common.c 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290
  1. #include <linux/bootmem.h>
  2. #include <linux/linkage.h>
  3. #include <linux/bitops.h>
  4. #include <linux/kernel.h>
  5. #include <linux/module.h>
  6. #include <linux/percpu.h>
  7. #include <linux/string.h>
  8. #include <linux/delay.h>
  9. #include <linux/sched.h>
  10. #include <linux/init.h>
  11. #include <linux/kgdb.h>
  12. #include <linux/smp.h>
  13. #include <linux/io.h>
  14. #include <asm/stackprotector.h>
  15. #include <asm/perf_event.h>
  16. #include <asm/mmu_context.h>
  17. #include <asm/hypervisor.h>
  18. #include <asm/processor.h>
  19. #include <asm/sections.h>
  20. #include <linux/topology.h>
  21. #include <linux/cpumask.h>
  22. #include <asm/pgtable.h>
  23. #include <asm/atomic.h>
  24. #include <asm/proto.h>
  25. #include <asm/setup.h>
  26. #include <asm/apic.h>
  27. #include <asm/desc.h>
  28. #include <asm/i387.h>
  29. #include <asm/mtrr.h>
  30. #include <linux/numa.h>
  31. #include <asm/asm.h>
  32. #include <asm/cpu.h>
  33. #include <asm/mce.h>
  34. #include <asm/msr.h>
  35. #include <asm/pat.h>
  36. #ifdef CONFIG_X86_LOCAL_APIC
  37. #include <asm/uv/uv.h>
  38. #endif
  39. #include "cpu.h"
  40. /* all of these masks are initialized in setup_cpu_local_masks() */
  41. cpumask_var_t cpu_initialized_mask;
  42. cpumask_var_t cpu_callout_mask;
  43. cpumask_var_t cpu_callin_mask;
  44. /* representing cpus for which sibling maps can be computed */
  45. cpumask_var_t cpu_sibling_setup_mask;
  46. /* correctly size the local cpu masks */
  47. void __init setup_cpu_local_masks(void)
  48. {
  49. alloc_bootmem_cpumask_var(&cpu_initialized_mask);
  50. alloc_bootmem_cpumask_var(&cpu_callin_mask);
  51. alloc_bootmem_cpumask_var(&cpu_callout_mask);
  52. alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
  53. }
  54. static void __cpuinit default_init(struct cpuinfo_x86 *c)
  55. {
  56. #ifdef CONFIG_X86_64
  57. cpu_detect_cache_sizes(c);
  58. #else
  59. /* Not much we can do here... */
  60. /* Check if at least it has cpuid */
  61. if (c->cpuid_level == -1) {
  62. /* No cpuid. It must be an ancient CPU */
  63. if (c->x86 == 4)
  64. strcpy(c->x86_model_id, "486");
  65. else if (c->x86 == 3)
  66. strcpy(c->x86_model_id, "386");
  67. }
  68. #endif
  69. }
  70. static const struct cpu_dev __cpuinitconst default_cpu = {
  71. .c_init = default_init,
  72. .c_vendor = "Unknown",
  73. .c_x86_vendor = X86_VENDOR_UNKNOWN,
  74. };
  75. static const struct cpu_dev *this_cpu __cpuinitdata = &default_cpu;
  76. DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
  77. #ifdef CONFIG_X86_64
  78. /*
  79. * We need valid kernel segments for data and code in long mode too
  80. * IRET will check the segment types kkeil 2000/10/28
  81. * Also sysret mandates a special GDT layout
  82. *
  83. * TLS descriptors are currently at a different place compared to i386.
  84. * Hopefully nobody expects them at a fixed place (Wine?)
  85. */
  86. [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
  87. [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
  88. [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
  89. [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
  90. [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
  91. [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
  92. #else
  93. [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
  94. [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
  95. [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
  96. [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
  97. /*
  98. * Segments used for calling PnP BIOS have byte granularity.
  99. * They code segments and data segments have fixed 64k limits,
  100. * the transfer segment sizes are set at run time.
  101. */
  102. /* 32-bit code */
  103. [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
  104. /* 16-bit code */
  105. [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
  106. /* 16-bit data */
  107. [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
  108. /* 16-bit data */
  109. [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
  110. /* 16-bit data */
  111. [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
  112. /*
  113. * The APM segments have byte granularity and their bases
  114. * are set at run time. All have 64k limits.
