perf_event.c 8.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396
  1. /*
  2. * Performance event support framework for SuperH hardware counters.
  3. *
  4. * Copyright (C) 2009 Paul Mundt
  5. *
  6. * Heavily based on the x86 and PowerPC implementations.
  7. *
  8. * x86:
  9. * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
  10. * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
  11. * Copyright (C) 2009 Jaswinder Singh Rajput
  12. * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
  13. * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  14. * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
  15. *
  16. * ppc:
  17. * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
  18. *
  19. * This file is subject to the terms and conditions of the GNU General Public
  20. * License. See the file "COPYING" in the main directory of this archive
  21. * for more details.
  22. */
  23. #include <linux/kernel.h>
  24. #include <linux/init.h>
  25. #include <linux/io.h>
  26. #include <linux/irq.h>
  27. #include <linux/perf_event.h>
  28. #include <asm/processor.h>
  29. struct cpu_hw_events {
  30. struct perf_event *events[MAX_HWEVENTS];
  31. unsigned long used_mask[BITS_TO_LONGS(MAX_HWEVENTS)];
  32. unsigned long active_mask[BITS_TO_LONGS(MAX_HWEVENTS)];
  33. };
  34. DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
  35. static struct sh_pmu *sh_pmu __read_mostly;
  36. /* Number of perf_events counting hardware events */
  37. static atomic_t num_events;
  38. /* Used to avoid races in calling reserve/release_pmc_hardware */
  39. static DEFINE_MUTEX(pmc_reserve_mutex);
  40. /*
  41. * Stub these out for now, do something more profound later.
  42. */
  43. int reserve_pmc_hardware(void)
  44. {
  45. return 0;
  46. }
  47. void release_pmc_hardware(void)
  48. {
  49. }
  50. static inline int sh_pmu_initialized(void)
  51. {
  52. return !!sh_pmu;
  53. }
  54. const char *perf_pmu_name(void)
  55. {
  56. if (!sh_pmu)
  57. return NULL;
  58. return sh_pmu->name;
  59. }
  60. EXPORT_SYMBOL_GPL(perf_pmu_name);
  61. int perf_num_counters(void)
  62. {
  63. if (!sh_pmu)
  64. return 0;
  65. return sh_pmu->num_events;
  66. }
  67. EXPORT_SYMBOL_GPL(perf_num_counters);
  68. /*
  69. * Release the PMU if this is the last perf_event.
  70. */
  71. static void hw_perf_event_destroy(struct perf_event *event)
  72. {
  73. if (!atomic_add_unless(&num_events, -1, 1)) {
  74. mutex_lock(&pmc_reserve_mutex);
  75. if (atomic_dec_return(&num_events) == 0)
  76. release_pmc_hardware();
  77. mutex_unlock(&pmc_reserve_mutex);
  78. }
  79. }
  80. static int hw_perf_cache_event(int config, int *evp)
  81. {
  82. unsigned long type, op, result;
  83. int ev;
  84. if (!sh_pmu->cache_events)
  85. return -EINVAL;
  86. /* unpack config */
  87. type = config & 0xff;
  88. op = (config >> 8) & 0xff;
  89. result = (config >> 16) & 0xff;
  90. if (type >= PERF_COUNT_HW_CACHE_MAX ||
  91. op >= PERF_COUNT_HW_CACHE_OP_MAX ||
  92. result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
  93. return -EINVAL;
  94. ev = (*sh_pmu->cache_events)[type][op][result];
  95. if (ev == 0)
  96. return -EOPNOTSUPP;
  97. if (ev == -1)
  98. return -EINVAL;
  99. *evp = ev;
  100. return 0;
  101. }
  102. static int __hw_perf_event_init(struct perf_event *event)
  103. {
  104. struct perf_event_attr *attr = &event->attr;
  105. struct hw_perf_event *hwc = &event->hw;
  106. int config = -1;
  107. int err;
  108. if (!sh_pmu_initialized())
  109. return -ENODEV;
  110. /*
  111. * All of the on-chip counters are "limited", in that they have
  112. * no interrupts, and are therefore unable to do sampling without
  113. * further work and timer assistance.
