123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266 |
- /*
- * Written by: Patricia Gaughen <gone@us.ibm.com>, IBM Corporation
- * August 2002: added remote node KVA remap - Martin J. Bligh
- *
- * Copyright (C) 2002, IBM Corp.
- *
- * All rights reserved.
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful, but
- * WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
- * NON INFRINGEMENT. See the GNU General Public License for more
- * details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
- */
- #include <linux/bootmem.h>
- #include <linux/memblock.h>
- #include <linux/module.h>
- #include "numa_internal.h"
- #ifdef CONFIG_DISCONTIGMEM
- /*
- * 4) physnode_map - the mapping between a pfn and owning node
- * physnode_map keeps track of the physical memory layout of a generic
- * numa node on a 64Mb break (each element of the array will
- * represent 64Mb of memory and will be marked by the node id. so,
- * if the first gig is on node 0, and the second gig is on node 1
- * physnode_map will contain:
- *
- * physnode_map[0-15] = 0;
- * physnode_map[16-31] = 1;
- * physnode_map[32- ] = -1;
- */
- s8 physnode_map[MAX_ELEMENTS] __read_mostly = { [0 ... (MAX_ELEMENTS - 1)] = -1};
- EXPORT_SYMBOL(physnode_map);
- void memory_present(int nid, unsigned long start, unsigned long end)
- {
- unsigned long pfn;
- printk(KERN_INFO "Node: %d, start_pfn: %lx, end_pfn: %lx\n",
- nid, start, end);
- printk(KERN_DEBUG " Setting physnode_map array to node %d for pfns:\n", nid);
- printk(KERN_DEBUG " ");
- for (pfn = start; pfn < end; pfn += PAGES_PER_ELEMENT) {
- physnode_map[pfn / PAGES_PER_ELEMENT] = nid;
- printk(KERN_CONT "%lx ", pfn);
- }
- printk(KERN_CONT "\n");
- }
- unsigned long node_memmap_size_bytes(int nid, unsigned long start_pfn,
- unsigned long end_pfn)
- {
- unsigned long nr_pages = end_pfn - start_pfn;
- if (!nr_pages)
- return 0;
- return (nr_pages + 1) * sizeof(struct page);
- }
- #endif
- extern unsigned long highend_pfn, highstart_pfn;
- #define LARGE_PAGE_BYTES (PTRS_PER_PTE * PAGE_SIZE)
- static void *node_remap_start_vaddr[MAX_NUMNODES];
- void set_pmd_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags);
- /*
- * Remap memory allocator
- */
- static unsigned long node_remap_start_pfn[MAX_NUMNODES];
- static void *node_remap_end_vaddr[MAX_NUMNODES];
- static void *node_remap_alloc_vaddr[MAX_NUMNODES];
- /**
- * alloc_remap - Allocate remapped memory
- * @nid: NUMA node to allocate memory from
- * @size: The size of allocation
- *
- * Allocate @size bytes from the remap area of NUMA node @nid. The
- * size of the remap area is predetermined by init_alloc_remap() and
- * only the callers considered there should call this function. For
- * more info, please read the comment on top of init_alloc_remap().
- *
- * The caller must be ready to handle allocation failure from this
- * function and fall back to regular memory allocator in such cases.
- *
- * CONTEXT:
- * Single CPU early boot context.
- *
- * RETURNS:
- * Pointer to the allocated memory on success, %NULL on failure.
- */
- void *alloc_remap(int nid, unsigned long size)
- {
- void *allocation = node_remap_alloc_vaddr[nid];
- size = ALIGN(size, L1_CACHE_BYTES);
- if (!allocation || (allocation + size) > node_remap_end_vaddr[nid])
- return NULL;
- node_remap_alloc_vaddr[nid] += size;
- memset(allocation, 0, size);
- return allocation;
- }
- #ifdef CONFIG_HIBERNATION
- /**
- * resume_map_numa_kva - add KVA mapping to the temporary page tables created
- * during resume from hibernation
- * @pgd_base - temporary resume page directory
- */
- void resume_map_numa_kva(pgd_t *pgd_base)
- {
- int node;
- for_each_online_node(node) {
- unsigned long start_va, start_pfn, nr_pages, pfn;
- start_va = (unsigned long)node_remap_start_vaddr[node];
- start_pfn = node_remap_start_pfn[node];
- nr_pages = (node_remap_end_vaddr[node] -
- node_remap_start_vaddr[node]) >> PAGE_SHIFT;
- printk(KERN_DEBUG "%s: node %d\n", __func__, node);
- for (pfn = 0; pfn < nr_pages; pfn += PTRS_PER_PTE) {
- unsigned long vaddr = start_va + (pfn << PAGE_SHIFT);
- pgd_t *pgd = pgd_base + pgd_index(vaddr);
- pud_t *pud = pud_offset(pgd, vaddr);
- pmd_t *pmd = pmd_offset(pud, vaddr);
- set_pmd(pmd, pfn_pmd(start_pfn + pfn,
- PAGE_KERNEL_LARGE_EXEC));
- printk(KERN_DEBUG "%s: %08lx -> pfn %08lx\n",
- __func__, vaddr, start_pfn + pfn);
- }
- }
- }
- #endif
- /**
- * init_alloc_remap - Initialize remap allocator for a NUMA node
- * @nid: NUMA node to initizlie remap allocator for
- *
- * NUMA nodes may end up without any lowmem. As allocating pgdat and
- * memmap on a different node with lowmem is inefficient, a special
- * remap allocator is implemented which can be used by alloc_remap().