  115. */
  116. /* 32-bit code */
  117. [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
  118. /* 16-bit code */
  119. [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
  120. /* data */
  121. [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
  122. [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
  123. [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
  124. GDT_STACK_CANARY_INIT
  125. #endif
  126. } };
  127. EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
  128. static int __init x86_xsave_setup(char *s)
  129. {
  130. setup_clear_cpu_cap(X86_FEATURE_XSAVE);
  131. setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
  132. return 1;
  133. }
  134. __setup("noxsave", x86_xsave_setup);
  135. static int __init x86_xsaveopt_setup(char *s)
  136. {
  137. setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
  138. return 1;
  139. }
  140. __setup("noxsaveopt", x86_xsaveopt_setup);
  141. #ifdef CONFIG_X86_32
  142. static int cachesize_override __cpuinitdata = -1;
  143. static int disable_x86_serial_nr __cpuinitdata = 1;
  144. static int __init cachesize_setup(char *str)
  145. {
  146. get_option(&str, &cachesize_override);
  147. return 1;
  148. }
  149. __setup("cachesize=", cachesize_setup);
  150. static int __init x86_fxsr_setup(char *s)
  151. {
  152. setup_clear_cpu_cap(X86_FEATURE_FXSR);
  153. setup_clear_cpu_cap(X86_FEATURE_XMM);
  154. return 1;
  155. }
  156. __setup("nofxsr", x86_fxsr_setup);
  157. static int __init x86_sep_setup(char *s)
  158. {
  159. setup_clear_cpu_cap(X86_FEATURE_SEP);
  160. return 1;
  161. }
  162. __setup("nosep", x86_sep_setup);
  163. /* Standard macro to see if a specific flag is changeable */
  164. static inline int flag_is_changeable_p(u32 flag)
  165. {
  166. u32 f1, f2;
  167. /*
  168. * Cyrix and IDT cpus allow disabling of CPUID
  169. * so the code below may return different results
  170. * when it is executed before and after enabling
  171. * the CPUID. Add "volatile" to not allow gcc to
  172. * optimize the subsequent calls to this function.
  173. */
  174. asm volatile ("pushfl \n\t"
  175. "pushfl \n\t"
  176. "popl %0 \n\t"
  177. "movl %0, %1 \n\t"
  178. "xorl %2, %0 \n\t"
  179. "pushl %0 \n\t"
  180. "popfl \n\t"
  181. "pushfl \n\t"
  182. "popl %0 \n\t"
  183. "popfl \n\t"
  184. : "=&r" (f1), "=&r" (f2)
  185. : "ir" (flag));
  186. return ((f1^f2) & flag) != 0;
  187. }
  188. /* Probe for the CPUID instruction */
  189. static int __cpuinit have_cpuid_p(void)
  190. {
  191. return flag_is_changeable_p(X86_EFLAGS_ID);
  192. }
  193. static void __cpuinit squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
  194. {
  195. unsigned long lo, hi;
  196. if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
  197. return;
  198. /* Disable processor serial number: */
  199. rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
  200. lo |= 0x200000;
  201. wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
  202. printk(KERN_NOTICE "CPU serial number disabled.\n");
  203. clear_cpu_cap(c, X86_FEATURE_PN);
  204. /* Disabling the serial number may affect the cpuid level */
  205. c->cpuid_level = cpuid_eax(0);
  206. }
  207. static int __init x86_serial_nr_setup(char *s)
  208. {
  209. disable_x86_serial_nr = 0;
  210. return 1;
  211. }
  212. __setup("serialnumber", x86_serial_nr_setup);
  213. #else
  214. static inline int flag_is_changeable_p(u32 flag)
  215. {
  216. return 1;
  217. }
  218. /* Probe for the CPUID instruction */
  219. static inline int have_cpuid_p(void)
  220. {
  221. return 1;
  222. }
  223. static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
  224. {
  225. }
  226. #endif
  227. static int disable_smep __cpuinitdata;
  228. static __init int setup_disable_smep(char *arg)
  229. {
  230. disable_smep = 1;
  231. return 1;
  232. }
  233. __setup("nosmep", setup_disable_smep);
  234. static __cpuinit void setup_smep(struct cpuinfo_x86 *c)
  235. {
  236. if (cpu_has(c, X86_FEATURE_SMEP)) {
  237. if (unlikely(disable_smep)) {
  238. setup_clear_cpu_cap(X86_FEATURE_SMEP);
  239. clear_in_cr4(X86_CR4_SMEP);
  240. } else
  241. set_in_cr4(X86_CR4_SMEP);
  242. }
  243. }
  244. /*
  245. * Some CPU features depend on higher CPUID levels, which may not always
  246. * be available due to CPUID level capping or broken virtualization
  247. * software. Add those features to this table to auto-disable them.
  248. */
  249. struct cpuid_dependent_feature {
  250. u32 feature;
  251. u32 level;
  252. };
  253. static const struct cpuid_dependent_feature __cpuinitconst
  254. cpuid_dependent_features[] = {
  255. { X86_FEATURE_MWAIT, 0x00000005 },
  256. { X86_FEATURE_DCA, 0x00000009 },
  257. { X86_FEATURE_XSAVE, 0x0000000d },
  258. { 0, 0 }
  259. };
  260. static void __cpuinit filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
  261. {
  262. const struct cpuid_dependent_feature *df;
  263. for (df = cpuid_dependent_features; df->feature; df++) {
  264. if (!cpu_has(c, df->feature))
  265. continue;
  266. /*
  267. * Note: cpuid_level is set to -1 if unavailable, but
  268. * extended_extended_level is set to 0 if unavailable
  269. * and the legitimate extended levels are all negative
  270. * when signed; hence the weird messing around with
  271. * signs here...
  272. */
  273. if (!((s32)df->level < 0 ?