  114. */
  115. if (hwc->sample_period)
  116. return -EINVAL;
  117. /*
  118. * See if we need to reserve the counter.
  119. *
  120. * If no events are currently in use, then we have to take a
  121. * mutex to ensure that we don't race with another task doing
  122. * reserve_pmc_hardware or release_pmc_hardware.
  123. */
  124. err = 0;
  125. if (!atomic_inc_not_zero(&num_events)) {
  126. mutex_lock(&pmc_reserve_mutex);
  127. if (atomic_read(&num_events) == 0 &&
  128. reserve_pmc_hardware())
  129. err = -EBUSY;
  130. else
  131. atomic_inc(&num_events);
  132. mutex_unlock(&pmc_reserve_mutex);
  133. }
  134. if (err)
  135. return err;
  136. event->destroy = hw_perf_event_destroy;
  137. switch (attr->type) {
  138. case PERF_TYPE_RAW:
  139. config = attr->config & sh_pmu->raw_event_mask;
  140. break;
  141. case PERF_TYPE_HW_CACHE:
  142. err = hw_perf_cache_event(attr->config, &config);
  143. if (err)
  144. return err;
  145. break;
  146. case PERF_TYPE_HARDWARE:
  147. if (attr->config >= sh_pmu->max_events)
  148. return -EINVAL;
  149. config = sh_pmu->event_map(attr->config);
  150. break;
  151. }
  152. if (config == -1)
  153. return -EINVAL;
  154. hwc->config |= config;
  155. return 0;
  156. }
  157. static void sh_perf_event_update(struct perf_event *event,
  158. struct hw_perf_event *hwc, int idx)
  159. {
  160. u64 prev_raw_count, new_raw_count;
  161. s64 delta;
  162. int shift = 0;
  163. /*
  164. * Depending on the counter configuration, they may or may not
  165. * be chained, in which case the previous counter value can be
  166. * updated underneath us if the lower-half overflows.
  167. *
  168. * Our tactic to handle this is to first atomically read and
  169. * exchange a new raw count - then add that new-prev delta
  170. * count to the generic counter atomically.
  171. *
  172. * As there is no interrupt associated with the overflow events,
  173. * this is the simplest approach for maintaining consistency.
  174. */
  175. again:
  176. prev_raw_count = local64_read(&hwc->prev_count);
  177. new_raw_count = sh_pmu->read(idx);
  178. if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
  179. new_raw_count) != prev_raw_count)
  180. goto again;
  181. /*
  182. * Now we have the new raw value and have updated the prev
  183. * timestamp already. We can now calculate the elapsed delta
  184. * (counter-)time and add that to the generic counter.
  185. *
  186. * Careful, not all hw sign-extends above the physical width
  187. * of the count.
