss_get_serial_no(h, drv_index, drvinfo->serial_no,
  1764. sizeof(drvinfo->serial_no));
  1765. /* Save the lunid in case we deregister the disk, below. */
  1766. memcpy(drvinfo->LunID, h->drv[drv_index]->LunID,
  1767. sizeof(drvinfo->LunID));
  1768. /* Is it the same disk we already know, and nothing's changed? */
  1769. if (h->drv[drv_index]->raid_level != -1 &&
  1770. ((memcmp(drvinfo->serial_no,
  1771. h->drv[drv_index]->serial_no, 16) == 0) &&
  1772. drvinfo->block_size == h->drv[drv_index]->block_size &&
  1773. drvinfo->nr_blocks == h->drv[drv_index]->nr_blocks &&
  1774. drvinfo->heads == h->drv[drv_index]->heads &&
  1775. drvinfo->sectors == h->drv[drv_index]->sectors &&
  1776. drvinfo->cylinders == h->drv[drv_index]->cylinders))
  1777. /* The disk is unchanged, nothing to update */
  1778. goto freeret;
  1779. /* If we get here it's not the same disk, or something's changed,
  1780. * so we need to * deregister it, and re-register it, if it's not
  1781. * in use.
  1782. * If the disk already exists then deregister it before proceeding
  1783. * (unless it's the first disk (for the controller node).
  1784. */
  1785. if (h->drv[drv_index]->raid_level != -1 && drv_index != 0) {
  1786. dev_warn(&h->pdev->dev, "disk %d has changed.\n", drv_index);
  1787. spin_lock_irqsave(&h->lock, flags);
  1788. h->drv[drv_index]->busy_configuring = 1;
  1789. spin_unlock_irqrestore(&h->lock, flags);
  1790. /* deregister_disk sets h->drv[drv_index]->queue = NULL
  1791. * which keeps the interrupt handler from starting
  1792. * the queue.
  1793. */
  1794. ret = deregister_disk(h, drv_index, 0, via_ioctl);
  1795. }
  1796. /* If the disk is in use return */
  1797. if (ret)
  1798. goto freeret;
  1799. /* Save the new information from cciss_geometry_inquiry
  1800. * and serial number inquiry. If the disk was deregistered
  1801. * above, then h->drv[drv_index] will be NULL.
  1802. */
  1803. if (h->drv[drv_index] == NULL) {
  1804. drvinfo->device_initialized = 0;
  1805. h->drv[drv_index] = drvinfo;
  1806. drvinfo = NULL; /* so it won't be freed below. */
  1807. } else {
  1808. /* special case for cxd0 */
  1809. h->drv[drv_index]->block_size = drvinfo->block_size;
  1810. h->drv[drv_index]->nr_blocks = drvinfo->nr_blocks;
  1811. h->drv[drv_index]->heads = drvinfo->heads;
  1812. h->drv[drv_index]->sectors = drvinfo->sectors;
  1813. h->drv[drv_index]->cylinders = drvinfo->cylinders;
  1814. h->drv[drv_index]->raid_level = drvinfo->raid_level;
  1815. memcpy(h->drv[drv_index]->serial_no, drvinfo->serial_no, 16);
  1816. memcpy(h->drv[drv_index]->vendor, drvinfo->vendor,
  1817. VENDOR_LEN + 1);
  1818. memcpy(h->drv[drv_index]->model, drvinfo->model, MODEL_LEN + 1);
  1819. memcpy(h->drv[drv_index]->rev, drvinfo->rev, REV_LEN + 1);
  1820. }
  1821. ++h->num_luns;
  1822. disk = h->gendisk[drv_index];
  1823. set_capacity(disk, h->drv[drv_index]->nr_blocks);
  1824. /* If it's not disk 0 (drv_index != 0)
  1825. * or if it was disk 0, but there was previously
  1826. * no actual corresponding configured logical drive
  1827. * (raid_leve == -1) then we want to update the
  1828. * logical drive's information.
  1829. */
  1830. if (drv_index || first_time) {
  1831. if (cciss_add_disk(h, disk, drv_index) != 0) {
  1832. cciss_free_gendisk(h, drv_index);
  1833. cciss_free_drive_info(h, drv_index);
  1834. dev_warn(&h->pdev->dev, "could not update disk %d\n",
  1835. drv_index);
  1836. --h->num_luns;
  1837. }
  1838. }
  1839. freeret:
  1840. kfree(inq_buff);
  1841. kfree(drvinfo);
  1842. return;
  1843. mem_msg:
  1844. dev_err(&h->pdev->dev, "out of memory\n");
  1845. goto freeret;
  1846. }
  1847. /* This function will find the first index of the controllers drive array
  1848. * that has a null drv pointer and allocate the drive info struct and
  1849. * will return that index This is where new drives will be added.
  1850. * If the index to be returned is greater than the highest_lun index for
  1851. * the controller then highest_lun is set * to this new index.
  1852. * If there are no available indexes or if tha allocation fails, then -1
  1853. * is returned. * "controller_node" is used to know if this is a real
  1854. * logical drive, or just the controller node, which determines if this
  1855. * counts towards highest_lun.
  1856. */
  1857. static int cciss_alloc_drive_info(ctlr_info_t *h, int controller_node)
  1858. {
  1859. int i;
  1860. drive_info_struct *drv;
  1861. /* Search for an empty slot for our drive info */
  1862. for (i = 0; i < CISS_MAX_LUN; i++) {
  1863. /* if not cxd0 case, and it's occupied, skip it. */
  1864. if (h->drv[i] && i != 0)
  1865. continue;
  1866. /*
  1867. * If it's cxd0 case, and drv is alloc'ed already, and a
  1868. * disk is configured there, skip it.
  1869. */
  1870. if (i == 0 && h->drv[i] && h->drv[i]->raid_level != -1)
  1871. continue;
  1872. /*
  1873. * We've found an empty slot. Update highest_lun
  1874. * provided this isn't just the fake cxd0 controller node.
  1875. */
  1876. if (i > h->highest_lun && !controller_node)
  1877. h->highest_lun = i;
  1878. /* If adding a real disk at cxd0, and it's already alloc'ed */
  1879. if (i == 0 && h->drv[i] != NULL)
  1880. return i;
  1881. /*
  1882. * Found an empty slot, not already alloc'ed. Allocate it.
  1883. * Mark it with raid_level == -1, so we know it's new later on.
  1884. */
  1885. drv = kzalloc(sizeof(*drv), GFP_KERNEL);
  1886. if (!drv)
  1887. return -1;
  1888. drv->raid_level = -1; /* so we know it's new */
  1889. h->drv[i] = drv;
  1890. return i;
  1891. }
  1892. return -1;
  1893. }
  1894. static void cciss_free_drive_info(ctlr_info_t *h, int drv_index)
  1895. {
  1896. kfree(h->drv[drv_index]);
  1897. h->drv[drv_index] = NULL;
  1898. }
  1899. static void cciss_free_gendisk(ctlr_info_t *h, int drv_index)
  1900. {
  1901. put_disk(h->gendisk[drv_index]);
  1902. h->gendisk[drv_index] = NULL;
  1903. }
  1904. /* cciss_add_gendisk finds a free hba[]->drv structure
  1905. * and allocates a gendisk if needed, and sets the lunid
  1906. * in the drvinfo structure. It returns the index into
  1907. * the ->drv[] array, or -1 if none are free.
  1908. * is_controller_node indicates whether highest_lun should
  1909. * count this disk, or if it's only being added to provide
  1910. * a means to talk to the controller in case no logical
  1911. * drives have yet been configured.
  1912. */
  1913. static int cciss_add_gendisk(ctlr_info_t *h, unsigned char lunid[],
  1914. int controller_node)
  1915. {
  1916. int drv_index;
  1917. drv_index = cciss_alloc_drive_info(h, controller_node);
  1918. if (drv_index == -1)
  1919. return -1;
  1920. /*Check if the gendisk needs to be allocated */
  1921. if (!h->gendisk[drv_index]) {
  1922. h->gendisk[drv_index] =
  1923. alloc_disk(1 << NWD_SHIFT);
  1924. if (!h->gendisk[drv_index]) {
  1925. dev_err(&h->pdev->dev,
  1926. "could not allocate a new disk %d\n",
  1927. drv_index);
  1928. goto err_free_drive_info;
  1929. }
  1930. }
  1931. memcpy(h->drv[drv_index]->LunID, lunid,
  1932. sizeof(h->drv[drv_index]->LunID));
  1933. if (cciss_create_ld_sysfs_entry(h, drv_index))
  1934. goto err_free_disk;
  1935. /* Don't need to mark this busy because nobody */
  1936. /* else knows about this disk yet to contend */
  1937. /* for access to it. */
  1938. h->drv[drv_index]->busy_configuring = 0;
  1939. wmb();
  1940. return drv_index;
  1941. err_free_disk:
  1942. cciss_free_gendisk(h, drv_index);
  1943. err_free_drive_info:
  1944. cciss_free_drive_info(h, drv_index);
  1945. return -1;
  1946. }
  1947. /* This is for the special case of a controller which
  1948. * has no logical drives. In this case, we still need
  1949. * to register a disk so the controller can be accessed
  1950. * by the Array Config Utility.
  1951. */
  1952. static void cciss_add_controller_node(ctlr_info_t *h)
  1953. {
  1954. struct gendisk *disk;
  1955. int drv_index;
  1956. if (h->gendisk[0] != NULL) /* already did this? Then bail. */
  1957. return;
  1958. drv_index = cciss_add_gendisk(h, CTLR_LUNID, 1);
  1959. if (drv_index == -1)
  1960. goto error;
  1961. h->drv[drv_index]->block_size = 512;
  1962. h->drv[drv_index]->nr_blocks = 0;
  1963. h->drv[drv_index]->heads = 0;
  1964. h->drv[drv_index]->sectors = 0;
  1965. h->drv[drv_index]->cylinders = 0;
  1966. h->drv[drv_index]->raid_level = -1;
  1967. memset(h->drv[drv_index]->serial_no, 0, 16);
  1968. disk = h->gendisk[drv_index];
  1969. if (cciss_add_disk(h, disk, drv_index) == 0)
  1970. return;
  1971. cciss_free_gendisk(h, drv_index);
  1972. cciss_free_drive_info(h, drv_index);
  1973. error:
  1974. dev_warn(&h->pdev->dev, "could not add disk 0.\n");
  1975. return;
  1976. }
  1977. /* This function will add and remove logical drives from the Logical
  1978. * drive array of the controller and maintain persistency of ordering
  1979. * so that mount points are preserved until the next reboot. This allows
  1980. * for the removal of logical drives in the middle of the drive array
  1981. * without a re-ordering of those drives.
  1982. * INPUT
  1983. * h = The controller to perform the operations on
  1984. */
  1985. static int rebuild_lun_table(ctlr_info_t *h, int first_time,
  1986. int via_ioctl)
  1987. {
  1988. int num_luns;
  1989. ReportLunData_struct *ld_buff = NULL;
  1990. int return_code;
  1991. int listlength = 0;
  1992. int i;
  1993. int drv_found;
  1994. int drv_index = 0;
  1995. unsigned char lunid[8] = CTLR_LUNID;
  1996. unsigned long flags;
  1997. if (!capable(CAP_SYS_RAWIO))
  1998. return -EPERM;
  1999. /* Set busy_configuring flag for this operation */
  2000. spin_lock_irqsave(&h->lock, flags);
  2001. if (h->busy_configuring) {
  2002. spin_unlock_irqrestore(&h->lock, flags);
  2003. return -EBUSY;
  2004. }
  2005. h->busy_configuring = 1;
  2006. spin_unlock_irqrestore(&h->lock, flags);
  2007. ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
  2008. if (ld_buff == NULL)
  2009. goto mem_msg;
  2010. return_code = sendcmd_withirq(h, CISS_REPORT_LOG, ld_buff,
  2011. sizeof(ReportLunData_struct),
  2012. 0, CTLR_LUNID, TYPE_CMD);
  2013. if (return_code == IO_OK)
  2014. listlength = be32_to_cpu(*(__be32 *) ld_buff->LUNListLength);
  2015. else { /* reading number of logical volumes failed */
  2016. dev_warn(&h->pdev->dev,
  2017. "report logical volume command failed\n");
  2018. listlength = 0;
  2019. goto freeret;
  2020. }
  2021. num_luns = listlength / 8; /* 8 bytes per entry */
  2022. if (num_luns > CISS_MAX_LUN) {
  2023. num_luns = CISS_MAX_LUN;
  2024. dev_warn(&h->pdev->dev, "more luns configured"
  2025. " on controller than can be handled by"
  2026. " this driver.\n");
  2027. }
  2028. if (num_luns == 0)
  2029. cciss_add_controller_node(h);
  2030. /* Compare controller drive array to driver's drive array
  2031. * to see if any drives are missing on the controller due
  2032. * to action of Array Config Utility (user deletes drive)
  2033. * and deregister logical drives which have disappeared.
  2034. */
  2035. for (i = 0; i <= h->highest_lun; i++) {
  2036. int j;
  2037. drv_found = 0;
  2038. /* skip holes in the array from already deleted drives */
  2039. if (h->drv[i] == NULL)
  2040. continue;
  2041. for (j = 0; j < num_luns; j++) {
  2042. memcpy(lunid, &ld_buff->LUN[j][0], sizeof(lunid));
  2043. if (memcmp(h->drv[i]->LunID, lunid,
  2044. sizeof(lunid)) == 0) {
  2045. drv_found = 1;
  2046. break;
  2047. }
  2048. }
  2049. if (!drv_found) {
  2050. /* Deregister it from the OS, it's gone. */
  2051. spin_lock_irqsave(&h->lock, flags);
  2052. h->drv[i]->busy_configuring = 1;
  2053. spin_unlock_irqrestore(&h->lock, flags);
  2054. return_code = deregister_disk(h, i, 1, via_ioctl);
  2055. if (h->drv[i] != NULL)
  2056. h->drv[i]->busy_configuring = 0;
  2057. }
  2058. }
  2059. /* Compare controller drive array to driver's drive array.
  2060. * Check for updates in the drive information and any new drives
  2061. * on the controller due to ACU adding logical drives, or changing
  2062. * a logical drive's size, etc. Reregister any new/changed drives
  2063. */
  2064. for (i = 0; i < num_luns; i++) {
  2065. int j;
  2066. drv_found = 0;
  2067. memcpy(lunid, &ld_buff->LUN[i][0], sizeof(lunid));
  2068. /* Find if the LUN is already in the drive array
  2069. * of the driver. If so then update its info
  2070. * if not in use. If it does not exist then find
  2071. * the first free index and add it.
  2072. */
  2073. for (j = 0; j <= h->highest_lun; j++) {
  2074. if (h->drv[j] != NULL &&
  2075. memcmp(h->drv[j]->LunID, lunid,
  2076. sizeof(h->drv[j]->LunID)) == 0) {
  2077. drv_index = j;
  2078. drv_found = 1;
  2079. break;
  2080. }
  2081. }
  2082. /* check if the drive was found already in the array */
  2083. if (!drv_found) {
  2084. drv_index = cciss_add_gendisk(h, lunid, 0);
  2085. if (drv_index == -1)
  2086. goto freeret;
  2087. }
  2088. cciss_update_drive_info(h, drv_index, first_time, via_ioctl);
  2089. } /* end for */
  2090. freeret:
  2091. kfree(ld_buff);
  2092. h->busy_configuring = 0;
  2093. /* We return -1 here to tell the ACU that we have registered/updated
  2094. * all of the drives that we can and to keep it from calling us
  2095. * additional times.
  2096. */
  2097. return -1;
  2098. mem_msg:
  2099. dev_err(&h->pdev->dev, "out of memory\n");
  2100. h->busy_configuring = 0;
  2101. goto freeret;
  2102. }
  2103. static void cciss_clear_drive_info(drive_info_struct *drive_info)
  2104. {
  2105. /* zero out the disk size info */
  2106. drive_info->nr_blocks = 0;
  2107. drive_info->block_size = 0;
  2108. drive_info->heads = 0;
  2109. drive_info->sectors = 0;
  2110. drive_info->cylinders = 0;
  2111. drive_info->raid_level = -1;
  2112. memset(drive_info->serial_no, 0, sizeof(drive_info->serial_no));
  2113. memset(drive_info->model, 0, sizeof(drive_info->model));
  2114. memset(drive_info->rev, 0, sizeof(drive_info->rev));
  2115. memset(drive_info->vendor, 0, sizeof(drive_info->vendor));
  2116. /*
  2117. * don't clear the LUNID though, we need to remember which
  2118. * one this one is.