  274. (u32)df->level > (u32)c->extended_cpuid_level :
  275. (s32)df->level > (s32)c->cpuid_level))
  276. continue;
  277. clear_cpu_cap(c, df->feature);
  278. if (!warn)
  279. continue;
  280. printk(KERN_WARNING
  281. "CPU: CPU feature %s disabled, no CPUID level 0x%x\n",
  282. x86_cap_flags[df->feature], df->level);
  283. }
  284. }
  285. /*
  286. * Naming convention should be: <Name> [(<Codename>)]
  287. * This table only is used unless init_<vendor>() below doesn't set it;
  288. * in particular, if CPUID levels 0x80000002..4 are supported, this
  289. * isn't used
  290. */
  291. /* Look up CPU names by table lookup. */
  292. static const char *__cpuinit table_lookup_model(struct cpuinfo_x86 *c)
  293. {
  294. const struct cpu_model_info *info;
  295. if (c->x86_model >= 16)
  296. return NULL; /* Range check */
  297. if (!this_cpu)
  298. return NULL;
  299. info = this_cpu->c_models;
  300. while (info && info->family) {
  301. if (info->family == c->x86)
  302. return info->model_names[c->x86_model];
  303. info++;
  304. }
  305. return NULL; /* Not found */
  306. }
  307. __u32 cpu_caps_cleared[NCAPINTS] __cpuinitdata;
  308. __u32 cpu_caps_set[NCAPINTS] __cpuinitdata;
  309. void load_percpu_segment(int cpu)
  310. {
  311. #ifdef CONFIG_X86_32
  312. loadsegment(fs, __KERNEL_PERCPU);
  313. #else
  314. loadsegment(gs, 0);
  315. wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
  316. #endif
  317. load_stack_canary_segment();
  318. }
  319. /*
  320. * Current gdt points %fs at the "master" per-cpu area: after this,
  321. * it's on the real one.
  322. */
  323. void switch_to_new_gdt(int cpu)
  324. {
  325. struct desc_ptr gdt_descr;
  326. gdt_descr.address = (long)get_cpu_gdt_table(cpu);
  327. gdt_descr.size = GDT_SIZE - 1;
  328. load_gdt(&gdt_descr);
  329. /* Reload the per-cpu base */
  330. load_percpu_segment(cpu);
  331. }
  332. static const struct cpu_dev *__cpuinitdata cpu_devs[X86_VENDOR_NUM] = {};
  333. static void __cpuinit get_model_name(struct cpuinfo_x86 *c)
  334. {
  335. unsigned int *v;
  336. char *p, *q;
  337. if (c->extended_cpuid_level < 0x80000004)
  338. return;
  339. v = (unsigned int *)c->x86_model_id;
  340. cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
  341. cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
  342. cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
  343. c->x86_model_id[48] = 0;
  344. /*
  345. * Intel chips right-justify this string for some dumb reason;
  346. * undo that brain damage:
  347. */
  348. p = q = &c->x86_model_id[0];
  349. while (*p == ' ')
  350. p++;
  351. if (p != q) {
  352. while (*p)
  353. *q++ = *p++;
  354. while (q <= &c->x86_model_id[48])
  355. *q++ = '\0'; /* Zero-pad the rest */
  356. }
  357. }
  358. void __cpuinit cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
  359. {
  360. unsigned int n, dummy, ebx, ecx, edx, l2size;
  361. n = c->extended_cpuid_level;
  362. if (n >= 0x80000005) {
  363. cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
  364. c->x86_cache_size = (ecx>>24) + (edx>>24);
  365. #ifdef CONFIG_X86_64
  366. /* On K8 L1 TLB is inclusive, so don't count it */
  367. c->x86_tlbsize = 0;
  368. #endif
  369. }
  370. if (n < 0x80000006) /* Some chips just has a large L1. */
  371. return;
  372. cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
  373. l2size = ecx >> 16;
  374. #ifdef CONFIG_X86_64
  375. c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
  376. #else
  377. /* do processor-specific cache resizing */
  378. if (this_cpu->c_size_cache)
  379. l2size = this_cpu->c_size_cache(c, l2size);
  380. /* Allow user to override all this if necessary. */
  381. if (cachesize_override != -1)
  382. l2size = cachesize_override;
  383. if (l2size == 0)
  384. return; /* Again, no L2 cache is possible */
  385. #endif
  386. c->x86_cache_size = l2size;
  387. }
  388. void __cpuinit detect_ht(struct cpuinfo_x86 *c)
  389. {
  390. #ifdef CONFIG_X86_HT
  391. u32 eax, ebx, ecx, edx;
  392. int index_msb, core_bits;
  393. static bool printed;
  394. if (!cpu_has(c, X86_FEATURE_HT))
  395. return;
  396. if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
  397. goto out;
  398. if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
  399. return;
  400. cpuid(1, &eax, &ebx, &ecx, &edx);
  401. smp_num_siblings = (ebx & 0xff0000) >> 16;
  402. if (smp_num_siblings == 1) {
  403. printk_once(KERN_INFO "CPU0: Hyper-Threading is disabled\n");
  404. goto out;
  405. }
  406. if (smp_num_siblings <= 1)