- *
- * For each node, the amount of memory which will be necessary for
- * pgdat and memmap is calculated and two memory areas of the size are
- * allocated - one in the node and the other in lowmem; then, the area
- * in the node is remapped to the lowmem area.
- *
- * As pgdat and memmap must be allocated in lowmem anyway, this
- * doesn't waste lowmem address space; however, the actual lowmem
- * which gets remapped over is wasted. The amount shouldn't be
- * problematic on machines this feature will be used.
- *
- * Initialization failure isn't fatal. alloc_remap() is used
- * opportunistically and the callers will fall back to other memory
- * allocation mechanisms on failure.
- */
- void __init init_alloc_remap(int nid, u64 start, u64 end)
- {
- unsigned long start_pfn = start >> PAGE_SHIFT;
- unsigned long end_pfn = end >> PAGE_SHIFT;
- unsigned long size, pfn;
- u64 node_pa, remap_pa;
- void *remap_va;
- /*
- * The acpi/srat node info can show hot-add memroy zones where
- * memory could be added but not currently present.
- */
- printk(KERN_DEBUG "node %d pfn: [%lx - %lx]\n",
- nid, start_pfn, end_pfn);
- /* calculate the necessary space aligned to large page size */
- size = node_memmap_size_bytes(nid, start_pfn, end_pfn);
- size += ALIGN(sizeof(pg_data_t), PAGE_SIZE);
- size = ALIGN(size, LARGE_PAGE_BYTES);
- /* allocate node memory and the lowmem remap area */
- node_pa = memblock_find_in_range(start, end, size, LARGE_PAGE_BYTES);
- if (node_pa == MEMBLOCK_ERROR) {
- pr_warning("remap_alloc: failed to allocate %lu bytes for node %d\n",
- size, nid);
- return;
- }
- memblock_x86_reserve_range(node_pa, node_pa + size, "KVA RAM");
- remap_pa = memblock_find_in_range(min_low_pfn << PAGE_SHIFT,
- max_low_pfn << PAGE_SHIFT,
- size, LARGE_PAGE_BYTES);
- if (remap_pa == MEMBLOCK_ERROR) {
- pr_warning("remap_alloc: failed to allocate %lu bytes remap area for node %d\n",
- size, nid);
- memblock_x86_free_range(node_pa, node_pa + size);
- return;
- }
- memblock_x86_reserve_range(remap_pa, remap_pa + size, "KVA PG");
- remap_va = phys_to_virt(remap_pa);
- /* perform actual remap */
- for (pfn = 0; pfn < size >> PAGE_SHIFT; pfn += PTRS_PER_PTE)
- set_pmd_pfn((unsigned long)remap_va + (pfn << PAGE_SHIFT),
- (node_pa >> PAGE_SHIFT) + pfn,
- PAGE_KERNEL_LARGE);
- /* initialize remap allocator parameters */
- node_remap_start_pfn[nid] = node_pa >> PAGE_SHIFT;
- node_remap_start_vaddr[nid] = remap_va;
- node_remap_end_vaddr[nid] = remap_va + size;
- node_remap_alloc_vaddr[nid] = remap_va;
- printk(KERN_DEBUG "remap_alloc: node %d [%08llx-%08llx) -> [%p-%p)\n",
- nid, node_pa, node_pa + size, remap_va, remap_va + size);
- }
- void __init initmem_init(void)
- {
- x86_numa_init();
- #ifdef CONFIG_HIGHMEM
- highstart_pfn = highend_pfn = max_pfn;
- if (max_pfn > max_low_pfn)
- highstart_pfn = max_low_pfn;
- printk(KERN_NOTICE "%ldMB HIGHMEM available.\n",
- pages_to_mb(highend_pfn - highstart_pfn));
- num_physpages = highend_pfn;
- high_memory = (void *) __va(highstart_pfn * PAGE_SIZE - 1) + 1;
- #else
- num_physpages = max_low_pfn;
- high_memory = (void *) __va(max_low_pfn * PAGE_SIZE - 1) + 1;
- #endif
- printk(KERN_NOTICE "%ldMB LOWMEM available.\n",
- pages_to_mb(max_low_pfn));
- printk(KERN_DEBUG "max_low_pfn = %lx, highstart_pfn = %lx\n",
- max_low_pfn, highstart_pfn);
- printk(KERN_DEBUG "Low memory ends at vaddr %08lx\n",
- (ulong) pfn_to_kaddr(max_low_pfn));
- printk(KERN_DEBUG "High memory starts at vaddr %08lx\n",
- (ulong) pfn_to_kaddr(highstart_pfn));
- setup_bootmem_allocator();
- }
|