  2119. */
  2120. }
  2121. /* This function will deregister the disk and it's queue from the
  2122. * kernel. It must be called with the controller lock held and the
  2123. * drv structures busy_configuring flag set. It's parameters are:
  2124. *
  2125. * disk = This is the disk to be deregistered
  2126. * drv = This is the drive_info_struct associated with the disk to be
  2127. * deregistered. It contains information about the disk used
  2128. * by the driver.
  2129. * clear_all = This flag determines whether or not the disk information
  2130. * is going to be completely cleared out and the highest_lun
  2131. * reset. Sometimes we want to clear out information about
  2132. * the disk in preparation for re-adding it. In this case
  2133. * the highest_lun should be left unchanged and the LunID
  2134. * should not be cleared.
  2135. * via_ioctl
  2136. * This indicates whether we've reached this path via ioctl.
  2137. * This affects the maximum usage count allowed for c0d0 to be messed with.
  2138. * If this path is reached via ioctl(), then the max_usage_count will
  2139. * be 1, as the process calling ioctl() has got to have the device open.
  2140. * If we get here via sysfs, then the max usage count will be zero.
  2141. */
  2142. static int deregister_disk(ctlr_info_t *h, int drv_index,
  2143. int clear_all, int via_ioctl)
  2144. {
  2145. int i;
  2146. struct gendisk *disk;
  2147. drive_info_struct *drv;
  2148. int recalculate_highest_lun;
  2149. if (!capable(CAP_SYS_RAWIO))
  2150. return -EPERM;
  2151. drv = h->drv[drv_index];
  2152. disk = h->gendisk[drv_index];
  2153. /* make sure logical volume is NOT is use */
  2154. if (clear_all || (h->gendisk[0] == disk)) {
  2155. if (drv->usage_count > via_ioctl)
  2156. return -EBUSY;
  2157. } else if (drv->usage_count > 0)
  2158. return -EBUSY;
  2159. recalculate_highest_lun = (drv == h->drv[h->highest_lun]);
  2160. /* invalidate the devices and deregister the disk. If it is disk
  2161. * zero do not deregister it but just zero out it's values. This
  2162. * allows us to delete disk zero but keep the controller registered.
  2163. */
  2164. if (h->gendisk[0] != disk) {
  2165. struct request_queue *q = disk->queue;
  2166. if (disk->flags & GENHD_FL_UP) {
  2167. cciss_destroy_ld_sysfs_entry(h, drv_index, 0);
  2168. del_gendisk(disk);
  2169. }
  2170. if (q)
  2171. blk_cleanup_queue(q);
  2172. /* If clear_all is set then we are deleting the logical
  2173. * drive, not just refreshing its info. For drives
  2174. * other than disk 0 we will call put_disk. We do not
  2175. * do this for disk 0 as we need it to be able to
  2176. * configure the controller.
  2177. */
  2178. if (clear_all){
  2179. /* This isn't pretty, but we need to find the
  2180. * disk in our array and NULL our the pointer.
  2181. * This is so that we will call alloc_disk if
  2182. * this index is used again later.
  2183. */
  2184. for (i=0; i < CISS_MAX_LUN; i++){
  2185. if (h->gendisk[i] == disk) {
  2186. h->gendisk[i] = NULL;
  2187. break;
  2188. }
  2189. }
  2190. put_disk(disk);
  2191. }
  2192. } else {
  2193. set_capacity(disk, 0);
  2194. cciss_clear_drive_info(drv);
  2195. }
  2196. --h->num_luns;
  2197. /* if it was the last disk, find the new hightest lun */
  2198. if (clear_all && recalculate_highest_lun) {
  2199. int newhighest = -1;
  2200. for (i = 0; i <= h->highest_lun; i++) {
  2201. /* if the disk has size > 0, it is available */
  2202. if (h->drv[i] && h->drv[i]->heads)
  2203. newhighest = i;
  2204. }
  2205. h->highest_lun = newhighest;
  2206. }
  2207. return 0;
  2208. }
  2209. static int fill_cmd(ctlr_info_t *h, CommandList_struct *c, __u8 cmd, void *buff,
  2210. size_t size, __u8 page_code, unsigned char *scsi3addr,
  2211. int cmd_type)
  2212. {
  2213. u64bit buff_dma_handle;
  2214. int status = IO_OK;
  2215. c->cmd_type = CMD_IOCTL_PEND;
  2216. c->Header.ReplyQueue = 0;
  2217. if (buff != NULL) {
  2218. c->Header.SGList = 1;
  2219. c->Header.SGTotal = 1;
  2220. } else {
  2221. c->Header.SGList = 0;
  2222. c->Header.SGTotal = 0;
  2223. }
  2224. c->Header.Tag.lower = c->busaddr;
  2225. memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
  2226. c->Request.Type.Type = cmd_type;
  2227. if (cmd_type == TYPE_CMD) {
  2228. switch (cmd) {
  2229. case CISS_INQUIRY:
  2230. /* are we trying to read a vital product page */
  2231. if (page_code != 0) {
  2232. c->Request.CDB[1] = 0x01;
  2233. c->Request.CDB[2] = page_code;
  2234. }
  2235. c->Request.CDBLen = 6;
  2236. c->Request.Type.Attribute = ATTR_SIMPLE;
  2237. c->Request.Type.Direction = XFER_READ;
  2238. c->Request.Timeout = 0;
  2239. c->Request.CDB[0] = CISS_INQUIRY;
  2240. c->Request.CDB[4] = size & 0xFF;
  2241. break;
  2242. case CISS_REPORT_LOG:
  2243. case CISS_REPORT_PHYS:
  2244. /* Talking to controller so It's a physical command
  2245. mode = 00 target = 0. Nothing to write.
  2246. */
  2247. c->Request.CDBLen = 12;
  2248. c->Request.Type.Attribute = ATTR_SIMPLE;
  2249. c->Request.Type.Direction = XFER_READ;
  2250. c->Request.Timeout = 0;
  2251. c->Request.CDB[0] = cmd;
  2252. c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
  2253. c->Request.CDB[7] = (size >> 16) & 0xFF;
  2254. c->Request.CDB[8] = (size >> 8) & 0xFF;
  2255. c->Request.CDB[9] = size & 0xFF;
  2256. break;
  2257. case CCISS_READ_CAPACITY:
  2258. c->Request.CDBLen = 10;
  2259. c->Request.Type.Attribute = ATTR_SIMPLE;
  2260. c->Request.Type.Direction = XFER_READ;
  2261. c->Request.Timeout = 0;
  2262. c->Request.CDB[0] = cmd;
  2263. break;
  2264. case CCISS_READ_CAPACITY_16:
  2265. c->Request.CDBLen = 16;
  2266. c->Request.Type.Attribute = ATTR_SIMPLE;
  2267. c->Request.Type.Direction = XFER_READ;
  2268. c->Request.Timeout = 0;
  2269. c->Request.CDB[0] = cmd;
  2270. c->Request.CDB[1] = 0x10;
  2271. c->Request.CDB[10] = (size >> 24) & 0xFF;
  2272. c->Request.CDB[11] = (size >> 16) & 0xFF;
  2273. c->Request.CDB[12] = (size >> 8) & 0xFF;
  2274. c->Request.CDB[13] = size & 0xFF;
  2275. c->Request.Timeout = 0;
  2276. c->Request.CDB[0] = cmd;
  2277. break;
  2278. case CCISS_CACHE_FLUSH:
  2279. c->Request.CDBLen = 12;
  2280. c->Request.Type.Attribute = ATTR_SIMPLE;
  2281. c->Request.Type.Direction = XFER_WRITE;
  2282. c->Request.Timeout = 0;
  2283. c->Request.CDB[0] = BMIC_WRITE;
  2284. c->Request.CDB[6] = BMIC_CACHE_FLUSH;
  2285. break;
  2286. case TEST_UNIT_READY:
  2287. c->Request.CDBLen = 6;
  2288. c->Request.Type.Attribute = ATTR_SIMPLE;
  2289. c->Request.Type.Direction = XFER_NONE;
  2290. c->Request.Timeout = 0;
  2291. break;
  2292. default:
  2293. dev_warn(&h->pdev->dev, "Unknown Command 0x%c\n", cmd);
  2294. return IO_ERROR;
  2295. }
  2296. } else if (cmd_type == TYPE_MSG) {
  2297. switch (cmd) {
  2298. case CCISS_ABORT_MSG:
  2299. c->Request.CDBLen = 12;
  2300. c->Request.Type.Attribute = ATTR_SIMPLE;
  2301. c->Request.Type.Direction = XFER_WRITE;
  2302. c->Request.Timeout = 0;
  2303. c->Request.CDB[0] = cmd; /* abort */
  2304. c->Request.CDB[1] = 0; /* abort a command */
  2305. /* buff contains the tag of the command to abort */
  2306. memcpy(&c->Request.CDB[4], buff, 8);
  2307. break;
  2308. case CCISS_RESET_MSG:
  2309. c->Request.CDBLen = 16;
  2310. c->Request.Type.Attribute = ATTR_SIMPLE;
  2311. c->Request.Type.Direction = XFER_NONE;
  2312. c->Request.Timeout = 0;
  2313. memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
  2314. c->Request.CDB[0] = cmd; /* reset */
  2315. c->Request.CDB[1] = CCISS_RESET_TYPE_TARGET;
  2316. break;
  2317. case CCISS_NOOP_MSG:
  2318. c->Request.CDBLen = 1;
  2319. c->Request.Type.Attribute = ATTR_SIMPLE;
  2320. c->Request.Type.Direction = XFER_WRITE;
  2321. c->Request.Timeout = 0;
  2322. c->Request.CDB[0] = cmd;
  2323. break;
  2324. default:
  2325. dev_warn(&h->pdev->dev,
  2326. "unknown message type %d\n", cmd);
  2327. return IO_ERROR;
  2328. }
  2329. } else {
  2330. dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
  2331. return IO_ERROR;
  2332. }
  2333. /* Fill in the scatter gather information */
  2334. if (size > 0) {
  2335. buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
  2336. buff, size,
  2337. PCI_DMA_BIDIRECTIONAL);
  2338. c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
  2339. c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
  2340. c->SG[0].Len = size;
  2341. c->SG[0].Ext = 0; /* we are not chaining */
  2342. }
  2343. return status;
  2344. }
  2345. static int __devinit cciss_send_reset(ctlr_info_t *h, unsigned char *scsi3addr,
  2346. u8 reset_type)
  2347. {
  2348. CommandList_struct *c;
  2349. int return_status;
  2350. c = cmd_alloc(h);
  2351. if (!c)
  2352. return -ENOMEM;
  2353. return_status = fill_cmd(h, c, CCISS_RESET_MSG, NULL, 0, 0,
  2354. CTLR_LUNID, TYPE_MSG);
  2355. c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
  2356. if (return_status != IO_OK) {
  2357. cmd_special_free(h, c);
  2358. return return_status;
  2359. }
  2360. c->waiting = NULL;
  2361. enqueue_cmd_and_start_io(h, c);
  2362. /* Don't wait for completion, the reset won't complete. Don't free
  2363. * the command either. This is the last command we will send before
  2364. * re-initializing everything, so it doesn't matter and won't leak.
  2365. */
  2366. return 0;
  2367. }
  2368. static int check_target_status(ctlr_info_t *h, CommandList_struct *c)
  2369. {
  2370. switch (c->err_info->ScsiStatus) {
  2371. case SAM_STAT_GOOD:
  2372. return IO_OK;
  2373. case SAM_STAT_CHECK_CONDITION:
  2374. switch (0xf & c->err_info->SenseInfo[2]) {
  2375. case 0: return IO_OK; /* no sense */
  2376. case 1: return IO_OK; /* recovered error */
  2377. default:
  2378. if (check_for_unit_attention(h, c))
  2379. return IO_NEEDS_RETRY;
  2380. dev_warn(&h->pdev->dev, "cmd 0x%02x "
  2381. "check condition, sense key = 0x%02x\n",
  2382. c->Request.CDB[0], c->err_info->SenseInfo[2]);
  2383. }
  2384. break;
  2385. default:
  2386. dev_warn(&h->pdev->dev, "cmd 0x%02x"
  2387. "scsi status = 0x%02x\n",
  2388. c->Request.CDB[0], c->err_info->ScsiStatus);
  2389. break;
  2390. }
  2391. return IO_ERROR;
  2392. }
  2393. static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c)
  2394. {
  2395. int return_status = IO_OK;
  2396. if (c->err_info->CommandStatus == CMD_SUCCESS)
  2397. return IO_OK;
  2398. switch (c->err_info->CommandStatus) {
  2399. case CMD_TARGET_STATUS:
  2400. return_status = check_target_status(h, c);
  2401. break;
  2402. case CMD_DATA_UNDERRUN:
  2403. case CMD_DATA_OVERRUN:
  2404. /* expected for inquiry and report lun commands */
  2405. break;
  2406. case CMD_INVALID:
  2407. dev_warn(&h->pdev->dev, "cmd 0x%02x is "
  2408. "reported invalid\n", c->Request.CDB[0]);
  2409. return_status = IO_ERROR;
  2410. break;
  2411. case CMD_PROTOCOL_ERR:
  2412. dev_warn(&h->pdev->dev, "cmd 0x%02x has "
  2413. "protocol error\n", c->Request.CDB[0]);
  2414. return_status = IO_ERROR;
  2415. break;
  2416. case CMD_HARDWARE_ERR:
  2417. dev_warn(&h->pdev->dev, "cmd 0x%02x had "
  2418. " hardware error\n", c->Request.CDB[0]);
  2419. return_status = IO_ERROR;
  2420. break;
  2421. case CMD_CONNECTION_LOST:
  2422. dev_warn(&h->pdev->dev, "cmd 0x%02x had "
  2423. "connection lost\n", c->Request.CDB[0]);
  2424. return_status = IO_ERROR;
  2425. break;
  2426. case CMD_ABORTED:
  2427. dev_warn(&h->pdev->dev, "cmd 0x%02x was "
  2428. "aborted\n", c->Request.CDB[0]);
  2429. return_status = IO_ERROR;
  2430. break;
  2431. case CMD_ABORT_FAILED:
  2432. dev_warn(&h->pdev->dev, "cmd 0x%02x reports "
  2433. "abort failed\n", c->Request.CDB[0]);
  2434. return_status = IO_ERROR;
  2435. break;
  2436. case CMD_UNSOLICITED_ABORT:
  2437. dev_warn(&h->pdev->dev, "unsolicited abort 0x%02x\n",
  2438. c->Request.CDB[0]);
  2439. return_status = IO_NEEDS_RETRY;
  2440. break;
  2441. case CMD_UNABORTABLE:
  2442. dev_warn(&h->pdev->dev, "cmd unabortable\n");
  2443. return_status = IO_ERROR;
  2444. break;
  2445. default:
  2446. dev_warn(&h->pdev->dev, "cmd 0x%02x returned "
  2447. "unknown status %x\n", c->Request.CDB[0],
  2448. c->err_info->CommandStatus);
  2449. return_status = IO_ERROR;
  2450. }
  2451. return return_status;
  2452. }
  2453. static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
  2454. int attempt_retry)
  2455. {
  2456. DECLARE_COMPLETION_ONSTACK(wait);
  2457. u64bit buff_dma_handle;
  2458. int return_status = IO_OK;
  2459. resend_cmd2:
  2460. c->waiting = &wait;
  2461. enqueue_cmd_and_start_io(h, c);
  2462. wait_for_completion(&wait);
  2463. if (c->err_info->CommandStatus == 0 || !attempt_retry)
  2464. goto command_done;
  2465. return_status = process_sendcmd_error(h, c);
  2466. if (return_status == IO_NEEDS_RETRY &&
  2467. c->retry_count < MAX_CMD_RETRIES) {
  2468. dev_warn(&h->pdev->dev, "retrying 0x%02x\n",
  2469. c->Request.CDB[0]);
  2470. c->retry_count++;
  2471. /* erase the old error information */
  2472. memset(c->err_info, 0, sizeof(ErrorInfo_struct));
  2473. return_status = IO_OK;
  2474. INIT_COMPLETION(wait);
  2475. goto resend_cmd2;
  2476. }
  2477. command_done:
  2478. /* unlock the buffers from DMA */
  2479. buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
  2480. buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
  2481. pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
  2482. c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
  2483. return return_status;
  2484. }
  2485. static int sendcmd_withirq(ctlr_info_t *h, __u8 cmd, void *buff, size_t size,
  2486. __u8 page_code, unsigned char scsi3addr[],
  2487. int cmd_type)
  2488. {
  2489. CommandList_struct *c;
  2490. int return_status;
  2491. c = cmd_special_alloc(h);
  2492. if (!c)
  2493. return -ENOMEM;