  407. goto out;
  408. index_msb = get_count_order(smp_num_siblings);
  409. c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
  410. smp_num_siblings = smp_num_siblings / c->x86_max_cores;
  411. index_msb = get_count_order(smp_num_siblings);
  412. core_bits = get_count_order(c->x86_max_cores);
  413. c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
  414. ((1 << core_bits) - 1);
  415. out:
  416. if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
  417. printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
  418. c->phys_proc_id);
  419. printk(KERN_INFO "CPU: Processor Core ID: %d\n",
  420. c->cpu_core_id);
  421. printed = 1;
  422. }
  423. #endif
  424. }
  425. static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
  426. {
  427. char *v = c->x86_vendor_id;
  428. int i;
  429. for (i = 0; i < X86_VENDOR_NUM; i++) {
  430. if (!cpu_devs[i])
  431. break;
  432. if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
  433. (cpu_devs[i]->c_ident[1] &&
  434. !strcmp(v, cpu_devs[i]->c_ident[1]))) {
  435. this_cpu = cpu_devs[i];
  436. c->x86_vendor = this_cpu->c_x86_vendor;
  437. return;
  438. }
  439. }
  440. printk_once(KERN_ERR
  441. "CPU: vendor_id '%s' unknown, using generic init.\n" \
  442. "CPU: Your system may be unstable.\n", v);
  443. c->x86_vendor = X86_VENDOR_UNKNOWN;
  444. this_cpu = &default_cpu;
  445. }
  446. void __cpuinit cpu_detect(struct cpuinfo_x86 *c)
  447. {
  448. /* Get vendor name */
  449. cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
  450. (unsigned int *)&c->x86_vendor_id[0],
  451. (unsigned int *)&c->x86_vendor_id[8],
  452. (unsigned int *)&c->x86_vendor_id[4]);
  453. c->x86 = 4;
  454. /* Intel-defined flags: level 0x00000001 */
  455. if (c->cpuid_level >= 0x00000001) {
  456. u32 junk, tfms, cap0, misc;
  457. cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
  458. c->x86 = (tfms >> 8) & 0xf;
  459. c->x86_model = (tfms >> 4) & 0xf;
  460. c->x86_mask = tfms & 0xf;
  461. if (c->x86 == 0xf)
  462. c->x86 += (tfms >> 20) & 0xff;
  463. if (c->x86 >= 0x6)
  464. c->x86_model += ((tfms >> 16) & 0xf) << 4;
  465. if (cap0 & (1<<19)) {
  466. c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
  467. c->x86_cache_alignment = c->x86_clflush_size;
  468. }
  469. }
  470. }
  471. void __cpuinit get_cpu_cap(struct cpuinfo_x86 *c)
  472. {
  473. u32 tfms, xlvl;
  474. u32 ebx;
  475. /* Intel-defined flags: level 0x00000001 */
  476. if (c->cpuid_level >= 0x00000001) {
  477. u32 capability, excap;
  478. cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
  479. c->x86_capability[0] = capability;
  480. c->x86_capability[4] = excap;
  481. }
  482. /* Additional Intel-defined flags: level 0x00000007 */
  483. if (c->cpuid_level >= 0x00000007) {
  484. u32 eax, ebx, ecx, edx;
  485. cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
  486. c->x86_capability[9] = ebx;
  487. }
  488. /* AMD-defined flags: level 0x80000001 */
  489. xlvl = cpuid_eax(0x80000000);
  490. c->extended_cpuid_level = xlvl;
  491. if ((xlvl & 0xffff0000) == 0x80000000) {
  492. if (xlvl >= 0x80000001) {
  493. c->x86_capability[1] = cpuid_edx(0x80000001);
  494. c->x86_capability[6] = cpuid_ecx(0x80000001);
  495. }
  496. }
  497. if (c->extended_cpuid_level >= 0x80000008) {
  498. u32 eax = cpuid_eax(0x80000008);
  499. c->x86_virt_bits = (eax >> 8) & 0xff;
  500. c->x86_phys_bits = eax & 0xff;
  501. }
  502. #ifdef CONFIG_X86_32
  503. else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
  504. c->x86_phys_bits = 36;
  505. #endif
  506. if (c->extended_cpuid_level >= 0x80000007)
  507. c->x86_power = cpuid_edx(0x80000007);
  508. init_scattered_cpuid_features(c);
  509. }
  510. static void __cpuinit identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
  511. {
  512. #ifdef CONFIG_X86_32
  513. int i;
  514. /*
  515. * First of all, decide if this is a 486 or higher
  516. * It's a 486 if we can modify the AC flag
  517. */
  518. if (flag_is_changeable_p(X86_EFLAGS_AC))
  519. c->x86 = 4;
  520. else
  521. c->x86 = 3;
  522. for (i = 0; i < X86_VENDOR_NUM; i++)
  523. if (cpu_devs[i] && cpu_devs[i]->c_identify) {
  524. c->x86_vendor_id[0] = 0;
  525. cpu_devs[i]->c_identify(c);
  526. if (c->x86_vendor_id[0]) {
  527. get_cpu_vendor(c);
  528. break;
  529. }
  530. }
  531. #endif
  532. }
  533. /*
  534. * Do minimum CPU detection early.
  535. * Fields really needed: vendor, cpuid_level, family, model, mask,
  536. * cache alignment.
  537. * The others are not touched to avoid unwanted side effects.
