process_32.c 9.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389
  1. /*
  2. * Copyright (C) 1995 Linus Torvalds
  3. *
  4. * Pentium III FXSR, SSE support
  5. * Gareth Hughes <gareth@valinux.com>, May 2000
  6. */
  7. /*
  8. * This file handles the architecture-dependent parts of process handling..
  9. */
  10. #include <linux/stackprotector.h>
  11. #include <linux/cpu.h>
  12. #include <linux/errno.h>
  13. #include <linux/sched.h>
  14. #include <linux/fs.h>
  15. #include <linux/kernel.h>
  16. #include <linux/mm.h>
  17. #include <linux/elfcore.h>
  18. #include <linux/smp.h>
  19. #include <linux/stddef.h>
  20. #include <linux/slab.h>
  21. #include <linux/vmalloc.h>
  22. #include <linux/user.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/delay.h>
  25. #include <linux/reboot.h>
  26. #include <linux/init.h>
  27. #include <linux/mc146818rtc.h>
  28. #include <linux/module.h>
  29. #include <linux/kallsyms.h>
  30. #include <linux/ptrace.h>
  31. #include <linux/personality.h>
  32. #include <linux/tick.h>
  33. #include <linux/percpu.h>
  34. #include <linux/prctl.h>
  35. #include <linux/ftrace.h>
  36. #include <linux/uaccess.h>
  37. #include <linux/io.h>
  38. #include <linux/kdebug.h>
  39. #include <asm/pgtable.h>
  40. #include <asm/system.h>
  41. #include <asm/ldt.h>
  42. #include <asm/processor.h>
  43. #include <asm/i387.h>
  44. #include <asm/desc.h>
  45. #ifdef CONFIG_MATH_EMULATION
  46. #include <asm/math_emu.h>
  47. #endif
  48. #include <linux/err.h>
  49. #include <asm/tlbflush.h>
  50. #include <asm/cpu.h>
  51. #include <asm/idle.h>
  52. #include <asm/syscalls.h>
  53. #include <asm/debugreg.h>
  54. asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
  55. /*
  56. * Return saved PC of a blocked thread.
  57. */
  58. unsigned long thread_saved_pc(struct task_struct *tsk)
  59. {
  60. return ((unsigned long *)tsk->thread.sp)[3];
  61. }
  62. #ifndef CONFIG_SMP
  63. static inline void play_dead(void)
  64. {
  65. BUG();
  66. }
  67. #endif
  68. /*
  69. * The idle thread. There's no useful work to be
  70. * done, so just try to conserve power and have a
  71. * low exit latency (ie sit in a loop waiting for
  72. * somebody to say that they'd like to reschedule)
  73. */
  74. void cpu_idle(void)
  75. {
  76. int cpu = smp_processor_id();
  77. /*
  78. * If we're the non-boot CPU, nothing set the stack canary up
  79. * for us. CPU0 already has it initialized but no harm in
  80. * doing it again. This is a good place for updating it, as
  81. * we wont ever return from this function (so the invalid
  82. * canaries already on the stack wont ever trigger).
  83. */
  84. boot_init_stack_canary();
  85. current_thread_info()->status |= TS_POLLING;
  86. /* endless idle loop with no priority at all */
  87. while (1) {
  88. tick_nohz_stop_sched_tick(1);
  89. while (!need_resched()) {
  90. check_pgt_cache();
  91. rmb();
  92. if (cpu_is_offline(cpu))
  93. play_dead();
  94. local_irq_disable();
  95. /* Don't trace irqs off for idle */
  96. stop_critical_timings();
  97. pm_idle();
  98. start_critical_timings();
  99. }
  100. tick_nohz_restart_sched_tick();
  101. preempt_enable_no_resched();
  102. schedule();
  103. preempt_disable();
  104. }
  105. }
  106. void __show_regs(struct pt_regs *regs, int all)
  107. {
  108. unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
  109. unsigned long d0, d1, d2, d3, d6, d7;
  110. unsigned long sp;
  111. unsigned short ss, gs;
  112. if (user_mode_vm(regs)) {
  113. sp = regs->sp;
  114. ss = regs->ss & 0xffff;
  115. gs = get_user_gs(regs);
  116. } else {
  117. sp = kernel_stack_pointer(regs);
  118. savesegment(ss, ss);
  119. savesegment(gs, gs);
  120. }
  121. show_regs_common();