  2494. return_status = fill_cmd(h, c, cmd, buff, size, page_code,
  2495. scsi3addr, cmd_type);
  2496. if (return_status == IO_OK)
  2497. return_status = sendcmd_withirq_core(h, c, 1);
  2498. cmd_special_free(h, c);
  2499. return return_status;
  2500. }
  2501. static void cciss_geometry_inquiry(ctlr_info_t *h, int logvol,
  2502. sector_t total_size,
  2503. unsigned int block_size,
  2504. InquiryData_struct *inq_buff,
  2505. drive_info_struct *drv)
  2506. {
  2507. int return_code;
  2508. unsigned long t;
  2509. unsigned char scsi3addr[8];
  2510. memset(inq_buff, 0, sizeof(InquiryData_struct));
  2511. log_unit_to_scsi3addr(h, scsi3addr, logvol);
  2512. return_code = sendcmd_withirq(h, CISS_INQUIRY, inq_buff,
  2513. sizeof(*inq_buff), 0xC1, scsi3addr, TYPE_CMD);
  2514. if (return_code == IO_OK) {
  2515. if (inq_buff->data_byte[8] == 0xFF) {
  2516. dev_warn(&h->pdev->dev,
  2517. "reading geometry failed, volume "
  2518. "does not support reading geometry\n");
  2519. drv->heads = 255;
  2520. drv->sectors = 32; /* Sectors per track */
  2521. drv->cylinders = total_size + 1;
  2522. drv->raid_level = RAID_UNKNOWN;
  2523. } else {
  2524. drv->heads = inq_buff->data_byte[6];
  2525. drv->sectors = inq_buff->data_byte[7];
  2526. drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
  2527. drv->cylinders += inq_buff->data_byte[5];
  2528. drv->raid_level = inq_buff->data_byte[8];
  2529. }
  2530. drv->block_size = block_size;
  2531. drv->nr_blocks = total_size + 1;
  2532. t = drv->heads * drv->sectors;
  2533. if (t > 1) {
  2534. sector_t real_size = total_size + 1;
  2535. unsigned long rem = sector_div(real_size, t);
  2536. if (rem)
  2537. real_size++;
  2538. drv->cylinders = real_size;
  2539. }
  2540. } else { /* Get geometry failed */
  2541. dev_warn(&h->pdev->dev, "reading geometry failed\n");
  2542. }
  2543. }
  2544. static void
  2545. cciss_read_capacity(ctlr_info_t *h, int logvol, sector_t *total_size,
  2546. unsigned int *block_size)
  2547. {
  2548. ReadCapdata_struct *buf;
  2549. int return_code;
  2550. unsigned char scsi3addr[8];
  2551. buf = kzalloc(sizeof(ReadCapdata_struct), GFP_KERNEL);
  2552. if (!buf) {
  2553. dev_warn(&h->pdev->dev, "out of memory\n");
  2554. return;
  2555. }
  2556. log_unit_to_scsi3addr(h, scsi3addr, logvol);
  2557. return_code = sendcmd_withirq(h, CCISS_READ_CAPACITY, buf,
  2558. sizeof(ReadCapdata_struct), 0, scsi3addr, TYPE_CMD);
  2559. if (return_code == IO_OK) {
  2560. *total_size = be32_to_cpu(*(__be32 *) buf->total_size);
  2561. *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
  2562. } else { /* read capacity command failed */
  2563. dev_warn(&h->pdev->dev, "read capacity failed\n");
  2564. *total_size = 0;
  2565. *block_size = BLOCK_SIZE;
  2566. }
  2567. kfree(buf);
  2568. }
  2569. static void cciss_read_capacity_16(ctlr_info_t *h, int logvol,
  2570. sector_t *total_size, unsigned int *block_size)
  2571. {
  2572. ReadCapdata_struct_16 *buf;
  2573. int return_code;
  2574. unsigned char scsi3addr[8];
  2575. buf = kzalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL);
  2576. if (!buf) {
  2577. dev_warn(&h->pdev->dev, "out of memory\n");
  2578. return;
  2579. }
  2580. log_unit_to_scsi3addr(h, scsi3addr, logvol);
  2581. return_code = sendcmd_withirq(h, CCISS_READ_CAPACITY_16,
  2582. buf, sizeof(ReadCapdata_struct_16),
  2583. 0, scsi3addr, TYPE_CMD);
  2584. if (return_code == IO_OK) {
  2585. *total_size = be64_to_cpu(*(__be64 *) buf->total_size);
  2586. *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
  2587. } else { /* read capacity command failed */
  2588. dev_warn(&h->pdev->dev, "read capacity failed\n");
  2589. *total_size = 0;
  2590. *block_size = BLOCK_SIZE;
  2591. }
  2592. dev_info(&h->pdev->dev, " blocks= %llu block_size= %d\n",
  2593. (unsigned long long)*total_size+1, *block_size);
  2594. kfree(buf);
  2595. }
  2596. static int cciss_revalidate(struct gendisk *disk)
  2597. {
  2598. ctlr_info_t *h = get_host(disk);
  2599. drive_info_struct *drv = get_drv(disk);
  2600. int logvol;
  2601. int FOUND = 0;
  2602. unsigned int block_size;
  2603. sector_t total_size;
  2604. InquiryData_struct *inq_buff = NULL;
  2605. for (logvol = 0; logvol <= h->highest_lun; logvol++) {
  2606. if (!h->drv[logvol])
  2607. continue;
  2608. if (memcmp(h->drv[logvol]->LunID, drv->LunID,
  2609. sizeof(drv->LunID)) == 0) {
  2610. FOUND = 1;
  2611. break;
  2612. }
  2613. }
  2614. if (!FOUND)
  2615. return 1;
  2616. inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
  2617. if (inq_buff == NULL) {
  2618. dev_warn(&h->pdev->dev, "out of memory\n");
  2619. return 1;
  2620. }
  2621. if (h->cciss_read == CCISS_READ_10) {
  2622. cciss_read_capacity(h, logvol,
  2623. &total_size, &block_size);
  2624. } else {
  2625. cciss_read_capacity_16(h, logvol,
  2626. &total_size, &block_size);
  2627. }
  2628. cciss_geometry_inquiry(h, logvol, total_size, block_size,
  2629. inq_buff, drv);
  2630. blk_queue_logical_block_size(drv->queue, drv->block_size);
  2631. set_capacity(disk, drv->nr_blocks);
  2632. kfree(inq_buff);
  2633. return 0;
  2634. }
  2635. /*
  2636. * Map (physical) PCI mem into (virtual) kernel space
  2637. */
  2638. static void __iomem *remap_pci_mem(ulong base, ulong size)
  2639. {
  2640. ulong page_base = ((ulong) base) & PAGE_MASK;
  2641. ulong page_offs = ((ulong) base) - page_base;
  2642. void __iomem *page_remapped = ioremap(page_base, page_offs + size);
  2643. return page_remapped ? (page_remapped + page_offs) : NULL;
  2644. }
  2645. /*
  2646. * Takes jobs of the Q and sends them to the hardware, then puts it on
  2647. * the Q to wait for completion.
  2648. */
  2649. static void start_io(ctlr_info_t *h)
  2650. {
  2651. CommandList_struct *c;
  2652. while (!list_empty(&h->reqQ)) {
  2653. c = list_entry(h->reqQ.next, CommandList_struct, list);
  2654. /* can't do anything if fifo is full */
  2655. if ((h->access.fifo_full(h))) {
  2656. dev_warn(&h->pdev->dev, "fifo full\n");
  2657. break;
  2658. }
  2659. /* Get the first entry from the Request Q */
  2660. removeQ(c);
  2661. h->Qdepth--;
  2662. /* Tell the controller execute command */
  2663. h->access.submit_command(h, c);
  2664. /* Put job onto the completed Q */
  2665. addQ(&h->cmpQ, c);
  2666. }
  2667. }
  2668. /* Assumes that h->lock is held. */
  2669. /* Zeros out the error record and then resends the command back */
  2670. /* to the controller */
  2671. static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c)
  2672. {
  2673. /* erase the old error information */
  2674. memset(c->err_info, 0, sizeof(ErrorInfo_struct));
  2675. /* add it to software queue and then send it to the controller */
  2676. addQ(&h->reqQ, c);
  2677. h->Qdepth++;
  2678. if (h->Qdepth > h->maxQsinceinit)
  2679. h->maxQsinceinit = h->Qdepth;
  2680. start_io(h);
  2681. }
  2682. static inline unsigned int make_status_bytes(unsigned int scsi_status_byte,
  2683. unsigned int msg_byte, unsigned int host_byte,
  2684. unsigned int driver_byte)
  2685. {
  2686. /* inverse of macros in scsi.h */
  2687. return (scsi_status_byte & 0xff) |
  2688. ((msg_byte & 0xff) << 8) |
  2689. ((host_byte & 0xff) << 16) |
  2690. ((driver_byte & 0xff) << 24);
  2691. }
  2692. static inline int evaluate_target_status(ctlr_info_t *h,
  2693. CommandList_struct *cmd, int *retry_cmd)
  2694. {
  2695. unsigned char sense_key;
  2696. unsigned char status_byte, msg_byte, host_byte, driver_byte;
  2697. int error_value;
  2698. *retry_cmd = 0;
  2699. /* If we get in here, it means we got "target status", that is, scsi status */
  2700. status_byte = cmd->err_info->ScsiStatus;
  2701. driver_byte = DRIVER_OK;
  2702. msg_byte = cmd->err_info->CommandStatus; /* correct? seems too device specific */
  2703. if (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC)
  2704. host_byte = DID_PASSTHROUGH;
  2705. else
  2706. host_byte = DID_OK;
  2707. error_value = make_status_bytes(status_byte, msg_byte,
  2708. host_byte, driver_byte);
  2709. if (cmd->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) {
  2710. if (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC)
  2711. dev_warn(&h->pdev->dev, "cmd %p "
  2712. "has SCSI Status 0x%x\n",
  2713. cmd, cmd->err_info->ScsiStatus);
  2714. return error_value;
  2715. }
  2716. /* check the sense key */
  2717. sense_key = 0xf & cmd->err_info->SenseInfo[2];
  2718. /* no status or recovered error */
  2719. if (((sense_key == 0x0) || (sense_key == 0x1)) &&
  2720. (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC))
  2721. error_value = 0;
  2722. if (check_for_unit_attention(h, cmd)) {
  2723. *retry_cmd = !(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC);
  2724. return 0;
  2725. }
  2726. /* Not SG_IO or similar? */
  2727. if (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC) {
  2728. if (error_value != 0)
  2729. dev_warn(&h->pdev->dev, "cmd %p has CHECK CONDITION"
  2730. " sense key = 0x%x\n", cmd, sense_key);
  2731. return error_value;
  2732. }
  2733. /* SG_IO or similar, copy sense data back */
  2734. if (cmd->rq->sense) {
  2735. if (cmd->rq->sense_len > cmd->err_info->SenseLen)
  2736. cmd->rq->sense_len = cmd->err_info->SenseLen;
  2737. memcpy(cmd->rq->sense, cmd->err_info->SenseInfo,
  2738. cmd->rq->sense_len);
  2739. } else
  2740. cmd->rq->sense_len = 0;
  2741. return error_value;
  2742. }
  2743. /* checks the status of the job and calls complete buffers to mark all
  2744. * buffers for the completed job. Note that this function does not need
  2745. * to hold the hba/queue lock.
  2746. */
  2747. static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd,
  2748. int timeout)
  2749. {
  2750. int retry_cmd = 0;
  2751. struct request *rq = cmd->rq;
  2752. rq->errors = 0;
  2753. if (timeout)
  2754. rq->errors = make_status_bytes(0, 0, 0, DRIVER_TIMEOUT);
  2755. if (cmd->err_info->CommandStatus == 0) /* no error has occurred */
  2756. goto after_error_processing;
  2757. switch (cmd->err_info->CommandStatus) {
  2758. case CMD_TARGET_STATUS:
  2759. rq->errors = evaluate_target_status(h, cmd, &retry_cmd);
  2760. break;
  2761. case CMD_DATA_UNDERRUN:
  2762. if (cmd->rq->cmd_type == REQ_TYPE_FS) {
  2763. dev_warn(&h->pdev->dev, "cmd %p has"
  2764. " completed with data underrun "
  2765. "reported\n", cmd);
  2766. cmd->rq->resid_len = cmd->err_info->ResidualCnt;
  2767. }
  2768. break;
  2769. case CMD_DATA_OVERRUN:
  2770. if (cmd->rq->cmd_type == REQ_TYPE_FS)
  2771. dev_warn(&h->pdev->dev, "cciss: cmd %p has"
  2772. " completed with data overrun "
  2773. "reported\n", cmd);
  2774. break;
  2775. case CMD_INVALID:
  2776. dev_warn(&h->pdev->dev, "cciss: cmd %p is "
  2777. "reported invalid\n", cmd);
  2778. rq->errors = make_status_bytes(SAM_STAT_GOOD,
  2779. cmd->err_info->CommandStatus, DRIVER_OK,
  2780. (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
  2781. DID_PASSTHROUGH : DID_ERROR);
  2782. break;
  2783. case CMD_PROTOCOL_ERR:
  2784. dev_warn(&h->pdev->dev, "cciss: cmd %p has "
  2785. "protocol error\n", cmd);
  2786. rq->errors = make_status_bytes(SAM_STAT_GOOD,
  2787. cmd->err_info->CommandStatus, DRIVER_OK,
  2788. (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
  2789. DID_PASSTHROUGH : DID_ERROR);
  2790. break;
  2791. case CMD_HARDWARE_ERR:
  2792. dev_warn(&h->pdev->dev, "cciss: cmd %p had "
  2793. " hardware error\n", cmd);
  2794. rq->errors = make_status_bytes(SAM_STAT_GOOD,
  2795. cmd->err_info->CommandStatus, DRIVER_OK,
  2796. (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
  2797. DID_PASSTHROUGH : DID_ERROR);
  2798. break;
  2799. case CMD_CONNECTION_LOST:
  2800. dev_warn(&h->pdev->dev, "cciss: cmd %p had "
  2801. "connection lost\n", cmd);
  2802. rq->errors = make_status_bytes(SAM_STAT_GOOD,
  2803. cmd->err_info->CommandStatus, DRIVER_OK,
  2804. (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
  2805. DID_PASSTHROUGH : DID_ERROR);
  2806. break;
  2807. case CMD_ABORTED:
  2808. dev_warn(&h->pdev->dev, "cciss: cmd %p was "
  2809. "aborted\n", cmd);
  2810. rq->errors = make_status_bytes(SAM_STAT_GOOD,
  2811. cmd->err_info->CommandStatus, DRIVER_OK,
  2812. (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
  2813. DID_PASSTHROUGH : DID_ABORT);
  2814. break;
  2815. case CMD_ABORT_FAILED:
  2816. dev_warn(&h->pdev->dev, "cciss: cmd %p reports "
  2817. "abort failed\n", cmd);
  2818. rq->errors = make_status_bytes(SAM_STAT_GOOD,
  2819. cmd->err_info->CommandStatus, DRIVER_OK,
  2820. (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
  2821. DID_PASSTHROUGH : DID_ERROR);
  2822. break;
  2823. case CMD_UNSOLICITED_ABORT:
  2824. dev_warn(&h->pdev->dev, "cciss%d: unsolicited "
  2825. "abort %p\n", h->ctlr, cmd);
  2826. if (cmd->retry_count < MAX_CMD_RETRIES) {
  2827. retry_cmd = 1;
  2828. dev_warn(&h->pdev->dev, "retrying %p\n", cmd);
  2829. cmd->retry_count++;
  2830. } else
  2831. dev_warn(&h->pdev->dev,
  2832. "%p retried too many times\n", cmd);
  2833. rq->errors = make_status_bytes(SAM_STAT_GOOD,
  2834. cmd->err_info->CommandStatus, DRIVER_OK,
  2835. (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
  2836. DID_PASSTHROUGH : DID_ABORT);
  2837. break;
  2838. case CMD_TIMEOUT:
  2839. dev_warn(&h->pdev->dev, "cmd %p timedout\n", cmd);
  2840. rq->errors = make_status_bytes(SAM_STAT_GOOD,
  2841. cmd->err_info->CommandStatus, DRIVER_OK,
  2842. (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
  2843. DID_PASSTHROUGH : DID_ERROR);
  2844. break;
  2845. case CMD_UNABORTABLE:
  2846. dev_warn(&h->pdev->dev, "cmd %p unabortable\n", cmd);
  2847. rq->errors = make_status_bytes(SAM_STAT_GOOD,
  2848. cmd->err_info->CommandStatus, DRIVER_OK,
  2849. cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC ?