  538. *
  539. * WARNING: this function is only called on the BP. Don't add code here
  540. * that is supposed to run on all CPUs.
  541. */
  542. static void __init early_identify_cpu(struct cpuinfo_x86 *c)
  543. {
  544. #ifdef CONFIG_X86_64
  545. c->x86_clflush_size = 64;
  546. c->x86_phys_bits = 36;
  547. c->x86_virt_bits = 48;
  548. #else
  549. c->x86_clflush_size = 32;
  550. c->x86_phys_bits = 32;
  551. c->x86_virt_bits = 32;
  552. #endif
  553. c->x86_cache_alignment = c->x86_clflush_size;
  554. memset(&c->x86_capability, 0, sizeof c->x86_capability);
  555. c->extended_cpuid_level = 0;
  556. if (!have_cpuid_p())
  557. identify_cpu_without_cpuid(c);
  558. /* cyrix could have cpuid enabled via c_identify()*/
  559. if (!have_cpuid_p())
  560. return;
  561. cpu_detect(c);
  562. get_cpu_vendor(c);
  563. get_cpu_cap(c);
  564. if (this_cpu->c_early_init)
  565. this_cpu->c_early_init(c);
  566. #ifdef CONFIG_SMP
  567. c->cpu_index = 0;
  568. #endif
  569. filter_cpuid_features(c, false);
  570. setup_smep(c);
  571. }
  572. void __init early_cpu_init(void)
  573. {
  574. const struct cpu_dev *const *cdev;
  575. int count = 0;
  576. #ifdef CONFIG_PROCESSOR_SELECT
  577. printk(KERN_INFO "KERNEL supported cpus:\n");
  578. #endif
  579. for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
  580. const struct cpu_dev *cpudev = *cdev;
  581. if (count >= X86_VENDOR_NUM)
  582. break;
  583. cpu_devs[count] = cpudev;
  584. count++;
  585. #ifdef CONFIG_PROCESSOR_SELECT
  586. {
  587. unsigned int j;
  588. for (j = 0; j < 2; j++) {
  589. if (!cpudev->c_ident[j])
  590. continue;
  591. printk(KERN_INFO " %s %s\n", cpudev->c_vendor,
  592. cpudev->c_ident[j]);
  593. }
  594. }
  595. #endif
  596. }
  597. early_identify_cpu(&boot_cpu_data);
  598. }
  599. /*
  600. * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
  601. * unfortunately, that's not true in practice because of early VIA
  602. * chips and (more importantly) broken virtualizers that are not easy
  603. * to detect. In the latter case it doesn't even *fail* reliably, so
  604. * probing for it doesn't even work. Disable it completely on 32-bit
  605. * unless we can find a reliable way to detect all the broken cases.
  606. * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
  607. */
  608. static void __cpuinit detect_nopl(struct cpuinfo_x86 *c)
  609. {
  610. #ifdef CONFIG_X86_32
  611. clear_cpu_cap(c, X86_FEATURE_NOPL);
  612. #else
  613. set_cpu_cap(c, X86_FEATURE_NOPL);
  614. #endif
  615. }
  616. static void __cpuinit generic_identify(struct cpuinfo_x86 *c)
  617. {
  618. c->extended_cpuid_level = 0;
  619. if (!have_cpuid_p())
  620. identify_cpu_without_cpuid(c);
  621. /* cyrix could have cpuid enabled via c_identify()*/
  622. if (!have_cpuid_p())
  623. return;
  624. cpu_detect(c);
  625. get_cpu_vendor(c);
  626. get_cpu_cap(c);
  627. if (c->cpuid_level >= 0x00000001) {
  628. c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
  629. #ifdef CONFIG_X86_32
  630. # ifdef CONFIG_X86_HT
  631. c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
  632. # else
  633. c->apicid = c->initial_apicid;
  634. # endif
  635. #endif
  636. #ifdef CONFIG_X86_HT
  637. c->phys_proc_id = c->initial_apicid;
  638. #endif
  639. }
  640. setup_smep(c);
  641. get_model_name(c); /* Default name */
  642. detect_nopl(c);
  643. }
  644. /*
  645. * This does the hard work of actually picking apart the CPU stuff...
  646. */
  647. static void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
  648. {
  649. int i;
  650. c->loops_per_jiffy = loops_per_jiffy;
  651. c->x86_cache_size = -1;
  652. c->x86_vendor = X86_VENDOR_UNKNOWN;
  653. c->x86_model = c->x86_mask = 0; /* So far unknown... */
  654. c->x86_vendor_id[0] = '\0'; /* Unset */
  655. c->x86_model_id[0] = '\0'; /* Unset */
  656. c->x86_max_cores = 1;
  657. c->x86_coreid_bits = 0;
  658. #ifdef CONFIG_X86_64
  659. c->x86_clflush_size = 64;
  660. c->x86_phys_bits = 36;
  661. c->x86_virt_bits = 48;
  662. #else
  663. c->cpuid_level = -1; /* CPUID not detected */
  664. c->x86_clflush_size = 32;
  665. c->x86_phys_bits = 32;
  666. c->x86_virt_bits = 32;
  667. #endif
  668. c->x86_cache_alignment = c->x86_clflush_size;
  669. memset(&c->x86_capability, 0, sizeof c->x86_capability);
  670. generic_identify(c);
  671. if (this_cpu->c_identify)
  672. this_cpu->c_identify(c);
  673. /* Clear/Set all flags overriden by options, after probe */
  674. for (i = 0; i < NCAPINTS; i++) {
  675. c->x86_capability[i] &= ~cpu_caps_cleared[i];
  676. c->x86_capability[i] |= cpu_caps_set[i];
  677. }
  678. #ifdef CONFIG_X86_64
  679. c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
  680. #endif
  681. /*
  682. * Vendor-specific initialization. In this section we
  683. * canonicalize the feature flags, meaning if there are
  684. * features a certain CPU supports which CPUID doesn't
  685. * tell us, CPUID claiming incorrect flags, or other bugs,
  686. * we handle them here.