  188. */
  189. delta = (new_raw_count << shift) - (prev_raw_count << shift);
  190. delta >>= shift;
  191. local64_add(delta, &event->count);
  192. }
  193. static void sh_pmu_stop(struct perf_event *event, int flags)
  194. {
  195. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  196. struct hw_perf_event *hwc = &event->hw;
  197. int idx = hwc->idx;
  198. if (!(event->hw.state & PERF_HES_STOPPED)) {
  199. sh_pmu->disable(hwc, idx);
  200. cpuc->events[idx] = NULL;
  201. event->hw.state |= PERF_HES_STOPPED;
  202. }
  203. if ((flags & PERF_EF_UPDATE) && !(event->hw.state & PERF_HES_UPTODATE)) {
  204. sh_perf_event_update(event, &event->hw, idx);
  205. event->hw.state |= PERF_HES_UPTODATE;
  206. }
  207. }
  208. static void sh_pmu_start(struct perf_event *event, int flags)
  209. {
  210. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  211. struct hw_perf_event *hwc = &event->hw;
  212. int idx = hwc->idx;
  213. if (WARN_ON_ONCE(idx == -1))
  214. return;
  215. if (flags & PERF_EF_RELOAD)
  216. WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
  217. cpuc->events[idx] = event;
  218. event->hw.state = 0;
  219. sh_pmu->enable(hwc, idx);
  220. }
  221. static void sh_pmu_del(struct perf_event *event, int flags)
  222. {
  223. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  224. sh_pmu_stop(event, PERF_EF_UPDATE);
  225. __clear_bit(event->hw.idx, cpuc->used_mask);
  226. perf_event_update_userpage(event);
  227. }
  228. static int sh_pmu_add(struct perf_event *event, int flags)
  229. {
  230. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  231. struct hw_perf_event *hwc = &event->hw;
  232. int idx = hwc->idx;
  233. int ret = -EAGAIN;
  234. perf_pmu_disable(event->pmu);
  235. if (__test_and_set_bit(idx, cpuc->used_mask)) {
  236. idx = find_first_zero_bit(cpuc->used_mask, sh_pmu->num_events);
  237. if (idx == sh_pmu->num_events)
  238. goto out;
  239. __set_bit(idx, cpuc->used_mask);
  240. hwc->idx = idx;
  241. }
  242. sh_pmu->disable(hwc, idx);
  243. event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
  244. if (flags & PERF_EF_START)
  245. sh_pmu_start(event, PERF_EF_RELOAD);
  246. perf_event_update_userpage(event);
  247. ret = 0;
  248. out:
  249. perf_pmu_enable(event->pmu);
  250. return ret;
  251. }
  252. static void sh_pmu_read(struct perf_event *event)
  253. {
  254. sh_perf_event_update(event, &event->hw, event->hw.idx);
  255. }
  256. static int sh_pmu_event_init(struct perf_event *event)
  257. {
  258. int err;
  259. switch (event->attr.type) {
  260. case PERF_TYPE_RAW:
  261. case PERF_TYPE_HW_CACHE:
  262. case PERF_TYPE_HARDWARE:
  263. err = __hw_perf_event_init(event);
  264. break;
  265. default:
  266. return -ENOENT;
  267. }
  268. if (unlikely(err)) {
  269. if (event->destroy)
  270. event->destroy(event);
  271. }
  272. return err;
  273. }
  274. static void sh_pmu_enable(struct pmu *pmu)
  275. {
  276. if (!sh_pmu_initialized())
  277. return;
  278. sh_pmu->enable_all();
  279. }
  280. static void sh_pmu_disable(struct pmu *pmu)
  281. {
  282. if (!sh_pmu_initialized())
  283. return;
  284. sh_pmu->disable_all();
  285. }
  286. static struct pmu pmu = {
  287. .pmu_enable = sh_pmu_enable,
  288. .pmu_disable = sh_pmu_disable,
  289. .event_init = sh_pmu_event_init,
  290. .add = sh_pmu_add,
  291. .del = sh_pmu_del,
  292. .start = sh_pmu_start,
  293. .stop = sh_pmu_stop,
  294. .read = sh_pmu_read,
  295. };
  296. static void sh_pmu_setup(int cpu)
  297. {
  298. struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
  299. memset(cpuhw, 0, sizeof(struct cpu_hw_events));
  300. }
  301. static int __cpuinit
  302. sh_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
  303. {
  304. unsigned int cpu = (long)hcpu;
  305. switch (action & ~CPU_TASKS_FROZEN) {
  306. case CPU_UP_PREPARE:
  307. sh_pmu_setup(cpu);
  308. break;
  309. default:
  310. break;
  311. }
  312. return NOTIFY_OK;
  313. }
  314. int __cpuinit register_sh_pmu(struct sh_pmu *_pmu)
  315. {
  316. if (sh_pmu)
  317. return -EBUSY;
  318. sh_pmu = _pmu;
  319. pr_info("Performance Events: %s support registered\n", _pmu->name);
  320. WARN_ON(_pmu->num_events > MAX_HWEVENTS);
  321. perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
  322. perf_cpu_notifier(sh_pmu_notifier);
  323. return 0;
  324. }