  2850. DID_PASSTHROUGH : DID_ERROR);
  2851. break;
  2852. default:
  2853. dev_warn(&h->pdev->dev, "cmd %p returned "
  2854. "unknown status %x\n", cmd,
  2855. cmd->err_info->CommandStatus);
  2856. rq->errors = make_status_bytes(SAM_STAT_GOOD,
  2857. cmd->err_info->CommandStatus, DRIVER_OK,
  2858. (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
  2859. DID_PASSTHROUGH : DID_ERROR);
  2860. }
  2861. after_error_processing:
  2862. /* We need to return this command */
  2863. if (retry_cmd) {
  2864. resend_cciss_cmd(h, cmd);
  2865. return;
  2866. }
  2867. cmd->rq->completion_data = cmd;
  2868. blk_complete_request(cmd->rq);
  2869. }
  2870. static inline u32 cciss_tag_contains_index(u32 tag)
  2871. {
  2872. #define DIRECT_LOOKUP_BIT 0x10
  2873. return tag & DIRECT_LOOKUP_BIT;
  2874. }
  2875. static inline u32 cciss_tag_to_index(u32 tag)
  2876. {
  2877. #define DIRECT_LOOKUP_SHIFT 5
  2878. return tag >> DIRECT_LOOKUP_SHIFT;
  2879. }
  2880. static inline u32 cciss_tag_discard_error_bits(ctlr_info_t *h, u32 tag)
  2881. {
  2882. #define CCISS_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
  2883. #define CCISS_SIMPLE_ERROR_BITS 0x03
  2884. if (likely(h->transMethod & CFGTBL_Trans_Performant))
  2885. return tag & ~CCISS_PERF_ERROR_BITS;
  2886. return tag & ~CCISS_SIMPLE_ERROR_BITS;
  2887. }
  2888. static inline void cciss_mark_tag_indexed(u32 *tag)
  2889. {
  2890. *tag |= DIRECT_LOOKUP_BIT;
  2891. }
  2892. static inline void cciss_set_tag_index(u32 *tag, u32 index)
  2893. {
  2894. *tag |= (index << DIRECT_LOOKUP_SHIFT);
  2895. }
  2896. /*
  2897. * Get a request and submit it to the controller.
  2898. */
  2899. static void do_cciss_request(struct request_queue *q)
  2900. {
  2901. ctlr_info_t *h = q->queuedata;
  2902. CommandList_struct *c;
  2903. sector_t start_blk;
  2904. int seg;
  2905. struct request *creq;
  2906. u64bit temp64;
  2907. struct scatterlist *tmp_sg;
  2908. SGDescriptor_struct *curr_sg;
  2909. drive_info_struct *drv;
  2910. int i, dir;
  2911. int sg_index = 0;
  2912. int chained = 0;
  2913. queue:
  2914. creq = blk_peek_request(q);
  2915. if (!creq)
  2916. goto startio;
  2917. BUG_ON(creq->nr_phys_segments > h->maxsgentries);
  2918. c = cmd_alloc(h);
  2919. if (!c)
  2920. goto full;
  2921. blk_start_request(creq);
  2922. tmp_sg = h->scatter_list[c->cmdindex];
  2923. spin_unlock_irq(q->queue_lock);
  2924. c->cmd_type = CMD_RWREQ;
  2925. c->rq = creq;
  2926. /* fill in the request */
  2927. drv = creq->rq_disk->private_data;
  2928. c->Header.ReplyQueue = 0; /* unused in simple mode */
  2929. /* got command from pool, so use the command block index instead */
  2930. /* for direct lookups. */
  2931. /* The first 2 bits are reserved for controller error reporting. */
  2932. cciss_set_tag_index(&c->Header.Tag.lower, c->cmdindex);
  2933. cciss_mark_tag_indexed(&c->Header.Tag.lower);
  2934. memcpy(&c->Header.LUN, drv->LunID, sizeof(drv->LunID));
  2935. c->Request.CDBLen = 10; /* 12 byte commands not in FW yet; */
  2936. c->Request.Type.Type = TYPE_CMD; /* It is a command. */
  2937. c->Request.Type.Attribute = ATTR_SIMPLE;
  2938. c->Request.Type.Direction =
  2939. (rq_data_dir(creq) == READ) ? XFER_READ : XFER_WRITE;
  2940. c->Request.Timeout = 0; /* Don't time out */
  2941. c->Request.CDB[0] =
  2942. (rq_data_dir(creq) == READ) ? h->cciss_read : h->cciss_write;
  2943. start_blk = blk_rq_pos(creq);
  2944. dev_dbg(&h->pdev->dev, "sector =%d nr_sectors=%d\n",
  2945. (int)blk_rq_pos(creq), (int)blk_rq_sectors(creq));
  2946. sg_init_table(tmp_sg, h->maxsgentries);
  2947. seg = blk_rq_map_sg(q, creq, tmp_sg);
  2948. /* get the DMA records for the setup */
  2949. if (c->Request.Type.Direction == XFER_READ)
  2950. dir = PCI_DMA_FROMDEVICE;
  2951. else
  2952. dir = PCI_DMA_TODEVICE;
  2953. curr_sg = c->SG;
  2954. sg_index = 0;
  2955. chained = 0;
  2956. for (i = 0; i < seg; i++) {
  2957. if (((sg_index+1) == (h->max_cmd_sgentries)) &&
  2958. !chained && ((seg - i) > 1)) {
  2959. /* Point to next chain block. */
  2960. curr_sg = h->cmd_sg_list[c->cmdindex];
  2961. sg_index = 0;
  2962. chained = 1;
  2963. }
  2964. curr_sg[sg_index].Len = tmp_sg[i].length;
  2965. temp64.val = (__u64) pci_map_page(h->pdev, sg_page(&tmp_sg[i]),
  2966. tmp_sg[i].offset,
  2967. tmp_sg[i].length, dir);
  2968. curr_sg[sg_index].Addr.lower = temp64.val32.lower;
  2969. curr_sg[sg_index].Addr.upper = temp64.val32.upper;
  2970. curr_sg[sg_index].Ext = 0; /* we are not chaining */
  2971. ++sg_index;
  2972. }
  2973. if (chained)
  2974. cciss_map_sg_chain_block(h, c, h->cmd_sg_list[c->cmdindex],
  2975. (seg - (h->max_cmd_sgentries - 1)) *
  2976. sizeof(SGDescriptor_struct));
  2977. /* track how many SG entries we are using */
  2978. if (seg > h->maxSG)
  2979. h->maxSG = seg;
  2980. dev_dbg(&h->pdev->dev, "Submitting %u sectors in %d segments "
  2981. "chained[%d]\n",
  2982. blk_rq_sectors(creq), seg, chained);
  2983. c->Header.SGTotal = seg + chained;
  2984. if (seg <= h->max_cmd_sgentries)
  2985. c->Header.SGList = c->Header.SGTotal;
  2986. else
  2987. c->Header.SGList = h->max_cmd_sgentries;
  2988. set_performant_mode(h, c);
  2989. if (likely(creq->cmd_type == REQ_TYPE_FS)) {
  2990. if(h->cciss_read == CCISS_READ_10) {
  2991. c->Request.CDB[1] = 0;
  2992. c->Request.CDB[2] = (start_blk >> 24) & 0xff; /* MSB */
  2993. c->Request.CDB[3] = (start_blk >> 16) & 0xff;
  2994. c->Request.CDB[4] = (start_blk >> 8) & 0xff;
  2995. c->Request.CDB[5] = start_blk & 0xff;
  2996. c->Request.CDB[6] = 0; /* (sect >> 24) & 0xff; MSB */
  2997. c->Request.CDB[7] = (blk_rq_sectors(creq) >> 8) & 0xff;
  2998. c->Request.CDB[8] = blk_rq_sectors(creq) & 0xff;
  2999. c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0;
  3000. } else {
  3001. u32 upper32 = upper_32_bits(start_blk);
  3002. c->Request.CDBLen = 16;
  3003. c->Request.CDB[1]= 0;
  3004. c->Request.CDB[2]= (upper32 >> 24) & 0xff; /* MSB */
  3005. c->Request.CDB[3]= (upper32 >> 16) & 0xff;
  3006. c->Request.CDB[4]= (upper32 >> 8) & 0xff;
  3007. c->Request.CDB[5]= upper32 & 0xff;
  3008. c->Request.CDB[6]= (start_blk >> 24) & 0xff;
  3009. c->Request.CDB[7]= (start_blk >> 16) & 0xff;
  3010. c->Request.CDB[8]= (start_blk >> 8) & 0xff;
  3011. c->Request.CDB[9]= start_blk & 0xff;
  3012. c->Request.CDB[10]= (blk_rq_sectors(creq) >> 24) & 0xff;
  3013. c->Request.CDB[11]= (blk_rq_sectors(creq) >> 16) & 0xff;
  3014. c->Request.CDB[12]= (blk_rq_sectors(creq) >> 8) & 0xff;
  3015. c->Request.CDB[13]= blk_rq_sectors(creq) & 0xff;
  3016. c->Request.CDB[14] = c->Request.CDB[15] = 0;
  3017. }
  3018. } else if (creq->cmd_type == REQ_TYPE_BLOCK_PC) {
  3019. c->Request.CDBLen = creq->cmd_len;
  3020. memcpy(c->Request.CDB, creq->cmd, BLK_MAX_CDB);
  3021. } else {
  3022. dev_warn(&h->pdev->dev, "bad request type %d\n",
  3023. creq->cmd_type);
  3024. BUG();
  3025. }
  3026. spin_lock_irq(q->queue_lock);
  3027. addQ(&h->reqQ, c);
  3028. h->Qdepth++;
  3029. if (h->Qdepth > h->maxQsinceinit)
  3030. h->maxQsinceinit = h->Qdepth;
  3031. goto queue;
  3032. full:
  3033. blk_stop_queue(q);
  3034. startio:
  3035. /* We will already have the driver lock here so not need
  3036. * to lock it.
  3037. */
  3038. start_io(h);
  3039. }
  3040. static inline unsigned long get_next_completion(ctlr_info_t *h)
  3041. {
  3042. return h->access.command_completed(h);
  3043. }
  3044. static inline int interrupt_pending(ctlr_info_t *h)
  3045. {
  3046. return h->access.intr_pending(h);
  3047. }
  3048. static inline long interrupt_not_for_us(ctlr_info_t *h)
  3049. {
  3050. return ((h->access.intr_pending(h) == 0) ||
  3051. (h->interrupts_enabled == 0));
  3052. }
  3053. static inline int bad_tag(ctlr_info_t *h, u32 tag_index,
  3054. u32 raw_tag)
  3055. {
  3056. if (unlikely(tag_index >= h->nr_cmds)) {
  3057. dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
  3058. return 1;
  3059. }
  3060. return 0;
  3061. }
  3062. static inline void finish_cmd(ctlr_info_t *h, CommandList_struct *c,
  3063. u32 raw_tag)
  3064. {
  3065. removeQ(c);
  3066. if (likely(c->cmd_type == CMD_RWREQ))
  3067. complete_command(h, c, 0);
  3068. else if (c->cmd_type == CMD_IOCTL_PEND)
  3069. complete(c->waiting);
  3070. #ifdef CONFIG_CISS_SCSI_TAPE
  3071. else if (c->cmd_type == CMD_SCSI)
  3072. complete_scsi_command(c, 0, raw_tag);
  3073. #endif
  3074. }
  3075. static inline u32 next_command(ctlr_info_t *h)
  3076. {
  3077. u32 a;
  3078. if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
  3079. return h->access.command_completed(h);
  3080. if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
  3081. a = *(h->reply_pool_head); /* Next cmd in ring buffer */
  3082. (h->reply_pool_head)++;
  3083. h->commands_outstanding--;
  3084. } else {
  3085. a = FIFO_EMPTY;
  3086. }
  3087. /* Check for wraparound */
  3088. if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
  3089. h->reply_pool_head = h->reply_pool;
  3090. h->reply_pool_wraparound ^= 1;
  3091. }
  3092. return a;
  3093. }
  3094. /* process completion of an indexed ("direct lookup") command */
  3095. static inline u32 process_indexed_cmd(ctlr_info_t *h, u32 raw_tag)
  3096. {
  3097. u32 tag_index;
  3098. CommandList_struct *c;
  3099. tag_index = cciss_tag_to_index(raw_tag);
  3100. if (bad_tag(h, tag_index, raw_tag))
  3101. return next_command(h);
  3102. c = h->cmd_pool + tag_index;
  3103. finish_cmd(h, c, raw_tag);
  3104. return next_command(h);
  3105. }
  3106. /* process completion of a non-indexed command */
  3107. static inline u32 process_nonindexed_cmd(ctlr_info_t *h, u32 raw_tag)
  3108. {
  3109. CommandList_struct *c = NULL;
  3110. __u32 busaddr_masked, tag_masked;
  3111. tag_masked = cciss_tag_discard_error_bits(h, raw_tag);
  3112. list_for_each_entry(c, &h->cmpQ, list) {
  3113. busaddr_masked = cciss_tag_discard_error_bits(h, c->busaddr);
  3114. if (busaddr_masked == tag_masked) {
  3115. finish_cmd(h, c, raw_tag);
  3116. return next_command(h);
  3117. }
  3118. }
  3119. bad_tag(h, h->nr_cmds + 1, raw_tag);
  3120. return next_command(h);
  3121. }
  3122. /* Some controllers, like p400, will give us one interrupt
  3123. * after a soft reset, even if we turned interrupts off.
  3124. * Only need to check for this in the cciss_xxx_discard_completions
  3125. * functions.
  3126. */
  3127. static int ignore_bogus_interrupt(ctlr_info_t *h)
  3128. {
  3129. if (likely(!reset_devices))
  3130. return 0;
  3131. if (likely(h->interrupts_enabled))
  3132. return 0;
  3133. dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
  3134. "(known firmware bug.) Ignoring.\n");
  3135. return 1;
  3136. }
  3137. static irqreturn_t cciss_intx_discard_completions(int irq, void *dev_id)
  3138. {
  3139. ctlr_info_t *h = dev_id;
  3140. unsigned long flags;
  3141. u32 raw_tag;
  3142. if (ignore_bogus_interrupt(h))
  3143. return IRQ_NONE;
  3144. if (interrupt_not_for_us(h))
  3145. return IRQ_NONE;
  3146. spin_lock_irqsave(&h->lock, flags);
  3147. while (interrupt_pending(h)) {
  3148. raw_tag = get_next_completion(h);
  3149. while (raw_tag != FIFO_EMPTY)
  3150. raw_tag = next_command(h);
  3151. }
  3152. spin_unlock_irqrestore(&h->lock, flags);
  3153. return IRQ_HANDLED;
  3154. }
  3155. static irqreturn_t cciss_msix_discard_completions(int irq, void *dev_id)
  3156. {
  3157. ctlr_info_t *h = dev_id;
  3158. unsigned long flags;
  3159. u32 raw_tag;
  3160. if (ignore_bogus_interrupt(h))
  3161. return IRQ_NONE;
  3162. spin_lock_irqsave(&h->lock, flags);
  3163. raw_tag = get_next_completion(h);
  3164. while (raw_tag != FIFO_EMPTY)
  3165. raw_tag = next_command(h);
  3166. spin_unlock_irqrestore(&h->lock, flags);
  3167. return IRQ_HANDLED;
  3168. }
  3169. static irqreturn_t do_cciss_intx(int irq, void *dev_id)
  3170. {
  3171. ctlr_info_t *h = dev_id;
  3172. unsigned long flags;
  3173. u32 raw_tag;
  3174. if (interrupt_not_for_us(h))
  3175. return IRQ_NONE;
  3176. spin_lock_irqsave(&h->lock, flags);
  3177. while (interrupt_pending(h)) {
  3178. raw_tag = get_next_completion(h);
  3179. while (raw_tag != FIFO_EMPTY) {
  3180. if (cciss_tag_contains_index(raw_tag))
  3181. raw_tag = process_indexed_cmd(h, raw_tag);
  3182. else
  3183. raw_tag = process_nonindexed_cmd(h, raw_tag);
  3184. }
  3185. }
  3186. spin_unlock_irqrestore(&h->lock, flags);
  3187. return IRQ_HANDLED;
  3188. }
  3189. /* Add a second interrupt handler for MSI/MSI-X mode. In this mode we never
  3190. * check the interrupt pending register because it is not set.
  3191. */
  3192. static irqreturn_t do_cciss_msix_intr(int irq, void *dev_id)
  3193. {
  3194. ctlr_info_t *h = dev_id;
  3195. unsigned long flags;
  3196. u32 raw_tag;
  3197. spin_lock_irqsave(&h->lock, flags);
  3198. raw_tag = get_next_completion(h);
  3199. while (raw_tag != FIFO_EMPTY) {
  3200. if (cciss_tag_contains_index(raw_tag))
  3201. raw_tag = process_indexed_cmd(h, raw_tag);
  3202. else
  3203. raw_tag = process_nonindexed_cmd(h, raw_tag);
  3204. }
  3205. spin_unlock_irqrestore(&h->lock, flags);
  3206. return IRQ_HANDLED;
  3207. }
  3208. /**
  3209. * add_to_scan_list() - add controller to rescan queue
  3210. * @h: Pointer to the controller.