  687. *
  688. * At the end of this section, c->x86_capability better
  689. * indicate the features this CPU genuinely supports!
  690. */
  691. if (this_cpu->c_init)
  692. this_cpu->c_init(c);
  693. /* Disable the PN if appropriate */
  694. squash_the_stupid_serial_number(c);
  695. /*
  696. * The vendor-specific functions might have changed features.
  697. * Now we do "generic changes."
  698. */
  699. /* Filter out anything that depends on CPUID levels we don't have */
  700. filter_cpuid_features(c, true);
  701. /* If the model name is still unset, do table lookup. */
  702. if (!c->x86_model_id[0]) {
  703. const char *p;
  704. p = table_lookup_model(c);
  705. if (p)
  706. strcpy(c->x86_model_id, p);
  707. else
  708. /* Last resort... */
  709. sprintf(c->x86_model_id, "%02x/%02x",
  710. c->x86, c->x86_model);
  711. }
  712. #ifdef CONFIG_X86_64
  713. detect_ht(c);
  714. #endif
  715. init_hypervisor(c);
  716. /*
  717. * Clear/Set all flags overriden by options, need do it
  718. * before following smp all cpus cap AND.
  719. */
  720. for (i = 0; i < NCAPINTS; i++) {
  721. c->x86_capability[i] &= ~cpu_caps_cleared[i];
  722. c->x86_capability[i] |= cpu_caps_set[i];
  723. }
  724. /*
  725. * On SMP, boot_cpu_data holds the common feature set between
  726. * all CPUs; so make sure that we indicate which features are
  727. * common between the CPUs. The first time this routine gets
  728. * executed, c == &boot_cpu_data.
  729. */
  730. if (c != &boot_cpu_data) {
  731. /* AND the already accumulated flags with these */
  732. for (i = 0; i < NCAPINTS; i++)
  733. boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
  734. }
  735. /* Init Machine Check Exception if available. */
  736. mcheck_cpu_init(c);
  737. select_idle_routine(c);
  738. #ifdef CONFIG_NUMA
  739. numa_add_cpu(smp_processor_id());
  740. #endif
  741. }
  742. #ifdef CONFIG_X86_64
  743. static void vgetcpu_set_mode(void)
  744. {
  745. if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP))
  746. vgetcpu_mode = VGETCPU_RDTSCP;
  747. else
  748. vgetcpu_mode = VGETCPU_LSL;
  749. }
  750. #endif
  751. void __init identify_boot_cpu(void)
  752. {
  753. identify_cpu(&boot_cpu_data);
  754. init_amd_e400_c1e_mask();
  755. #ifdef CONFIG_X86_32
  756. sysenter_setup();
  757. enable_sep_cpu();
  758. #else
  759. vgetcpu_set_mode();
  760. #endif
  761. }
  762. void __cpuinit identify_secondary_cpu(struct cpuinfo_x86 *c)
  763. {
  764. BUG_ON(c == &boot_cpu_data);
  765. identify_cpu(c);
  766. #ifdef CONFIG_X86_32
  767. enable_sep_cpu();
  768. #endif
  769. mtrr_ap_init();
  770. }
  771. struct msr_range {
  772. unsigned min;
  773. unsigned max;
  774. };
  775. static const struct msr_range msr_range_array[] __cpuinitconst = {
  776. { 0x00000000, 0x00000418},
  777. { 0xc0000000, 0xc000040b},
  778. { 0xc0010000, 0xc0010142},
  779. { 0xc0011000, 0xc001103b},
  780. };
  781. static void __cpuinit print_cpu_msr(void)
  782. {
  783. unsigned index_min, index_max;
  784. unsigned index;
  785. u64 val;
  786. int i;
  787. for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
  788. index_min = msr_range_array[i].min;
  789. index_max = msr_range_array[i].max;
  790. for (index = index_min; index < index_max; index++) {
  791. if (rdmsrl_amd_safe(index, &val))
  792. continue;
  793. printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
  794. }
  795. }
  796. }
  797. static int show_msr __cpuinitdata;
  798. static __init int setup_show_msr(char *arg)
  799. {
  800. int num;
  801. get_option(&arg, &num);
  802. if (num > 0)
  803. show_msr = num;
  804. return 1;
  805. }
  806. __setup("show_msr=", setup_show_msr);
  807. static __init int setup_noclflush(char *arg)
  808. {
  809. setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
  810. return 1;
  811. }
  812. __setup("noclflush", setup_noclflush);
  813. void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
  814. {
  815. const char *vendor = NULL;
  816. if (c->x86_vendor < X86_VENDOR_NUM) {
  817. vendor = this_cpu->c_vendor;
  818. } else {
  819. if (c->cpuid_level >= 0)
  820. vendor = c->x86_vendor_id;