  122. printk(KERN_DEFAULT "EIP: %04x:[<%08lx>] EFLAGS: %08lx CPU: %d\n",
  123. (u16)regs->cs, regs->ip, regs->flags,
  124. smp_processor_id());
  125. print_symbol("EIP is at %s\n", regs->ip);
  126. printk(KERN_DEFAULT "EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
  127. regs->ax, regs->bx, regs->cx, regs->dx);
  128. printk(KERN_DEFAULT "ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n",
  129. regs->si, regs->di, regs->bp, sp);
  130. printk(KERN_DEFAULT " DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x\n",
  131. (u16)regs->ds, (u16)regs->es, (u16)regs->fs, gs, ss);
  132. if (!all)
  133. return;
  134. cr0 = read_cr0();
  135. cr2 = read_cr2();
  136. cr3 = read_cr3();
  137. cr4 = read_cr4_safe();
  138. printk(KERN_DEFAULT "CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n",
  139. cr0, cr2, cr3, cr4);
  140. get_debugreg(d0, 0);
  141. get_debugreg(d1, 1);
  142. get_debugreg(d2, 2);
  143. get_debugreg(d3, 3);
  144. printk(KERN_DEFAULT "DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n",
  145. d0, d1, d2, d3);
  146. get_debugreg(d6, 6);
  147. get_debugreg(d7, 7);
  148. printk(KERN_DEFAULT "DR6: %08lx DR7: %08lx\n",
  149. d6, d7);
  150. }
  151. void release_thread(struct task_struct *dead_task)
  152. {
  153. BUG_ON(dead_task->mm);
  154. release_vm86_irqs(dead_task);
  155. }
  156. /*
  157. * This gets called before we allocate a new thread and copy
  158. * the current task into it.
  159. */
  160. void prepare_to_copy(struct task_struct *tsk)
  161. {
  162. unlazy_fpu(tsk);
  163. }
  164. int copy_thread(unsigned long clone_flags, unsigned long sp,
  165. unsigned long unused,
  166. struct task_struct *p, struct pt_regs *regs)
  167. {
  168. struct pt_regs *childregs;
  169. struct task_struct *tsk;
  170. int err;
  171. childregs = task_pt_regs(p);
  172. *childregs = *regs;
  173. childregs->ax = 0;
  174. childregs->sp = sp;
  175. p->thread.sp = (unsigned long) childregs;
  176. p->thread.sp0 = (unsigned long) (childregs+1);
  177. p->thread.ip = (unsigned long) ret_from_fork;
  178. task_user_gs(p) = get_user_gs(regs);
  179. p->thread.io_bitmap_ptr = NULL;
  180. tsk = current;
  181. err = -ENOMEM;
  182. memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
  183. if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
  184. p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
  185. IO_BITMAP_BYTES, GFP_KERNEL);
  186. if (!p->thread.io_bitmap_ptr) {
  187. p->thread.io_bitmap_max = 0;
  188. return -ENOMEM;
  189. }
  190. set_tsk_thread_flag(p, TIF_IO_BITMAP);
  191. }
  192. err = 0;
  193. /*
  194. * Set a new TLS for the child thread?
  195. */
  196. if (clone_flags & CLONE_SETTLS)
  197. err = do_set_thread_area(p, -1,
  198. (struct user_desc __user *)childregs->si, 0);
  199. if (err && p->thread.io_bitmap_ptr) {
  200. kfree(p->thread.io_bitmap_ptr);
  201. p->thread.io_bitmap_max = 0;
  202. }
  203. return err;
  204. }
  205. void
  206. start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
  207. {
  208. set_user_gs(regs, 0);
  209. regs->fs = 0;
  210. regs->ds = __USER_DS;
  211. regs->es = __USER_DS;
  212. regs->ss = __USER_DS;
  213. regs->cs = __USER_CS;
  214. regs->ip = new_ip;
  215. regs->sp = new_sp;
  216. /*
  217. * Free the old FP and other extended state
  218. */
  219. free_thread_xstate(current);
  220. }
  221. EXPORT_SYMBOL_GPL(start_thread);
  222. /*
  223. * switch_to(x,yn) should switch tasks from x to y.
  224. *
  225. * We fsave/fwait so that an exception goes off at the right time
  226. * (as a call from the fsave or fwait in effect) rather than to
  227. * the wrong process. Lazy FP saving no longer makes any sense
  228. * with modern CPU's, and this simplifies a lot of things (SMP
  229. * and UP become the same).