  3211. *
  3212. * Adds the controller to the rescan queue if not already on the queue.
  3213. *
  3214. * returns 1 if added to the queue, 0 if skipped (could be on the
  3215. * queue already, or the controller could be initializing or shutting
  3216. * down).
  3217. **/
  3218. static int add_to_scan_list(struct ctlr_info *h)
  3219. {
  3220. struct ctlr_info *test_h;
  3221. int found = 0;
  3222. int ret = 0;
  3223. if (h->busy_initializing)
  3224. return 0;
  3225. if (!mutex_trylock(&h->busy_shutting_down))
  3226. return 0;
  3227. mutex_lock(&scan_mutex);
  3228. list_for_each_entry(test_h, &scan_q, scan_list) {
  3229. if (test_h == h) {
  3230. found = 1;
  3231. break;
  3232. }
  3233. }
  3234. if (!found && !h->busy_scanning) {
  3235. INIT_COMPLETION(h->scan_wait);
  3236. list_add_tail(&h->scan_list, &scan_q);
  3237. ret = 1;
  3238. }
  3239. mutex_unlock(&scan_mutex);
  3240. mutex_unlock(&h->busy_shutting_down);
  3241. return ret;
  3242. }
  3243. /**
  3244. * remove_from_scan_list() - remove controller from rescan queue
  3245. * @h: Pointer to the controller.
  3246. *
  3247. * Removes the controller from the rescan queue if present. Blocks if
  3248. * the controller is currently conducting a rescan. The controller
  3249. * can be in one of three states:
  3250. * 1. Doesn't need a scan
  3251. * 2. On the scan list, but not scanning yet (we remove it)
  3252. * 3. Busy scanning (and not on the list). In this case we want to wait for
  3253. * the scan to complete to make sure the scanning thread for this
  3254. * controller is completely idle.
  3255. **/
  3256. static void remove_from_scan_list(struct ctlr_info *h)
  3257. {
  3258. struct ctlr_info *test_h, *tmp_h;
  3259. mutex_lock(&scan_mutex);
  3260. list_for_each_entry_safe(test_h, tmp_h, &scan_q, scan_list) {
  3261. if (test_h == h) { /* state 2. */
  3262. list_del(&h->scan_list);
  3263. complete_all(&h->scan_wait);
  3264. mutex_unlock(&scan_mutex);
  3265. return;
  3266. }
  3267. }
  3268. if (h->busy_scanning) { /* state 3. */
  3269. mutex_unlock(&scan_mutex);
  3270. wait_for_completion(&h->scan_wait);
  3271. } else { /* state 1, nothing to do. */
  3272. mutex_unlock(&scan_mutex);
  3273. }
  3274. }
  3275. /**
  3276. * scan_thread() - kernel thread used to rescan controllers
  3277. * @data: Ignored.
  3278. *
  3279. * A kernel thread used scan for drive topology changes on
  3280. * controllers. The thread processes only one controller at a time
  3281. * using a queue. Controllers are added to the queue using
  3282. * add_to_scan_list() and removed from the queue either after done
  3283. * processing or using remove_from_scan_list().
  3284. *
  3285. * returns 0.
  3286. **/
  3287. static int scan_thread(void *data)
  3288. {
  3289. struct ctlr_info *h;
  3290. while (1) {
  3291. set_current_state(TASK_INTERRUPTIBLE);
  3292. schedule();
  3293. if (kthread_should_stop())
  3294. break;
  3295. while (1) {
  3296. mutex_lock(&scan_mutex);
  3297. if (list_empty(&scan_q)) {
  3298. mutex_unlock(&scan_mutex);
  3299. break;
  3300. }
  3301. h = list_entry(scan_q.next,
  3302. struct ctlr_info,
  3303. scan_list);
  3304. list_del(&h->scan_list);
  3305. h->busy_scanning = 1;
  3306. mutex_unlock(&scan_mutex);
  3307. rebuild_lun_table(h, 0, 0);
  3308. complete_all(&h->scan_wait);
  3309. mutex_lock(&scan_mutex);
  3310. h->busy_scanning = 0;
  3311. mutex_unlock(&scan_mutex);
  3312. }
  3313. }
  3314. return 0;
  3315. }
  3316. static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c)
  3317. {
  3318. if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
  3319. return 0;
  3320. switch (c->err_info->SenseInfo[12]) {
  3321. case STATE_CHANGED:
  3322. dev_warn(&h->pdev->dev, "a state change "
  3323. "detected, command retried\n");
  3324. return 1;
  3325. break;
  3326. case LUN_FAILED:
  3327. dev_warn(&h->pdev->dev, "LUN failure "
  3328. "detected, action required\n");
  3329. return 1;
  3330. break;
  3331. case REPORT_LUNS_CHANGED:
  3332. dev_warn(&h->pdev->dev, "report LUN data changed\n");
  3333. /*
  3334. * Here, we could call add_to_scan_list and wake up the scan thread,
  3335. * except that it's quite likely that we will get more than one
  3336. * REPORT_LUNS_CHANGED condition in quick succession, which means
  3337. * that those which occur after the first one will likely happen
  3338. * *during* the scan_thread's rescan. And the rescan code is not
  3339. * robust enough to restart in the middle, undoing what it has already
  3340. * done, and it's not clear that it's even possible to do this, since
  3341. * part of what it does is notify the block layer, which starts
  3342. * doing it's own i/o to read partition tables and so on, and the
  3343. * driver doesn't have visibility to know what might need undoing.
  3344. * In any event, if possible, it is horribly complicated to get right
  3345. * so we just don't do it for now.
  3346. *
  3347. * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
  3348. */
  3349. return 1;
  3350. break;
  3351. case POWER_OR_RESET:
  3352. dev_warn(&h->pdev->dev,
  3353. "a power on or device reset detected\n");
  3354. return 1;
  3355. break;
  3356. case UNIT_ATTENTION_CLEARED:
  3357. dev_warn(&h->pdev->dev,
  3358. "unit attention cleared by another initiator\n");
  3359. return 1;
  3360. break;
  3361. default:
  3362. dev_warn(&h->pdev->dev, "unknown unit attention detected\n");
  3363. return 1;
  3364. }
  3365. }
  3366. /*
  3367. * We cannot read the structure directly, for portability we must use
  3368. * the io functions.
  3369. * This is for debug only.
  3370. */
  3371. static void print_cfg_table(ctlr_info_t *h)
  3372. {
  3373. int i;
  3374. char temp_name[17];
  3375. CfgTable_struct *tb = h->cfgtable;
  3376. dev_dbg(&h->pdev->dev, "Controller Configuration information\n");
  3377. dev_dbg(&h->pdev->dev, "------------------------------------\n");
  3378. for (i = 0; i < 4; i++)
  3379. temp_name[i] = readb(&(tb->Signature[i]));
  3380. temp_name[4] = '\0';
  3381. dev_dbg(&h->pdev->dev, " Signature = %s\n", temp_name);
  3382. dev_dbg(&h->pdev->dev, " Spec Number = %d\n",
  3383. readl(&(tb->SpecValence)));
  3384. dev_dbg(&h->pdev->dev, " Transport methods supported = 0x%x\n",
  3385. readl(&(tb->TransportSupport)));
  3386. dev_dbg(&h->pdev->dev, " Transport methods active = 0x%x\n",
  3387. readl(&(tb->TransportActive)));
  3388. dev_dbg(&h->pdev->dev, " Requested transport Method = 0x%x\n",
  3389. readl(&(tb->HostWrite.TransportRequest)));
  3390. dev_dbg(&h->pdev->dev, " Coalesce Interrupt Delay = 0x%x\n",
  3391. readl(&(tb->HostWrite.CoalIntDelay)));
  3392. dev_dbg(&h->pdev->dev, " Coalesce Interrupt Count = 0x%x\n",
  3393. readl(&(tb->HostWrite.CoalIntCount)));
  3394. dev_dbg(&h->pdev->dev, " Max outstanding commands = 0x%d\n",
  3395. readl(&(tb->CmdsOutMax)));
  3396. dev_dbg(&h->pdev->dev, " Bus Types = 0x%x\n",
  3397. readl(&(tb->BusTypes)));
  3398. for (i = 0; i < 16; i++)
  3399. temp_name[i] = readb(&(tb->ServerName[i]));
  3400. temp_name[16] = '\0';
  3401. dev_dbg(&h->pdev->dev, " Server Name = %s\n", temp_name);
  3402. dev_dbg(&h->pdev->dev, " Heartbeat Counter = 0x%x\n\n\n",
  3403. readl(&(tb->HeartBeat)));
  3404. }
  3405. static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
  3406. {
  3407. int i, offset, mem_type, bar_type;
  3408. if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
  3409. return 0;
  3410. offset = 0;
  3411. for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
  3412. bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
  3413. if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
  3414. offset += 4;
  3415. else {
  3416. mem_type = pci_resource_flags(pdev, i) &
  3417. PCI_BASE_ADDRESS_MEM_TYPE_MASK;
  3418. switch (mem_type) {
  3419. case PCI_BASE_ADDRESS_MEM_TYPE_32:
  3420. case PCI_BASE_ADDRESS_MEM_TYPE_1M:
  3421. offset += 4; /* 32 bit */
  3422. break;
  3423. case PCI_BASE_ADDRESS_MEM_TYPE_64:
  3424. offset += 8;
  3425. break;
  3426. default: /* reserved in PCI 2.2 */
  3427. dev_warn(&pdev->dev,
  3428. "Base address is invalid\n");
  3429. return -1;
  3430. break;
  3431. }
  3432. }
  3433. if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
  3434. return i + 1;
  3435. }
  3436. return -1;
  3437. }
  3438. /* Fill in bucket_map[], given nsgs (the max number of
  3439. * scatter gather elements supported) and bucket[],
  3440. * which is an array of 8 integers. The bucket[] array
  3441. * contains 8 different DMA transfer sizes (in 16
  3442. * byte increments) which the controller uses to fetch
  3443. * commands. This function fills in bucket_map[], which
  3444. * maps a given number of scatter gather elements to one of
  3445. * the 8 DMA transfer sizes. The point of it is to allow the
  3446. * controller to only do as much DMA as needed to fetch the
  3447. * command, with the DMA transfer size encoded in the lower
  3448. * bits of the command address.
  3449. */
  3450. static void calc_bucket_map(int bucket[], int num_buckets,
  3451. int nsgs, int *bucket_map)
  3452. {
  3453. int i, j, b, size;
  3454. /* even a command with 0 SGs requires 4 blocks */
  3455. #define MINIMUM_TRANSFER_BLOCKS 4
  3456. #define NUM_BUCKETS 8
  3457. /* Note, bucket_map must have nsgs+1 entries. */
  3458. for (i = 0; i <= nsgs; i++) {
  3459. /* Compute size of a command with i SG entries */
  3460. size = i + MINIMUM_TRANSFER_BLOCKS;
  3461. b = num_buckets; /* Assume the biggest bucket */
  3462. /* Find the bucket that is just big enough */
  3463. for (j = 0; j < 8; j++) {
  3464. if (bucket[j] >= size) {
  3465. b = j;
  3466. break;
  3467. }
  3468. }
  3469. /* for a command with i SG entries, use bucket b. */
  3470. bucket_map[i] = b;
  3471. }
  3472. }
  3473. static void __devinit cciss_wait_for_mode_change_ack(ctlr_info_t *h)
  3474. {
  3475. int i;
  3476. /* under certain very rare conditions, this can take awhile.
  3477. * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
  3478. * as we enter this code.) */
  3479. for (i = 0; i < MAX_CONFIG_WAIT; i++) {
  3480. if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
  3481. break;
  3482. usleep_range(10000, 20000);
  3483. }
  3484. }
  3485. static __devinit void cciss_enter_performant_mode(ctlr_info_t *h,
  3486. u32 use_short_tags)
  3487. {
  3488. /* This is a bit complicated. There are 8 registers on
  3489. * the controller which we write to to tell it 8 different
  3490. * sizes of commands which there may be. It's a way of
  3491. * reducing the DMA done to fetch each command. Encoded into
  3492. * each command's tag are 3 bits which communicate to the controller
  3493. * which of the eight sizes that command fits within. The size of
  3494. * each command depends on how many scatter gather entries there are.
  3495. * Each SG entry requires 16 bytes. The eight registers are programmed
  3496. * with the number of 16-byte blocks a command of that size requires.
  3497. * The smallest command possible requires 5 such 16 byte blocks.
  3498. * the largest command possible requires MAXSGENTRIES + 4 16-byte
  3499. * blocks. Note, this only extends to the SG entries contained
  3500. * within the command block, and does not extend to chained blocks
  3501. * of SG elements. bft[] contains the eight values we write to
  3502. * the registers. They are not evenly distributed, but have more
  3503. * sizes for small commands, and fewer sizes for larger commands.
  3504. */
  3505. __u32 trans_offset;
  3506. int bft[8] = { 5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4};
  3507. /*
  3508. * 5 = 1 s/g entry or 4k
  3509. * 6 = 2 s/g entry or 8k
  3510. * 8 = 4 s/g entry or 16k
  3511. * 10 = 6 s/g entry or 24k
  3512. */
  3513. unsigned long register_value;
  3514. BUILD_BUG_ON(28 > MAXSGENTRIES + 4);
  3515. h->reply_pool_wraparound = 1; /* spec: init to 1 */
  3516. /* Controller spec: zero out this buffer. */
  3517. memset(h->reply_pool, 0, h->max_commands * sizeof(__u64));
  3518. h->reply_pool_head = h->reply_pool;
  3519. trans_offset = readl(&(h->cfgtable->TransMethodOffset));
  3520. calc_bucket_map(bft, ARRAY_SIZE(bft), h->maxsgentries,
  3521. h->blockFetchTable);
  3522. writel(bft[0], &h->transtable->BlockFetch0);
  3523. writel(bft[1], &h->transtable->BlockFetch1);
  3524. writel(bft[2], &h->transtable->BlockFetch2);
  3525. writel(bft[3], &h->transtable->BlockFetch3);
  3526. writel(bft[4], &h->transtable->BlockFetch4);
  3527. writel(bft[5], &h->transtable->BlockFetch5);
  3528. writel(bft[6], &h->transtable->BlockFetch6);
  3529. writel(bft[7], &h->transtable->BlockFetch7);
  3530. /* size of controller ring buffer */
  3531. writel(h->max_commands, &h->transtable->RepQSize);
  3532. writel(1, &h->transtable->RepQCount);
  3533. writel(0, &h->transtable->RepQCtrAddrLow32);
  3534. writel(0, &h->transtable->RepQCtrAddrHigh32);
  3535. writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
  3536. writel(0, &h->transtable->RepQAddr0High32);
  3537. writel(CFGTBL_Trans_Performant | use_short_tags,
  3538. &(h->cfgtable->HostWrite.TransportRequest));
  3539. writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
  3540. cciss_wait_for_mode_change_ack(h);
  3541. register_value = readl(&(h->cfgtable->TransportActive));
  3542. if (!(register_value & CFGTBL_Trans_Performant))
  3543. dev_warn(&h->pdev->dev, "cciss: unable to get board into"
  3544. " performant mode\n");
  3545. }
  3546. static void __devinit cciss_put_controller_into_performant_mode(ctlr_info_t *h)
  3547. {
  3548. __u32 trans_support;
  3549. dev_dbg(&h->pdev->dev, "Trying to put board into Performant mode\n");
  3550. /* Attempt to put controller into performant mode if supported */
  3551. /* Does board support performant mode? */
  3552. trans_support = readl(&(h->cfgtable->TransportSupport));
  3553. if (!(trans_support & PERFORMANT_MODE))
  3554. return;
  3555. dev_dbg(&h->pdev->dev, "Placing controller into performant mode\n");
  3556. /* Performant mode demands commands on a 32 byte boundary
  3557. * pci_alloc_consistent aligns on page boundarys already.