  821. }
  822. if (vendor && !strstr(c->x86_model_id, vendor))
  823. printk(KERN_CONT "%s ", vendor);
  824. if (c->x86_model_id[0])
  825. printk(KERN_CONT "%s", c->x86_model_id);
  826. else
  827. printk(KERN_CONT "%d86", c->x86);
  828. if (c->x86_mask || c->cpuid_level >= 0)
  829. printk(KERN_CONT " stepping %02x\n", c->x86_mask);
  830. else
  831. printk(KERN_CONT "\n");
  832. #ifdef CONFIG_SMP
  833. if (c->cpu_index < show_msr)
  834. print_cpu_msr();
  835. #else
  836. if (show_msr)
  837. print_cpu_msr();
  838. #endif
  839. }
  840. static __init int setup_disablecpuid(char *arg)
  841. {
  842. int bit;
  843. if (get_option(&arg, &bit) && bit < NCAPINTS*32)
  844. setup_clear_cpu_cap(bit);
  845. else
  846. return 0;
  847. return 1;
  848. }
  849. __setup("clearcpuid=", setup_disablecpuid);
  850. #ifdef CONFIG_X86_64
  851. struct desc_ptr idt_descr = { NR_VECTORS * 16 - 1, (unsigned long) idt_table };
  852. DEFINE_PER_CPU_FIRST(union irq_stack_union,
  853. irq_stack_union) __aligned(PAGE_SIZE);
  854. /*
  855. * The following four percpu variables are hot. Align current_task to
  856. * cacheline size such that all four fall in the same cacheline.
  857. */
  858. DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
  859. &init_task;
  860. EXPORT_PER_CPU_SYMBOL(current_task);
  861. DEFINE_PER_CPU(unsigned long, kernel_stack) =
  862. (unsigned long)&init_thread_union - KERNEL_STACK_OFFSET + THREAD_SIZE;
  863. EXPORT_PER_CPU_SYMBOL(kernel_stack);
  864. DEFINE_PER_CPU(char *, irq_stack_ptr) =
  865. init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64;
  866. DEFINE_PER_CPU(unsigned int, irq_count) = -1;
  867. /*
  868. * Special IST stacks which the CPU switches to when it calls
  869. * an IST-marked descriptor entry. Up to 7 stacks (hardware
  870. * limit), all of them are 4K, except the debug stack which
  871. * is 8K.
  872. */
  873. static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
  874. [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ,
  875. [DEBUG_STACK - 1] = DEBUG_STKSZ
  876. };
  877. static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
  878. [(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]);
  879. /* May not be marked __init: used by software suspend */
  880. void syscall_init(void)
  881. {
  882. /*
  883. * LSTAR and STAR live in a bit strange symbiosis.
  884. * They both write to the same internal register. STAR allows to
  885. * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
  886. */
  887. wrmsrl(MSR_STAR, ((u64)__USER32_CS)<<48 | ((u64)__KERNEL_CS)<<32);
  888. wrmsrl(MSR_LSTAR, system_call);
  889. wrmsrl(MSR_CSTAR, ignore_sysret);
  890. #ifdef CONFIG_IA32_EMULATION
  891. syscall32_cpu_init();
  892. #endif
  893. /* Flags to clear on syscall */
  894. wrmsrl(MSR_SYSCALL_MASK,
  895. X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|X86_EFLAGS_IOPL);
  896. }
  897. unsigned long kernel_eflags;
  898. /*
  899. * Copies of the original ist values from the tss are only accessed during
  900. * debugging, no special alignment required.
  901. */
  902. DEFINE_PER_CPU(struct orig_ist, orig_ist);
  903. #else /* CONFIG_X86_64 */
  904. DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
  905. EXPORT_PER_CPU_SYMBOL(current_task);
  906. #ifdef CONFIG_CC_STACKPROTECTOR
  907. DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
  908. #endif
  909. /* Make sure %fs and %gs are initialized properly in idle threads */
  910. struct pt_regs * __cpuinit idle_regs(struct pt_regs *regs)
  911. {
  912. memset(regs, 0, sizeof(struct pt_regs));
  913. regs->fs = __KERNEL_PERCPU;
  914. regs->gs = __KERNEL_STACK_CANARY;
  915. return regs;
  916. }
  917. #endif /* CONFIG_X86_64 */
  918. /*
  919. * Clear all 6 debug registers:
  920. */
  921. static void clear_all_debug_regs(void)
  922. {
  923. int i;
  924. for (i = 0; i < 8; i++) {
  925. /* Ignore db4, db5 */
  926. if ((i == 4) || (i == 5))
  927. continue;
  928. set_debugreg(0, i);
  929. }
  930. }
  931. #ifdef CONFIG_KGDB
  932. /*
  933. * Restore debug regs if using kgdbwait and you have a kernel debugger
  934. * connection established.