  230. *
  231. * NOTE! We used to use the x86 hardware context switching. The
  232. * reason for not using it any more becomes apparent when you
  233. * try to recover gracefully from saved state that is no longer
  234. * valid (stale segment register values in particular). With the
  235. * hardware task-switch, there is no way to fix up bad state in
  236. * a reasonable manner.
  237. *
  238. * The fact that Intel documents the hardware task-switching to
  239. * be slow is a fairly red herring - this code is not noticeably
  240. * faster. However, there _is_ some room for improvement here,
  241. * so the performance issues may eventually be a valid point.
  242. * More important, however, is the fact that this allows us much
  243. * more flexibility.
  244. *
  245. * The return value (in %ax) will be the "prev" task after
  246. * the task-switch, and shows up in ret_from_fork in entry.S,
  247. * for example.
  248. */
  249. __notrace_funcgraph struct task_struct *
  250. __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
  251. {
  252. struct thread_struct *prev = &prev_p->thread,
  253. *next = &next_p->thread;
  254. int cpu = smp_processor_id();
  255. struct tss_struct *tss = &per_cpu(init_tss, cpu);
  256. fpu_switch_t fpu;
  257. /* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
  258. fpu = switch_fpu_prepare(prev_p, next_p);
  259. /*
  260. * Reload esp0.
  261. */
  262. load_sp0(tss, next);
  263. /*
  264. * Save away %gs. No need to save %fs, as it was saved on the
  265. * stack on entry. No need to save %es and %ds, as those are
  266. * always kernel segments while inside the kernel. Doing this
  267. * before setting the new TLS descriptors avoids the situation
  268. * where we temporarily have non-reloadable segments in %fs
  269. * and %gs. This could be an issue if the NMI handler ever
  270. * used %fs or %gs (it does not today), or if the kernel is
  271. * running inside of a hypervisor layer.
  272. */
  273. lazy_save_gs(prev->gs);
  274. /*
  275. * Load the per-thread Thread-Local Storage descriptor.
  276. */
  277. load_TLS(next, cpu);
  278. /*
  279. * Restore IOPL if needed. In normal use, the flags restore
  280. * in the switch assembly will handle this. But if the kernel
  281. * is running virtualized at a non-zero CPL, the popf will
  282. * not restore flags, so it must be done in a separate step.
  283. */
  284. if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl))
  285. set_iopl_mask(next->iopl);
  286. /*
  287. * Now maybe handle debug registers and/or IO bitmaps
  288. */
  289. if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV ||
  290. task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT))
  291. __switch_to_xtra(prev_p, next_p, tss);
  292. /*
  293. * Leave lazy mode, flushing any hypercalls made here.
  294. * This must be done before restoring TLS segments so
  295. * the GDT and LDT are properly updated, and must be
  296. * done before math_state_restore, so the TS bit is up
  297. * to date.
  298. */
  299. arch_end_context_switch(next_p);
  300. /*
  301. * Restore %gs if needed (which is common)
  302. */
  303. if (prev->gs | next->gs)
  304. lazy_load_gs(next->gs);
  305. switch_fpu_finish(next_p, fpu);
  306. percpu_write(current_task, next_p);
  307. return prev_p;
  308. }
  309. #define top_esp (THREAD_SIZE - sizeof(unsigned long))
  310. #define top_ebp (THREAD_SIZE - 2*sizeof(unsigned long))
  311. unsigned long get_wchan(struct task_struct *p)
  312. {
  313. unsigned long bp, sp, ip;
  314. unsigned long stack_page;
  315. int count = 0;
  316. if (!p || p == current || p->state == TASK_RUNNING)
  317. return 0;
  318. stack_page = (unsigned long)task_stack_page(p);
  319. sp = p->thread.sp;
  320. if (!stack_page || sp < stack_page || sp > top_esp+stack_page)
  321. return 0;
  322. /* include/asm-i386/system.h:switch_to() pushes bp last. */
  323. bp = *(unsigned long *) sp;
  324. do {
  325. if (bp < stack_page || bp > top_ebp+stack_page)
  326. return 0;
  327. ip = *(unsigned long *) (bp+4);
  328. if (!in_sched_functions(ip))
  329. return ip;
  330. bp = *(unsigned long *) bp;
  331. } while (count++ < 16);
  332. return 0;
  333. }