  3558. * Just need to check if divisible by 32
  3559. */
  3560. if ((sizeof(CommandList_struct) % 32) != 0) {
  3561. dev_warn(&h->pdev->dev, "%s %d %s\n",
  3562. "cciss info: command size[",
  3563. (int)sizeof(CommandList_struct),
  3564. "] not divisible by 32, no performant mode..\n");
  3565. return;
  3566. }
  3567. /* Performant mode ring buffer and supporting data structures */
  3568. h->reply_pool = (__u64 *)pci_alloc_consistent(
  3569. h->pdev, h->max_commands * sizeof(__u64),
  3570. &(h->reply_pool_dhandle));
  3571. /* Need a block fetch table for performant mode */
  3572. h->blockFetchTable = kmalloc(((h->maxsgentries+1) *
  3573. sizeof(__u32)), GFP_KERNEL);
  3574. if ((h->reply_pool == NULL) || (h->blockFetchTable == NULL))
  3575. goto clean_up;
  3576. cciss_enter_performant_mode(h,
  3577. trans_support & CFGTBL_Trans_use_short_tags);
  3578. /* Change the access methods to the performant access methods */
  3579. h->access = SA5_performant_access;
  3580. h->transMethod = CFGTBL_Trans_Performant;
  3581. return;
  3582. clean_up:
  3583. kfree(h->blockFetchTable);
  3584. if (h->reply_pool)
  3585. pci_free_consistent(h->pdev,
  3586. h->max_commands * sizeof(__u64),
  3587. h->reply_pool,
  3588. h->reply_pool_dhandle);
  3589. return;
  3590. } /* cciss_put_controller_into_performant_mode */
  3591. /* If MSI/MSI-X is supported by the kernel we will try to enable it on
  3592. * controllers that are capable. If not, we use IO-APIC mode.
  3593. */
  3594. static void __devinit cciss_interrupt_mode(ctlr_info_t *h)
  3595. {
  3596. #ifdef CONFIG_PCI_MSI
  3597. int err;
  3598. struct msix_entry cciss_msix_entries[4] = { {0, 0}, {0, 1},
  3599. {0, 2}, {0, 3}
  3600. };
  3601. /* Some boards advertise MSI but don't really support it */
  3602. if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
  3603. (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
  3604. goto default_int_mode;
  3605. if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
  3606. err = pci_enable_msix(h->pdev, cciss_msix_entries, 4);
  3607. if (!err) {
  3608. h->intr[0] = cciss_msix_entries[0].vector;
  3609. h->intr[1] = cciss_msix_entries[1].vector;
  3610. h->intr[2] = cciss_msix_entries[2].vector;
  3611. h->intr[3] = cciss_msix_entries[3].vector;
  3612. h->msix_vector = 1;
  3613. return;
  3614. }
  3615. if (err > 0) {
  3616. dev_warn(&h->pdev->dev,
  3617. "only %d MSI-X vectors available\n", err);
  3618. goto default_int_mode;
  3619. } else {
  3620. dev_warn(&h->pdev->dev,
  3621. "MSI-X init failed %d\n", err);
  3622. goto default_int_mode;
  3623. }
  3624. }
  3625. if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
  3626. if (!pci_enable_msi(h->pdev))
  3627. h->msi_vector = 1;
  3628. else
  3629. dev_warn(&h->pdev->dev, "MSI init failed\n");
  3630. }
  3631. default_int_mode:
  3632. #endif /* CONFIG_PCI_MSI */
  3633. /* if we get here we're going to use the default interrupt mode */
  3634. h->intr[PERF_MODE_INT] = h->pdev->irq;
  3635. return;
  3636. }
  3637. static int __devinit cciss_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
  3638. {
  3639. int i;
  3640. u32 subsystem_vendor_id, subsystem_device_id;
  3641. subsystem_vendor_id = pdev->subsystem_vendor;
  3642. subsystem_device_id = pdev->subsystem_device;
  3643. *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
  3644. subsystem_vendor_id;
  3645. for (i = 0; i < ARRAY_SIZE(products); i++)
  3646. if (*board_id == products[i].board_id)
  3647. return i;
  3648. dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x, ignoring.\n",
  3649. *board_id);
  3650. return -ENODEV;
  3651. }
  3652. static inline bool cciss_board_disabled(ctlr_info_t *h)
  3653. {
  3654. u16 command;
  3655. (void) pci_read_config_word(h->pdev, PCI_COMMAND, &command);
  3656. return ((command & PCI_COMMAND_MEMORY) == 0);
  3657. }
  3658. static int __devinit cciss_pci_find_memory_BAR(struct pci_dev *pdev,
  3659. unsigned long *memory_bar)
  3660. {
  3661. int i;
  3662. for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
  3663. if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
  3664. /* addressing mode bits already removed */
  3665. *memory_bar = pci_resource_start(pdev, i);
  3666. dev_dbg(&pdev->dev, "memory BAR = %lx\n",
  3667. *memory_bar);
  3668. return 0;
  3669. }
  3670. dev_warn(&pdev->dev, "no memory BAR found\n");
  3671. return -ENODEV;
  3672. }
  3673. static int __devinit cciss_wait_for_board_state(struct pci_dev *pdev,
  3674. void __iomem *vaddr, int wait_for_ready)
  3675. #define BOARD_READY 1
  3676. #define BOARD_NOT_READY 0
  3677. {
  3678. int i, iterations;
  3679. u32 scratchpad;
  3680. if (wait_for_ready)
  3681. iterations = CCISS_BOARD_READY_ITERATIONS;
  3682. else
  3683. iterations = CCISS_BOARD_NOT_READY_ITERATIONS;
  3684. for (i = 0; i < iterations; i++) {
  3685. scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
  3686. if (wait_for_ready) {
  3687. if (scratchpad == CCISS_FIRMWARE_READY)
  3688. return 0;
  3689. } else {
  3690. if (scratchpad != CCISS_FIRMWARE_READY)
  3691. return 0;
  3692. }
  3693. msleep(CCISS_BOARD_READY_POLL_INTERVAL_MSECS);
  3694. }
  3695. dev_warn(&pdev->dev, "board not ready, timed out.\n");
  3696. return -ENODEV;
  3697. }
  3698. static int __devinit cciss_find_cfg_addrs(struct pci_dev *pdev,
  3699. void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
  3700. u64 *cfg_offset)
  3701. {
  3702. *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
  3703. *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
  3704. *cfg_base_addr &= (u32) 0x0000ffff;
  3705. *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
  3706. if (*cfg_base_addr_index == -1) {
  3707. dev_warn(&pdev->dev, "cannot find cfg_base_addr_index, "
  3708. "*cfg_base_addr = 0x%08x\n", *cfg_base_addr);
  3709. return -ENODEV;
  3710. }
  3711. return 0;
  3712. }
  3713. static int __devinit cciss_find_cfgtables(ctlr_info_t *h)
  3714. {
  3715. u64 cfg_offset;
  3716. u32 cfg_base_addr;
  3717. u64 cfg_base_addr_index;
  3718. u32 trans_offset;
  3719. int rc;
  3720. rc = cciss_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
  3721. &cfg_base_addr_index, &cfg_offset);
  3722. if (rc)
  3723. return rc;
  3724. h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
  3725. cfg_base_addr_index) + cfg_offset, sizeof(h->cfgtable));
  3726. if (!h->cfgtable)
  3727. return -ENOMEM;
  3728. rc = write_driver_ver_to_cfgtable(h->cfgtable);
  3729. if (rc)
  3730. return rc;
  3731. /* Find performant mode table. */
  3732. trans_offset = readl(&h->cfgtable->TransMethodOffset);
  3733. h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
  3734. cfg_base_addr_index)+cfg_offset+trans_offset,
  3735. sizeof(*h->transtable));
  3736. if (!h->transtable)
  3737. return -ENOMEM;
  3738. return 0;
  3739. }
  3740. static void __devinit cciss_get_max_perf_mode_cmds(struct ctlr_info *h)
  3741. {
  3742. h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
  3743. /* Limit commands in memory limited kdump scenario. */
  3744. if (reset_devices && h->max_commands > 32)
  3745. h->max_commands = 32;
  3746. if (h->max_commands < 16) {
  3747. dev_warn(&h->pdev->dev, "Controller reports "
  3748. "max supported commands of %d, an obvious lie. "
  3749. "Using 16. Ensure that firmware is up to date.\n",
  3750. h->max_commands);
  3751. h->max_commands = 16;
  3752. }
  3753. }
  3754. /* Interrogate the hardware for some limits:
  3755. * max commands, max SG elements without chaining, and with chaining,
  3756. * SG chain block size, etc.
  3757. */
  3758. static void __devinit cciss_find_board_params(ctlr_info_t *h)
  3759. {
  3760. cciss_get_max_perf_mode_cmds(h);
  3761. h->nr_cmds = h->max_commands - 4 - cciss_tape_cmds;
  3762. h->maxsgentries = readl(&(h->cfgtable->MaxSGElements));
  3763. /*
  3764. * Limit in-command s/g elements to 32 save dma'able memory.
  3765. * Howvever spec says if 0, use 31
  3766. */
  3767. h->max_cmd_sgentries = 31;
  3768. if (h->maxsgentries > 512) {
  3769. h->max_cmd_sgentries = 32;
  3770. h->chainsize = h->maxsgentries - h->max_cmd_sgentries + 1;
  3771. h->maxsgentries--; /* save one for chain pointer */
  3772. } else {
  3773. h->maxsgentries = 31; /* default to traditional values */
  3774. h->chainsize = 0;
  3775. }
  3776. }
  3777. static inline bool CISS_signature_present(ctlr_info_t *h)
  3778. {
  3779. if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
  3780. (readb(&h->cfgtable->Signature[1]) != 'I') ||
  3781. (readb(&h->cfgtable->Signature[2]) != 'S') ||
  3782. (readb(&h->cfgtable->Signature[3]) != 'S')) {
  3783. dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
  3784. return false;
  3785. }
  3786. return true;
  3787. }
  3788. /* Need to enable prefetch in the SCSI core for 6400 in x86 */
  3789. static inline void cciss_enable_scsi_prefetch(ctlr_info_t *h)
  3790. {
  3791. #ifdef CONFIG_X86
  3792. u32 prefetch;
  3793. prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
  3794. prefetch |= 0x100;
  3795. writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
  3796. #endif
  3797. }
  3798. /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
  3799. * in a prefetch beyond physical memory.
  3800. */
  3801. static inline void cciss_p600_dma_prefetch_quirk(ctlr_info_t *h)
  3802. {
  3803. u32 dma_prefetch;
  3804. __u32 dma_refetch;
  3805. if (h->board_id != 0x3225103C)
  3806. return;
  3807. dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
  3808. dma_prefetch |= 0x8000;
  3809. writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
  3810. pci_read_config_dword(h->pdev, PCI_COMMAND_PARITY, &dma_refetch);
  3811. dma_refetch |= 0x1;
  3812. pci_write_config_dword(h->pdev, PCI_COMMAND_PARITY, dma_refetch);
  3813. }
  3814. static int __devinit cciss_pci_init(ctlr_info_t *h)
  3815. {
  3816. int prod_index, err;
  3817. prod_index = cciss_lookup_board_id(h->pdev, &h->board_id);
  3818. if (prod_index < 0)
  3819. return -ENODEV;
  3820. h->product_name = products[prod_index].product_name;
  3821. h->access = *(products[prod_index].access);
  3822. if (cciss_board_disabled(h)) {
  3823. dev_warn(&h->pdev->dev, "controller appears to be disabled\n");
  3824. return -ENODEV;
  3825. }
  3826. err = pci_enable_device(h->pdev);
  3827. if (err) {
  3828. dev_warn(&h->pdev->dev, "Unable to Enable PCI device\n");
  3829. return err;
  3830. }
  3831. err = pci_request_regions(h->pdev, "cciss");
  3832. if (err) {
  3833. dev_warn(&h->pdev->dev,
  3834. "Cannot obtain PCI resources, aborting\n");
  3835. return err;
  3836. }
  3837. dev_dbg(&h->pdev->dev, "irq = %x\n", h->pdev->irq);
  3838. dev_dbg(&h->pdev->dev, "board_id = %x\n", h->board_id);
  3839. /* If the kernel supports MSI/MSI-X we will try to enable that functionality,
  3840. * else we use the IO-APIC interrupt assigned to us by system ROM.
  3841. */
  3842. cciss_interrupt_mode(h);
  3843. err = cciss_pci_find_memory_BAR(h->pdev, &h->paddr);
  3844. if (err)
  3845. goto err_out_free_res;
  3846. h->vaddr = remap_pci_mem(h->paddr, 0x250);
  3847. if (!h->vaddr) {
  3848. err = -ENOMEM;
  3849. goto err_out_free_res;
  3850. }
  3851. err = cciss_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
  3852. if (err)
  3853. goto err_out_free_res;
  3854. err = cciss_find_cfgtables(h);
  3855. if (err)
  3856. goto err_out_free_res;
  3857. print_cfg_table(h);
  3858. cciss_find_board_params(h);
  3859. if (!CISS_signature_present(h)) {
  3860. err = -ENODEV;
  3861. goto err_out_free_res;
  3862. }
  3863. cciss_enable_scsi_prefetch(h);
  3864. cciss_p600_dma_prefetch_quirk(h);
  3865. cciss_put_controller_into_performant_mode(h);
  3866. return 0;
  3867. err_out_free_res:
  3868. /*
  3869. * Deliberately omit pci_disable_device(): it does something nasty to
  3870. * Smart Array controllers that pci_enable_device does not undo
  3871. */
  3872. if (h->transtable)
  3873. iounmap(h->transtable);
  3874. if (h->cfgtable)
  3875. iounmap(h->cfgtable);
  3876. if (h->vaddr)
  3877. iounmap(h->vaddr);
  3878. pci_release_regions(h->pdev);
  3879. return err;
  3880. }
  3881. /* Function to find the first free pointer into our hba[] array
  3882. * Returns -1 if no free entries are left.
  3883. */
  3884. static int alloc_cciss_hba(struct pci_dev *pdev)
  3885. {
  3886. int i;
  3887. for (i = 0; i < MAX_CTLR; i++) {
  3888. if (!hba[i]) {
  3889. ctlr_info_t *h;
  3890. h = kzalloc(sizeof(ctlr_info_t), GFP_KERNEL);
  3891. if (!h)
  3892. goto Enomem;
  3893. hba[i] = h;
  3894. return i;
  3895. }
  3896. }
  3897. dev_warn(&pdev->dev, "This driver supports a maximum"
  3898. " of %d controllers.\n", MAX_CTLR);
  3899. return -1;
  3900. Enomem:
  3901. dev_warn(&pdev->dev, "out of memory.\n");
  3902. return -1;
  3903. }
  3904. static void free_hba(ctlr_info_t *h)
  3905. {
  3906. int i;
  3907. hba[h->ctlr] = NULL;
  3908. for (i = 0; i < h->highest_lun + 1; i++)
  3909. if (h->gendisk[i] != NULL)
  3910. put_disk(h->gendisk[i]);
  3911. kfree(h);
  3912. }
  3913. /* Send a message CDB to the firmware. */
  3914. static __devinit int cciss_message(struct pci_dev *pdev, unsigned char opcode, unsigned char type)
  3915. {
  3916. typedef struct {
  3917. CommandListHeader_struct CommandHeader;
  3918. RequestBlock_struct Request;
  3919. ErrDescriptor_struct ErrorDescriptor;
  3920. } Command;
  3921. static const size_t cmd_sz = sizeof(Command) + sizeof(ErrorInfo_struct);
  3922. Command *cmd;
  3923. dma_addr_t paddr64;
  3924. uint32_t paddr32, tag;
  3925. void __iomem *vaddr;
  3926. int i, err;
  3927. vaddr = ioremap_nocache(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0));
  3928. if (vaddr == NULL)
  3929. return -ENOMEM;
  3930. /* The Inbound Post Queue only accepts 32-bit physical addresses for the
  3931. CCISS commands, so they must be allocated from the lower 4GiB of
  3932. memory. */
  3933. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
  3934. if (err) {
  3935. iounmap(vaddr);
  3936. return -ENOMEM;
  3937. }
  3938. cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
  3939. if (cmd == NULL) {
  3940. iounmap(vaddr);
  3941. return -ENOMEM;
  3942. }
  3943. /* This must fit, because of the 32-bit consistent DMA mask. Also,
  3944. although there's no guarantee, we assume that the address is at
  3945. least 4-byte aligned (most likely, it's page-aligned). */
  3946. paddr32 = paddr64;
  3947. cmd->CommandHeader.ReplyQueue = 0;
  3948. cmd->CommandHeader.SGList = 0;
  3949. cmd->CommandHeader.SGTotal = 0;
  3950. cmd->CommandHeader.Tag.lower = paddr32;
  3951. cmd->CommandHeader.Tag.upper = 0;
  3952. memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
  3953. cmd->Request.CDBLen = 16;
  3954. cmd->Request.Type.Type = TYPE_MSG;
  3955. cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
  3956. cmd->Request.Type.Direction = XFER_NONE;
  3957. cmd->Request.Timeout = 0; /* Don't time out */
  3958. cmd->Request.CDB[0] = opcode;
  3959. cmd->Request.CDB[1] = type;
  3960. memset(&cmd->Request.CDB[2], 0, 14); /* the rest of the CDB is reserved */
  3961. cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(Command);
  3962. cmd->ErrorDescriptor.Addr.upper = 0;
  3963. cmd->ErrorDescriptor.Len = sizeof(ErrorInfo_struct);
  3964. writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
  3965. for (i = 0; i < 10; i++) {
  3966. tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
  3967. if ((tag & ~3) == paddr32)
  3968. break;
  3969. msleep(CCISS_POST_RESET_NOOP_TIMEOUT_MSECS);
  3970. }
  3971. iounmap(vaddr);
  3972. /* we leak the DMA buffer here ... no choice since the controller could
  3973. still complete the command. */
  3974. if (i == 10) {
  3975. dev_err(&pdev->dev,
  3976. "controller message %02x:%02x timed out\n",
  3977. opcode, type);
  3978. return -ETIMEDOUT;
  3979. }
  3980. pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
  3981. if (tag & 2) {
  3982. dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
  3983. opcode, type);
  3984. return -EIO;
  3985. }
  3986. dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
  3987. opcode, type);
  3988. return 0;
  3989. }
  3990. #define cciss_noop(p) cciss_message(p, 3, 0)
  3991. static int cciss_controller_hard_reset(struct pci_dev *pdev,
  3992. void * __iomem vaddr, u32 use_doorbell)
  3993. {
  3994. u16 pmcsr;
  3995. int pos;
  3996. if (use_doorbell) {
  3997. /* For everything after the P600, the PCI power state method
  3998. * of resetting the controller doesn't work, so we have this
  3999. * other way using the doorbell register.