  935. */
  936. static void dbg_restore_debug_regs(void)
  937. {
  938. if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
  939. arch_kgdb_ops.correct_hw_break();
  940. }
  941. #else /* ! CONFIG_KGDB */
  942. #define dbg_restore_debug_regs()
  943. #endif /* ! CONFIG_KGDB */
  944. /*
  945. * cpu_init() initializes state that is per-CPU. Some data is already
  946. * initialized (naturally) in the bootstrap process, such as the GDT
  947. * and IDT. We reload them nevertheless, this function acts as a
  948. * 'CPU state barrier', nothing should get across.
  949. * A lot of state is already set up in PDA init for 64 bit
  950. */
  951. #ifdef CONFIG_X86_64
  952. void __cpuinit cpu_init(void)
  953. {
  954. struct orig_ist *oist;
  955. struct task_struct *me;
  956. struct tss_struct *t;
  957. unsigned long v;
  958. int cpu;
  959. int i;
  960. cpu = stack_smp_processor_id();
  961. t = &per_cpu(init_tss, cpu);
  962. oist = &per_cpu(orig_ist, cpu);
  963. #ifdef CONFIG_NUMA
  964. if (cpu != 0 && percpu_read(numa_node) == 0 &&
  965. early_cpu_to_node(cpu) != NUMA_NO_NODE)
  966. set_numa_node(early_cpu_to_node(cpu));
  967. #endif
  968. me = current;
  969. if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask))
  970. panic("CPU#%d already initialized!\n", cpu);
  971. pr_debug("Initializing CPU#%d\n", cpu);
  972. clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
  973. /*
  974. * Initialize the per-CPU GDT with the boot GDT,
  975. * and set up the GDT descriptor:
  976. */
  977. switch_to_new_gdt(cpu);
  978. loadsegment(fs, 0);
  979. load_idt((const struct desc_ptr *)&idt_descr);
  980. memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
  981. syscall_init();
  982. wrmsrl(MSR_FS_BASE, 0);
  983. wrmsrl(MSR_KERNEL_GS_BASE, 0);
  984. barrier();
  985. x86_configure_nx();
  986. if (cpu != 0)
  987. enable_x2apic();
  988. /*
  989. * set up and load the per-CPU TSS
  990. */
  991. if (!oist->ist[0]) {
  992. char *estacks = per_cpu(exception_stacks, cpu);
  993. for (v = 0; v < N_EXCEPTION_STACKS; v++) {
  994. estacks += exception_stack_sizes[v];
  995. oist->ist[v] = t->x86_tss.ist[v] =
  996. (unsigned long)estacks;
  997. }
  998. }
  999. t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
  1000. /*
  1001. * <= is required because the CPU will access up to
  1002. * 8 bits beyond the end of the IO permission bitmap.
  1003. */
  1004. for (i = 0; i <= IO_BITMAP_LONGS; i++)
  1005. t->io_bitmap[i] = ~0UL;
  1006. atomic_inc(&init_mm.mm_count);
  1007. me->active_mm = &init_mm;
  1008. BUG_ON(me->mm);
  1009. enter_lazy_tlb(&init_mm, me);
  1010. load_sp0(t, &current->thread);
  1011. set_tss_desc(cpu, t);
  1012. load_TR_desc();
  1013. load_LDT(&init_mm.context);
  1014. clear_all_debug_regs();
  1015. dbg_restore_debug_regs();
  1016. fpu_init();
  1017. xsave_init();
  1018. raw_local_save_flags(kernel_eflags);
  1019. if (is_uv_system())
  1020. uv_cpu_init();
  1021. }
  1022. #else
  1023. void __cpuinit cpu_init(void)
  1024. {
  1025. int cpu = smp_processor_id();
  1026. struct task_struct *curr = current;
  1027. struct tss_struct *t = &per_cpu(init_tss, cpu);
  1028. struct thread_struct *thread = &curr->thread;
  1029. if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask)) {
  1030. printk(KERN_WARNING "CPU#%d already initialized!\n", cpu);
  1031. for (;;)
  1032. local_irq_enable();
  1033. }
  1034. printk(KERN_INFO "Initializing CPU#%d\n", cpu);
  1035. if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
  1036. clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
  1037. load_idt(&idt_descr);
  1038. switch_to_new_gdt(cpu);
  1039. /*
  1040. * Set up and load the per-CPU TSS and LDT
  1041. */
  1042. atomic_inc(&init_mm.mm_count);
  1043. curr->active_mm = &init_mm;
  1044. BUG_ON(curr->mm);
  1045. enter_lazy_tlb(&init_mm, curr);
  1046. load_sp0(t, thread);
  1047. set_tss_desc(cpu, t);
  1048. load_TR_desc();
  1049. load_LDT(&init_mm.context);
  1050. t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
  1051. #ifdef CONFIG_DOUBLEFAULT
  1052. /* Set up doublefault TSS pointer in the GDT */
  1053. __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
  1054. #endif
  1055. clear_all_debug_regs();
  1056. dbg_restore_debug_regs();
  1057. fpu_init();
  1058. xsave_init();
  1059. }
  1060. #endif