proc.c 4.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168
  1. #include <linux/smp.h>
  2. #include <linux/timex.h>
  3. #include <linux/string.h>
  4. #include <linux/seq_file.h>
  5. #include <linux/cpufreq.h>
  6. /*
  7. * Get CPU information for use by the procfs.
  8. */
  9. static void show_cpuinfo_core(struct seq_file *m, struct cpuinfo_x86 *c,
  10. unsigned int cpu)
  11. {
  12. #ifdef CONFIG_SMP
  13. if (c->x86_max_cores * smp_num_siblings > 1) {
  14. seq_printf(m, "physical id\t: %d\n", c->phys_proc_id);
  15. seq_printf(m, "siblings\t: %d\n",
  16. cpumask_weight(cpu_core_mask(cpu)));
  17. seq_printf(m, "core id\t\t: %d\n", c->cpu_core_id);
  18. seq_printf(m, "cpu cores\t: %d\n", c->booted_cores);
  19. seq_printf(m, "apicid\t\t: %d\n", c->apicid);
  20. seq_printf(m, "initial apicid\t: %d\n", c->initial_apicid);
  21. }
  22. #endif
  23. }
  24. #ifdef CONFIG_X86_32
  25. static void show_cpuinfo_misc(struct seq_file *m, struct cpuinfo_x86 *c)
  26. {
  27. /*
  28. * We use exception 16 if we have hardware math and we've either seen
  29. * it or the CPU claims it is internal
  30. */
  31. int fpu_exception = c->hard_math && (ignore_fpu_irq || cpu_has_fpu);
  32. seq_printf(m,
  33. "fdiv_bug\t: %s\n"
  34. "hlt_bug\t\t: %s\n"
  35. "f00f_bug\t: %s\n"
  36. "coma_bug\t: %s\n"
  37. "fpu\t\t: %s\n"
  38. "fpu_exception\t: %s\n"
  39. "cpuid level\t: %d\n"
  40. "wp\t\t: %s\n",
  41. c->fdiv_bug ? "yes" : "no",
  42. c->hlt_works_ok ? "no" : "yes",
  43. c->f00f_bug ? "yes" : "no",
  44. c->coma_bug ? "yes" : "no",
  45. c->hard_math ? "yes" : "no",
  46. fpu_exception ? "yes" : "no",
  47. c->cpuid_level,
  48. c->wp_works_ok ? "yes" : "no");
  49. }
  50. #else
  51. static void show_cpuinfo_misc(struct seq_file *m, struct cpuinfo_x86 *c)
  52. {
  53. seq_printf(m,
  54. "fpu\t\t: yes\n"
  55. "fpu_exception\t: yes\n"
  56. "cpuid level\t: %d\n"
  57. "wp\t\t: yes\n",
  58. c->cpuid_level);
  59. }
  60. #endif
  61. static int show_cpuinfo(struct seq_file *m, void *v)
  62. {
  63. struct cpuinfo_x86 *c = v;
  64. unsigned int cpu = 0;
  65. int i;
  66. #ifdef CONFIG_SMP
  67. cpu = c->cpu_index;
  68. #endif
  69. seq_printf(m, "processor\t: %u\n"
  70. "vendor_id\t: %s\n"
  71. "cpu family\t: %d\n"
  72. "model\t\t: %u\n"
  73. "model name\t: %s\n",
  74. cpu,
  75. c->x86_vendor_id[0] ? c->x86_vendor_id : "unknown",
  76. c->x86,
  77. c->x86_model,
  78. c->x86_model_id[0] ? c->x86_model_id : "unknown");
  79. if (c->x86_mask || c->cpuid_level >= 0)
  80. seq_printf(m, "stepping\t: %d\n", c->x86_mask);
  81. else
  82. seq_printf(m, "stepping\t: unknown\n");
  83. if (cpu_has(c, X86_FEATURE_TSC)) {
  84. unsigned int freq = cpufreq_quick_get(cpu);
  85. if (!freq)
  86. freq = cpu_khz;
  87. seq_printf(m, "cpu MHz\t\t: %u.%03u\n",
  88. freq / 1000, (freq % 1000));
  89. }
  90. /* Cache size */
  91. if (c->x86_cache_size >= 0)
  92. seq_printf(m, "cache size\t: %d KB\n", c->x86_cache_size);
  93. show_cpuinfo_core(m, c, cpu);
  94. show_cpuinfo_misc(m, c);
  95. seq_printf(m, "flags\t\t:");
  96. for (i = 0; i < 32*NCAPINTS; i++)
  97. if (cpu_has(c, i) && x86_cap_flags[i] != NULL)
  98. seq_printf(m, " %s", x86_cap_flags[i]);
  99. seq_printf(m, "\nbogomips\t: %lu.%02lu\n",
  100. c->loops_per_jiffy/(500000/HZ),
  101. (c->loops_per_jiffy/(5000/HZ)) % 100);
  102. #ifdef CONFIG_X86_64
  103. if (c->x86_tlbsize > 0)
  104. seq_printf(m, "TLB size\t: %d 4K pages\n", c->x86_tlbsize);
  105. #endif
  106. seq_printf(m, "clflush size\t: %u\n", c->x86_clflush_size);
  107. seq_printf(m, "cache_alignment\t: %d\n", c->x86_cache_alignment);
  108. seq_printf(m, "address sizes\t: %u bits physical, %u bits virtual\n",
  109. c->x86_phys_bits, c->x86_virt_bits);
  110. seq_printf(m, "power management:");
  111. for (i = 0; i < 32; i++) {
  112. if (c->x86_power & (1 << i)) {
  113. if (i < ARRAY_SIZE(x86_power_flags) &&
  114. x86_power_flags[i])
  115. seq_printf(m, "%s%s",
  116. x86_power_flags[i][0] ? " " : "",
  117. x86_power_flags[i]);
  118. else
  119. seq_printf(m, " [%d]", i);
  120. }
  121. }
  122. seq_printf(m, "\n\n");
  123. return 0;
  124. }
  125. static void *c_start(struct seq_file *m, loff_t *pos)
  126. {
  127. if (*pos == 0) /* just in case, cpu 0 is not the first */
  128. *pos = cpumask_first(cpu_online_mask);
  129. else
  130. *pos = cpumask_next(*pos - 1, cpu_online_mask);
  131. if ((*pos) < nr_cpu_ids)
  132. return &cpu_data(*pos);
  133. return NULL;
  134. }
  135. static void *c_next(struct seq_file *m, void *v, loff_t *pos)
  136. {
  137. (*pos)++;
  138. return c_start(m, pos);
  139. }
  140. static void c_stop(struct seq_file *m, void *v)
  141. {
  142. }
  143. const struct seq_operations cpuinfo_op = {
  144. .start = c_start,
  145. .next = c_next,
  146. .stop = c_stop,
  147. .show = show_cpuinfo,
  148. };