  4000. */
  4001. dev_info(&pdev->dev, "using doorbell to reset controller\n");
  4002. writel(use_doorbell, vaddr + SA5_DOORBELL);
  4003. } else { /* Try to do it the PCI power state way */
  4004. /* Quoting from the Open CISS Specification: "The Power
  4005. * Management Control/Status Register (CSR) controls the power
  4006. * state of the device. The normal operating state is D0,
  4007. * CSR=00h. The software off state is D3, CSR=03h. To reset
  4008. * the controller, place the interface device in D3 then to D0,
  4009. * this causes a secondary PCI reset which will reset the
  4010. * controller." */
  4011. pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
  4012. if (pos == 0) {
  4013. dev_err(&pdev->dev,
  4014. "cciss_controller_hard_reset: "
  4015. "PCI PM not supported\n");
  4016. return -ENODEV;
  4017. }
  4018. dev_info(&pdev->dev, "using PCI PM to reset controller\n");
  4019. /* enter the D3hot power management state */
  4020. pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
  4021. pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
  4022. pmcsr |= PCI_D3hot;
  4023. pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
  4024. msleep(500);
  4025. /* enter the D0 power management state */
  4026. pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
  4027. pmcsr |= PCI_D0;
  4028. pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
  4029. /*
  4030. * The P600 requires a small delay when changing states.
  4031. * Otherwise we may think the board did not reset and we bail.
  4032. * This for kdump only and is particular to the P600.
  4033. */
  4034. msleep(500);
  4035. }
  4036. return 0;
  4037. }
  4038. static __devinit void init_driver_version(char *driver_version, int len)
  4039. {
  4040. memset(driver_version, 0, len);
  4041. strncpy(driver_version, "cciss " DRIVER_NAME, len - 1);
  4042. }
  4043. static __devinit int write_driver_ver_to_cfgtable(
  4044. CfgTable_struct __iomem *cfgtable)
  4045. {
  4046. char *driver_version;
  4047. int i, size = sizeof(cfgtable->driver_version);
  4048. driver_version = kmalloc(size, GFP_KERNEL);
  4049. if (!driver_version)
  4050. return -ENOMEM;
  4051. init_driver_version(driver_version, size);
  4052. for (i = 0; i < size; i++)
  4053. writeb(driver_version[i], &cfgtable->driver_version[i]);
  4054. kfree(driver_version);
  4055. return 0;
  4056. }
  4057. static __devinit void read_driver_ver_from_cfgtable(
  4058. CfgTable_struct __iomem *cfgtable, unsigned char *driver_ver)
  4059. {
  4060. int i;
  4061. for (i = 0; i < sizeof(cfgtable->driver_version); i++)
  4062. driver_ver[i] = readb(&cfgtable->driver_version[i]);
  4063. }
  4064. static __devinit int controller_reset_failed(
  4065. CfgTable_struct __iomem *cfgtable)
  4066. {
  4067. char *driver_ver, *old_driver_ver;
  4068. int rc, size = sizeof(cfgtable->driver_version);
  4069. old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
  4070. if (!old_driver_ver)
  4071. return -ENOMEM;
  4072. driver_ver = old_driver_ver + size;
  4073. /* After a reset, the 32 bytes of "driver version" in the cfgtable
  4074. * should have been changed, otherwise we know the reset failed.
  4075. */
  4076. init_driver_version(old_driver_ver, size);
  4077. read_driver_ver_from_cfgtable(cfgtable, driver_ver);
  4078. rc = !memcmp(driver_ver, old_driver_ver, size);
  4079. kfree(old_driver_ver);
  4080. return rc;
  4081. }
  4082. /* This does a hard reset of the controller using PCI power management
  4083. * states or using the doorbell register. */
  4084. static __devinit int cciss_kdump_hard_reset_controller(struct pci_dev *pdev)
  4085. {
  4086. u64 cfg_offset;
  4087. u32 cfg_base_addr;
  4088. u64 cfg_base_addr_index;
  4089. void __iomem *vaddr;
  4090. unsigned long paddr;
  4091. u32 misc_fw_support;
  4092. int rc;
  4093. CfgTable_struct __iomem *cfgtable;
  4094. u32 use_doorbell;
  4095. u32 board_id;
  4096. u16 command_register;
  4097. /* For controllers as old a the p600, this is very nearly
  4098. * the same thing as
  4099. *
  4100. * pci_save_state(pci_dev);
  4101. * pci_set_power_state(pci_dev, PCI_D3hot);
  4102. * pci_set_power_state(pci_dev, PCI_D0);
  4103. * pci_restore_state(pci_dev);
  4104. *
  4105. * For controllers newer than the P600, the pci power state
  4106. * method of resetting doesn't work so we have another way
  4107. * using the doorbell register.
  4108. */
  4109. /* Exclude 640x boards. These are two pci devices in one slot
  4110. * which share a battery backed cache module. One controls the
  4111. * cache, the other accesses the cache through the one that controls
  4112. * it. If we reset the one controlling the cache, the other will
  4113. * likely not be happy. Just forbid resetting this conjoined mess.
  4114. */
  4115. cciss_lookup_board_id(pdev, &board_id);
  4116. if (!ctlr_is_resettable(board_id)) {
  4117. dev_warn(&pdev->dev, "Cannot reset Smart Array 640x "
  4118. "due to shared cache module.");
  4119. return -ENODEV;
  4120. }
  4121. /* if controller is soft- but not hard resettable... */
  4122. if (!ctlr_is_hard_resettable(board_id))
  4123. return -ENOTSUPP; /* try soft reset later. */
  4124. /* Save the PCI command register */
  4125. pci_read_config_word(pdev, 4, &command_register);
  4126. /* Turn the board off. This is so that later pci_restore_state()
  4127. * won't turn the board on before the rest of config space is ready.
  4128. */
  4129. pci_disable_device(pdev);
  4130. pci_save_state(pdev);
  4131. /* find the first memory BAR, so we can find the cfg table */
  4132. rc = cciss_pci_find_memory_BAR(pdev, &paddr);
  4133. if (rc)
  4134. return rc;
  4135. vaddr = remap_pci_mem(paddr, 0x250);
  4136. if (!vaddr)
  4137. return -ENOMEM;
  4138. /* find cfgtable in order to check if reset via doorbell is supported */
  4139. rc = cciss_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
  4140. &cfg_base_addr_index, &cfg_offset);
  4141. if (rc)
  4142. goto unmap_vaddr;
  4143. cfgtable = remap_pci_mem(pci_resource_start(pdev,
  4144. cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
  4145. if (!cfgtable) {
  4146. rc = -ENOMEM;
  4147. goto unmap_vaddr;
  4148. }
  4149. rc = write_driver_ver_to_cfgtable(cfgtable);
  4150. if (rc)
  4151. goto unmap_vaddr;
  4152. /* If reset via doorbell register is supported, use that.
  4153. * There are two such methods. Favor the newest method.
  4154. */
  4155. misc_fw_support = readl(&cfgtable->misc_fw_support);
  4156. use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
  4157. if (use_doorbell) {
  4158. use_doorbell = DOORBELL_CTLR_RESET2;
  4159. } else {
  4160. use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
  4161. if (use_doorbell) {
  4162. dev_warn(&pdev->dev, "Controller claims that "
  4163. "'Bit 2 doorbell reset' is "
  4164. "supported, but not 'bit 5 doorbell reset'. "
  4165. "Firmware update is recommended.\n");
  4166. rc = -ENOTSUPP; /* use the soft reset */
  4167. goto unmap_cfgtable;
  4168. }
  4169. }
  4170. rc = cciss_controller_hard_reset(pdev, vaddr, use_doorbell);
  4171. if (rc)
  4172. goto unmap_cfgtable;
  4173. pci_restore_state(pdev);
  4174. rc = pci_enable_device(pdev);
  4175. if (rc) {
  4176. dev_warn(&pdev->dev, "failed to enable device.\n");
  4177. goto unmap_cfgtable;
  4178. }
  4179. pci_write_config_word(pdev, 4, command_register);
  4180. /* Some devices (notably the HP Smart Array 5i Controller)
  4181. need a little pause here */
  4182. msleep(CCISS_POST_RESET_PAUSE_MSECS);
  4183. /* Wait for board to become not ready, then ready. */
  4184. dev_info(&pdev->dev, "Waiting for board to reset.\n");
  4185. rc = cciss_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
  4186. if (rc) {
  4187. dev_warn(&pdev->dev, "Failed waiting for board to hard reset."
  4188. " Will try soft reset.\n");
  4189. rc = -ENOTSUPP; /* Not expected, but try soft reset later */
  4190. goto unmap_cfgtable;
  4191. }
  4192. rc = cciss_wait_for_board_state(pdev, vaddr, BOARD_READY);
  4193. if (rc) {
  4194. dev_warn(&pdev->dev,
  4195. "failed waiting for board to become ready "
  4196. "after hard reset\n");
  4197. goto unmap_cfgtable;
  4198. }
  4199. rc = controller_reset_failed(vaddr);
  4200. if (rc < 0)
  4201. goto unmap_cfgtable;
  4202. if (rc) {
  4203. dev_warn(&pdev->dev, "Unable to successfully hard reset "
  4204. "controller. Will try soft reset.\n");
  4205. rc = -ENOTSUPP; /* Not expected, but try soft reset later */
  4206. } else {
  4207. dev_info(&pdev->dev, "Board ready after hard reset.\n");
  4208. }
  4209. unmap_cfgtable:
  4210. iounmap(cfgtable);
  4211. unmap_vaddr:
  4212. iounmap(vaddr);
  4213. return rc;
  4214. }
  4215. static __devinit int cciss_init_reset_devices(struct pci_dev *pdev)
  4216. {
  4217. int rc, i;
  4218. if (!reset_devices)
  4219. return 0;
  4220. /* Reset the controller with a PCI power-cycle or via doorbell */
  4221. rc = cciss_kdump_hard_reset_controller(pdev);
  4222. /* -ENOTSUPP here means we cannot reset the controller
  4223. * but it's already (and still) up and running in
  4224. * "performant mode". Or, it might be 640x, which can't reset
  4225. * due to concerns about shared bbwc between 6402/6404 pair.
  4226. */
  4227. if (rc == -ENOTSUPP)
  4228. return rc; /* just try to do the kdump anyhow. */
  4229. if (rc)
  4230. return -ENODEV;
  4231. /* Now try to get the controller to respond to a no-op */
  4232. dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
  4233. for (i = 0; i < CCISS_POST_RESET_NOOP_RETRIES; i++) {
  4234. if (cciss_noop(pdev) == 0)
  4235. break;
  4236. else
  4237. dev_warn(&pdev->dev, "no-op failed%s\n",
  4238. (i < CCISS_POST_RESET_NOOP_RETRIES - 1 ?
  4239. "; re-trying" : ""));
  4240. msleep(CCISS_POST_RESET_NOOP_INTERVAL_MSECS);
  4241. }
  4242. return 0;
  4243. }
  4244. static __devinit int cciss_allocate_cmd_pool(ctlr_info_t *h)
  4245. {
  4246. h->cmd_pool_bits = kmalloc(
  4247. DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
  4248. sizeof(unsigned long), GFP_KERNEL);
  4249. h->cmd_pool = pci_alloc_consistent(h->pdev,
  4250. h->nr_cmds * sizeof(CommandList_struct),
  4251. &(h->cmd_pool_dhandle));
  4252. h->errinfo_pool = pci_alloc_consistent(h->pdev,
  4253. h->nr_cmds * sizeof(ErrorInfo_struct),
  4254. &(h->errinfo_pool_dhandle));
  4255. if ((h->cmd_pool_bits == NULL)
  4256. || (h->cmd_pool == NULL)
  4257. || (h->errinfo_pool == NULL)) {
  4258. dev_err(&h->pdev->dev, "out of memory");
  4259. return -ENOMEM;
  4260. }
  4261. return 0;
  4262. }
  4263. static __devinit int cciss_allocate_scatterlists(ctlr_info_t *h)
  4264. {
  4265. int i;
  4266. /* zero it, so that on free we need not know how many were alloc'ed */
  4267. h->scatter_list = kzalloc(h->max_commands *
  4268. sizeof(struct scatterlist *), GFP_KERNEL);
  4269. if (!h->scatter_list)
  4270. return -ENOMEM;
  4271. for (i = 0; i < h->nr_cmds; i++) {
  4272. h->scatter_list[i] = kmalloc(sizeof(struct scatterlist) *
  4273. h->maxsgentries, GFP_KERNEL);
  4274. if (h->scatter_list[i] == NULL) {
  4275. dev_err(&h->pdev->dev, "could not allocate "
  4276. "s/g lists\n");
  4277. return -ENOMEM;
  4278. }
  4279. }
  4280. return 0;
  4281. }
  4282. static void cciss_free_scatterlists(ctlr_info_t *h)
  4283. {
  4284. int i;
  4285. if (h->scatter_list) {
  4286. for (i = 0; i < h->nr_cmds; i++)
  4287. kfree(h->scatter_list[i]);
  4288. kfree(h->scatter_list);
  4289. }
  4290. }
  4291. static void cciss_free_cmd_pool(ctlr_info_t *h)
  4292. {
  4293. kfree(h->cmd_pool_bits);
  4294. if (h->cmd_pool)
  4295. pci_free_consistent(h->pdev,
  4296. h->nr_cmds * sizeof(CommandList_struct),
  4297. h->cmd_pool, h->cmd_pool_dhandle);
  4298. if (h->errinfo_pool)
  4299. pci_free_consistent(h->pdev,
  4300. h->nr_cmds * sizeof(ErrorInfo_struct),
  4301. h->errinfo_pool, h->errinfo_pool_dhandle);
  4302. }
  4303. static int cciss_request_irq(ctlr_info_t *h,
  4304. irqreturn_t (*msixhandler)(int, void *),
  4305. irqreturn_t (*intxhandler)(int, void *))
  4306. {
  4307. if (h->msix_vector || h->msi_vector) {
  4308. if (!request_irq(h->intr[PERF_MODE_INT], msixhandler,
  4309. IRQF_DISABLED, h->devname, h))
  4310. return 0;
  4311. dev_err(&h->pdev->dev, "Unable to get msi irq %d"
  4312. " for %s\n", h->intr[PERF_MODE_INT],
  4313. h->devname);
  4314. return -1;
  4315. }
  4316. if (!request_irq(h->intr[PERF_MODE_INT], intxhandler,
  4317. IRQF_DISABLED, h->devname, h))
  4318. return 0;
  4319. dev_err(&h->pdev->dev, "Unable to get irq %d for %s\n",
  4320. h->intr[PERF_MODE_INT], h->devname);
  4321. return -1;
  4322. }
  4323. static int __devinit cciss_kdump_soft_reset(ctlr_info_t *h)
  4324. {
  4325. if (cciss_send_reset(h, CTLR_LUNID, CCISS_RESET_TYPE_CONTROLLER)) {
  4326. dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
  4327. return -EIO;
  4328. }
  4329. dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
  4330. if (cciss_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
  4331. dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
  4332. return -1;
  4333. }
  4334. dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
  4335. if (cciss_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
  4336. dev_warn(&h->pdev->dev, "Board failed to become ready "
  4337. "after soft reset.\n");
  4338. return -1;
  4339. }
  4340. return 0;
  4341. }
  4342. static void cciss_undo_allocations_after_kdump_soft_reset(ctlr_info_t *h)
  4343. {
  4344. int ctlr = h->ctlr;
  4345. free_irq(h->intr[PERF_MODE_INT], h);
  4346. #ifdef CONFIG_PCI_MSI
  4347. if (h->msix_vector)
  4348. pci_disable_msix(h->pdev);
  4349. else if (h->msi_vector)
  4350. pci_disable_msi(h->pdev);
  4351. #endif /* CONFIG_PCI_MSI */
  4352. cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds);
  4353. cciss_free_scatterlists(h);
  4354. cciss_free_cmd_pool(h);
  4355. kfree(h->blockFetchTable);
  4356. if (h->reply_pool)
  4357. pci_free_consistent(h->pdev, h->max_commands * sizeof(__u64),
  4358. h->reply_pool, h->reply_pool_dhandle);
  4359. if (h->transtable)
  4360. iounmap(h->transtable);
  4361. if (h->cfgtable)
  4362. iounmap(h->cfgtable);
  4363. if (h->vaddr)
  4364. iounmap(h->vaddr);
  4365. unregister_blkdev(h->major, h->devname);
  4366. cciss_destroy_hba_sysfs_entry(h);
  4367. pci_release_regions(h->pdev);
  4368. kfree(h);
  4369. hba[ctlr] = NULL;
  4370. }
  4371. /*
  4372. * This is it. Find all the controllers and register them. I really hate
  4373. * stealing all these major device numbers.
  4374. * returns the number of block devices registered.
  4375. */
  4376. static int __devinit cciss_init_one(struct pci_dev *pdev,
  4377. const struct pci_device_id *ent)
  4378. {
  4379. int i;
  4380. int j = 0;
  4381. int rc;
  4382. int try_soft_reset = 0;
  4383. int dac, return_code;
  4384. InquiryData_struct *inq_buff;
  4385. ctlr_info_t *h;
  4386. unsigned long flags;
  4387. rc = cciss_init_reset_devices(pdev);
  4388. if (rc) {
  4389. if (rc != -ENOTSUPP)
  4390. return rc;
  4391. /* If the reset fails in a particular way (it has no way to do
  4392. * a proper hard reset, so returns -ENOTSUPP) we can try to do
  4393. * a soft reset once we get the controller configured up to the
  4394. * point that it can accept a command.
  4395. */
  4396. try_soft_reset = 1;
  4397. rc = 0;
  4398. }
  4399. reinit_after_soft_reset:
  4400. i = alloc_cciss_hba(pdev);
  4401. if (i < 0)
  4402. return -1;
  4403. h = hba[i];
  4404. h->pdev = pdev;
  4405. h->busy_initializing = 1;
  4406. INIT_LIST_HEAD(&h->cmpQ);
  4407. INIT_LIST_HEAD(&h->reqQ);
  4408. mutex_init(&h->busy_shutting_down);
  4409. if (cciss_pci_init(h) != 0)
  4410. goto clean_no_release_regions;
  4411. sprintf(h->devname, "cciss%d", i);
  4412. h->ctlr = i;
  4413. if (cciss_tape_cmds < 2)
  4414. cciss_tape_cmds = 2;
  4415. if (cciss_tape_cmds > 16)
  4416. cciss_tape_cmds = 16;
  4417. init_completion(&h->scan_wait);
  4418. if (cciss_create_hba_sysfs_entry(h))
  4419. goto clean0;
  4420. /* configure PCI DMA stuff */
  4421. if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)))
  4422. dac = 1;
  4423. else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))
  4424. dac = 0;
  4425. else {
  4426. dev_err(&h->pdev->dev, "no suitable DMA available\n");
  4427. goto clean1;
  4428. }
  4429. /*
  4430. * register with the major number, or get a dynamic major number
  4431. * by passing 0 as argument. This is done for greater than
  4432. * 8 controller support.
  4433. */
  4434. if (i < MAX_CTLR_ORIG)
  4435. h->major = COMPAQ_CISS_MAJOR + i;
  4436. rc = register_blkdev(h->major, h->devname);
  4437. if (rc == -EBUSY || rc == -EINVAL) {
  4438. dev_err(&h->pdev->dev,
  4439. "Unable to get major number %d for %s "
  4440. "on hba %d\n", h->major, h->devname, i);
  4441. goto clean1;
  4442. } else {
  4443. if (i >= MAX_CTLR_ORIG)
  4444. h->major = rc;
  4445. }
  4446. /* make sure the board interrupts are off */
  4447. h->access.set_intr_mask(h, CCISS_INTR_OFF);
  4448. rc = cciss_request_irq(h, do_cciss_msix_intr, do_cciss_intx);
  4449. if (rc)
  4450. goto clean2;
  4451. dev_info(&h->pdev->dev, "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
  4452. h->devname, pdev->device, pci_name(pdev),
  4453. h->intr[PERF_MODE_INT], dac ? "" : " not");
  4454. if (cciss_allocate_cmd_pool(h))
  4455. goto clean4;
  4456. if (cciss_allocate_scatterlists(h))
  4457. goto clean4;
  4458. h->cmd_sg_list = cciss_allocate_sg_chain_blocks(h,
  4459. h->chainsize, h->nr_cmds);
  4460. if (!h->cmd_sg_list && h->chainsize > 0)
  4461. goto clean4;
  4462. spin_lock_init(&h->lock);
  4463. /* Initialize the pdev driver private data.
  4464. have it point to h. */
  4465. pci_set_drvdata(pdev, h);
  4466. /* command and error info recs zeroed out before
  4467. they are used */
  4468. memset(h->cmd_pool_bits, 0,
  4469. DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG)
  4470. * sizeof(unsigned long));
  4471. h->num_luns = 0;
  4472. h->highest_lun = -1;
  4473. for (j = 0; j < CISS_MAX_LUN; j++) {
  4474. h->drv[j] = NULL;
  4475. h->gendisk[j] = NULL;
  4476. }
  4477. /* At this point, the controller is ready to take commands.
  4478. * Now, if reset_devices and the hard reset didn't work, try
  4479. * the soft reset and see if that works.
  4480. */
  4481. if (try_soft_reset) {
  4482. /* This is kind of gross. We may or may not get a completion
  4483. * from the soft reset command, and if we do, then the value
  4484. * from the fifo may or may not be valid. So, we wait 10 secs
  4485. * after the reset throwing away any completions we get during
  4486. * that time. Unregister the interrupt handler and register
  4487. * fake ones to scoop up any residual completions.
  4488. */
  4489. spin_lock_irqsave(&h->lock, flags);
  4490. h->access.set_intr_mask(h, CCISS_INTR_OFF);
  4491. spin_unlock_irqrestore(&h->lock, flags);
  4492. free_irq(h->intr[PERF_MODE_INT], h);
  4493. rc = cciss_request_irq(h, cciss_msix_discard_completions,
  4494. cciss_intx_discard_completions);
  4495. if (rc) {
  4496. dev_warn(&h->pdev->dev, "Failed to request_irq after "
  4497. "soft reset.\n");
  4498. goto clean4;
  4499. }
  4500. rc = cciss_kdump_soft_reset(h);
  4501. if (rc) {
  4502. dev_warn(&h->pdev->dev, "Soft reset failed.\n");
  4503. goto clean4;
  4504. }
  4505. dev_info(&h->pdev->dev, "Board READY.\n");
  4506. dev_info(&h->pdev->dev,
  4507. "Waiting for stale completions to drain.\n");
  4508. h->access.set_intr_mask(h, CCISS_INTR_ON);
  4509. msleep(10000);
  4510. h->access.set_intr_mask(h, CCISS_INTR_OFF);
  4511. rc = controller_reset_failed(h->cfgtable);
  4512. if (rc)
  4513. dev_info(&h->pdev->dev,
  4514. "Soft reset appears to have failed.\n");
  4515. /* since the controller's reset, we have to go back and re-init
  4516. * everything. Easiest to just forget what we've done and do it
  4517. * all over again.
  4518. */
  4519. cciss_undo_allocations_after_kdump_soft_reset(h);
  4520. try_soft_reset = 0;
  4521. if (rc)
  4522. /* don't go to clean4, we already unallocated */
  4523. return -ENODEV;
  4524. goto reinit_after_soft_reset;
  4525. }
  4526. cciss_scsi_setup(h);
  4527. /* Turn the interrupts on so we can service requests */
  4528. h->access.set_intr_mask(h, CCISS_INTR_ON);
  4529. /* Get the firmware version */
  4530. inq_buff = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
  4531. if (inq_buff == NULL) {
  4532. dev_err(&h->pdev->dev, "out of memory\n");
  4533. goto clean4;
  4534. }
  4535. return_code = sendcmd_withirq(h, CISS_INQUIRY, inq_buff,
  4536. sizeof(InquiryData_struct), 0, CTLR_LUNID, TYPE_CMD);
  4537. if (return_code == IO_OK) {
  4538. h->firm_ver[0] = inq_buff->data_byte[32];
  4539. h->firm_ver[1] = inq_buff->data_byte[33];
  4540. h->firm_ver[2] = inq_buff->data_byte[34];
  4541. h->firm_ver[3] = inq_buff->data_byte[35];
  4542. } else { /* send command failed */
  4543. dev_warn(&h->pdev->dev, "unable to determine firmware"
  4544. " version of controller\n");
  4545. }
  4546. kfree(inq_buff);
  4547. cciss_procinit(h);
  4548. h->cciss_max_sectors = 8192;
  4549. rebuild_lun_table(h, 1, 0);
  4550. h->busy_initializing = 0;
  4551. return 1;
  4552. clean4:
  4553. cciss_free_cmd_pool(h);
  4554. cciss_free_scatterlists(h);
  4555. cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds);
  4556. free_irq(h->intr[PERF_MODE_INT], h);
  4557. clean2:
  4558. unregister_blkdev(h->major, h->devname);
  4559. clean1:
  4560. cciss_destroy_hba_sysfs_entry(h);
  4561. clean0:
  4562. pci_release_regions(pdev);
  4563. clean_no_release_regions:
  4564. h->busy_initializing = 0;
  4565. /*
  4566. * Deliberately omit pci_disable_device(): it does something nasty to
  4567. * Smart Array controllers that pci_enable_device does not undo
  4568. */
  4569. pci_set_drvdata(pdev, NULL);
  4570. free_hba(h);
  4571. return -1;
  4572. }
  4573. static void cciss_shutdown(struct pci_dev *pdev)
  4574. {
  4575. ctlr_info_t *h;
  4576. char *flush_buf;
  4577. int return_code;
  4578. h = pci_get_drvdata(pdev);
  4579. flush_buf = kzalloc(4, GFP_KERNEL);
  4580. if (!flush_buf) {
  4581. dev_warn(&h->pdev->dev, "cache not flushed, out of memory.\n");
  4582. return;
  4583. }
  4584. /* write all data in the battery backed cache to disk */
  4585. memset(flush_buf, 0, 4);
  4586. return_code = sendcmd_withirq(h, CCISS_CACHE_FLUSH, flush_buf,
  4587. 4, 0, CTLR_LUNID, TYPE_CMD);
  4588. kfree(flush_buf);
  4589. if (return_code != IO_OK)
  4590. dev_warn(&h->pdev->dev, "Error flushing cache\n");
  4591. h->access.set_intr_mask(h, CCISS_INTR_OFF);
  4592. free_irq(h->intr[PERF_MODE_INT], h);
  4593. }
  4594. static void __devexit cciss_remove_one(struct pci_dev *pdev)
  4595. {
  4596. ctlr_info_t *h;
  4597. int i, j;
  4598. if (pci_get_drvdata(pdev) == NULL) {
  4599. dev_err(&pdev->dev, "Unable to remove device\n");
  4600. return;
  4601. }
  4602. h = pci_get_drvdata(pdev);
  4603. i = h->ctlr;
  4604. if (hba[i] == NULL) {
  4605. dev_err(&pdev->dev, "device appears to already be removed\n");
  4606. return;
  4607. }
  4608. mutex_lock(&h->busy_shutting_down);
  4609. remove_from_scan_list(h);
  4610. remove_proc_entry(h->devname, proc_cciss);
  4611. unregister_blkdev(h->major, h->devname);
  4612. /* remove it from the disk list */
  4613. for (j = 0; j < CISS_MAX_LUN; j++) {
  4614. struct gendisk *disk = h->gendisk[j];
  4615. if (disk) {
  4616. struct request_queue *q = disk->queue;
  4617. if (disk->flags & GENHD_FL_UP) {
  4618. cciss_destroy_ld_sysfs_entry(h, j, 1);
  4619. del_gendisk(disk);
  4620. }
  4621. if (q)
  4622. blk_cleanup_queue(q);
  4623. }
  4624. }
  4625. #ifdef CONFIG_CISS_SCSI_TAPE
  4626. cciss_unregister_scsi(h); /* unhook from SCSI subsystem */
  4627. #endif
  4628. cciss_shutdown(pdev);
  4629. #ifdef CONFIG_PCI_MSI
  4630. if (h->msix_vector)
  4631. pci_disable_msix(h->pdev);
  4632. else if (h->msi_vector)
  4633. pci_disable_msi(h->pdev);
  4634. #endif /* CONFIG_PCI_MSI */
  4635. iounmap(h->transtable);
  4636. iounmap(h->cfgtable);
  4637. iounmap(h->vaddr);
  4638. cciss_free_cmd_pool(h);
  4639. /* Free up sg elements */
  4640. for (j = 0; j < h->nr_cmds; j++)
  4641. kfree(h->scatter_list[j]);
  4642. kfree(h->scatter_list);
  4643. cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds);
  4644. kfree(h->blockFetchTable);
  4645. if (h->reply_pool)
  4646. pci_free_consistent(h->pdev, h->max_commands * sizeof(__u64),
  4647. h->reply_pool, h->reply_pool_dhandle);
  4648. /*
  4649. * Deliberately omit pci_disable_device(): it does something nasty to
  4650. * Smart Array controllers that pci_enable_device does not undo
  4651. */
  4652. pci_release_regions(pdev);
  4653. pci_set_drvdata(pdev, NULL);
  4654. cciss_destroy_hba_sysfs_entry(h);
  4655. mutex_unlock(&h->busy_shutting_down);
  4656. free_hba(h);
  4657. }
  4658. static struct pci_driver cciss_pci_driver = {
  4659. .name = "cciss",
  4660. .probe = cciss_init_one,
  4661. .remove = __devexit_p(cciss_remove_one),
  4662. .id_table = cciss_pci_device_id, /* id_table */
  4663. .shutdown = cciss_shutdown,
  4664. };
  4665. /*
  4666. * This is it. Register the PCI driver information for the cards we control
  4667. * the OS will call our registered routines when it finds one of our cards.
  4668. */
  4669. static int __init cciss_init(void)
  4670. {
  4671. int err;
  4672. /*
  4673. * The hardware requires that commands are aligned on a 64-bit
  4674. * boundary. Given that we use pci_alloc_consistent() to allocate an
  4675. * array of them, the size must be a multiple of 8 bytes.
  4676. */
  4677. BUILD_BUG_ON(sizeof(CommandList_struct) % COMMANDLIST_ALIGNMENT);
  4678. printk(KERN_INFO DRIVER_NAME "\n");
  4679. err = bus_register(&cciss_bus_type);
  4680. if (err)
  4681. return err;
  4682. /* Start the scan thread */
  4683. cciss_scan_thread = kthread_run(scan_thread, NULL, "cciss_scan");
  4684. if (IS_ERR(cciss_scan_thread)) {
  4685. err = PTR_ERR(cciss_scan_thread);
  4686. goto err_bus_unregister;
  4687. }
  4688. /* Register for our PCI devices */
  4689. err = pci_register_driver(&cciss_pci_driver);
  4690. if (err)
  4691. goto err_thread_stop;
  4692. return err;
  4693. err_thread_stop:
  4694. kthread_stop(cciss_scan_thread);
  4695. err_bus_unregister:
  4696. bus_unregister(&cciss_bus_type);
  4697. return err;
  4698. }
  4699. static void __exit cciss_cleanup(void)
  4700. {
  4701. int i;
  4702. pci_unregister_driver(&cciss_pci_driver);
  4703. /* double check that all controller entrys have been removed */
  4704. for (i = 0; i < MAX_CTLR; i++) {
  4705. if (hba[i] != NULL) {
  4706. dev_warn(&hba[i]->pdev->dev,
  4707. "had to remove controller\n");
  4708. cciss_remove_one(hba[i]->pdev);
  4709. }
  4710. }
  4711. kthread_stop(cciss_scan_thread);
  4712. if (proc_cciss)
  4713. remove_proc_entry("driver/cciss", NULL);
  4714. bus_unregister(&cciss_bus_type);
  4715. }
  4716. module_init(cciss_init);
  4717. module_exit(cciss_cleanup);