setup.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * Copyright (C) 1995 Linus Torvalds
  7. * Copyright (C) 1995 Waldorf Electronics
  8. * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03 Ralf Baechle
  9. * Copyright (C) 1996 Stoned Elipot
  10. * Copyright (C) 1999 Silicon Graphics, Inc.
  11. * Copyright (C) 2000, 2001, 2002, 2007 Maciej W. Rozycki
  12. */
  13. #include <linux/init.h>
  14. #include <linux/ioport.h>
  15. #include <linux/module.h>
  16. #include <linux/screen_info.h>
  17. #include <linux/bootmem.h>
  18. #include <linux/initrd.h>
  19. #include <linux/root_dev.h>
  20. #include <linux/highmem.h>
  21. #include <linux/console.h>
  22. #include <linux/pfn.h>
  23. #include <linux/debugfs.h>
  24. #include <asm/addrspace.h>
  25. #include <asm/bootinfo.h>
  26. #include <asm/bugs.h>
  27. #include <asm/cache.h>
  28. #include <asm/cpu.h>
  29. #include <asm/sections.h>
  30. #include <asm/setup.h>
  31. #include <asm/smp-ops.h>
  32. #include <asm/system.h>
  33. #include <asm/prom.h>
  34. struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly;
  35. EXPORT_SYMBOL(cpu_data);
  36. #ifdef CONFIG_VT
  37. struct screen_info screen_info;
  38. #endif
  39. /*
  40. * Despite it's name this variable is even if we don't have PCI
  41. */
  42. unsigned int PCI_DMA_BUS_IS_PHYS;
  43. EXPORT_SYMBOL(PCI_DMA_BUS_IS_PHYS);
  44. /*
  45. * Setup information
  46. *
  47. * These are initialized so they are in the .data section
  48. */
  49. unsigned long mips_machtype __read_mostly = MACH_UNKNOWN;
  50. EXPORT_SYMBOL(mips_machtype);
  51. struct boot_mem_map boot_mem_map;
  52. static char __initdata command_line[COMMAND_LINE_SIZE];
  53. char __initdata arcs_cmdline[COMMAND_LINE_SIZE];
  54. #ifdef CONFIG_CMDLINE_BOOL
  55. static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
  56. #endif
  57. /*
  58. * mips_io_port_base is the begin of the address space to which x86 style
  59. * I/O ports are mapped.
  60. */
  61. const unsigned long mips_io_port_base = -1;
  62. EXPORT_SYMBOL(mips_io_port_base);
  63. static struct resource code_resource = { .name = "Kernel code", };
  64. static struct resource data_resource = { .name = "Kernel data", };
  65. void __init add_memory_region(phys_t start, phys_t size, long type)
  66. {
  67. int x = boot_mem_map.nr_map;
  68. struct boot_mem_map_entry *prev = boot_mem_map.map + x - 1;
  69. /* Sanity check */
  70. if (start + size < start) {
  71. pr_warning("Trying to add an invalid memory region, skipped\n");
  72. return;
  73. }
  74. /*
  75. * Try to merge with previous entry if any. This is far less than
  76. * perfect but is sufficient for most real world cases.
  77. */
  78. if (x && prev->addr + prev->size == start && prev->type == type) {
  79. prev->size += size;
  80. return;
  81. }
  82. if (x == BOOT_MEM_MAP_MAX) {
  83. pr_err("Ooops! Too many entries in the memory map!\n");
  84. return;
  85. }
  86. boot_mem_map.map[x].addr = start;
  87. boot_mem_map.map[x].size = size;
  88. boot_mem_map.map[x].type = type;
  89. boot_mem_map.nr_map++;
  90. }
  91. static void __init print_memory_map(void)
  92. {
  93. int i;
  94. const int field = 2 * sizeof(unsigned long);
  95. for (i = 0; i < boot_mem_map.nr_map; i++) {
  96. printk(KERN_INFO " memory: %0*Lx @ %0*Lx ",
  97. field, (unsigned long long) boot_mem_map.map[i].size,
  98. field, (unsigned long long) boot_mem_map.map[i].addr);
  99. switch (boot_mem_map.map[i].type) {
  100. case BOOT_MEM_RAM:
  101. printk(KERN_CONT "(usable)\n");
  102. break;
  103. case BOOT_MEM_ROM_DATA:
  104. printk(KERN_CONT "(ROM data)\n");
  105. break;
  106. case BOOT_MEM_RESERVED:
  107. printk(KERN_CONT "(reserved)\n");
  108. break;
  109. default:
  110. printk(KERN_CONT "type %lu\n", boot_mem_map.map[i].type);
  111. break;
  112. }
  113. }
  114. }
  115. /*
  116. * Manage initrd
  117. */
  118. #ifdef CONFIG_BLK_DEV_INITRD
  119. static int __init rd_start_early(char *p)
  120. {
  121. unsigned long start = memparse(p, &p);
  122. #ifdef CONFIG_64BIT
  123. /* Guess if the sign extension was forgotten by bootloader */
  124. if (start < XKPHYS)
  125. start = (int)start;
  126. #endif
  127. initrd_start = start;
  128. initrd_end += start;
  129. return 0;
  130. }
  131. early_param("rd_start", rd_start_early);
  132. static int __init rd_size_early(char *p)
  133. {
  134. initrd_end += memparse(p, &p);
  135. return 0;
  136. }
  137. early_param("rd_size", rd_size_early);
  138. /* it returns the next free pfn after initrd */
  139. static unsigned long __init init_initrd(void)
  140. {
  141. unsigned long end;
  142. /*
  143. * Board specific code or command line parser should have
  144. * already set up initrd_start and initrd_end. In these cases
  145. * perfom sanity checks and use them if all looks good.
  146. */
  147. if (!initrd_start || initrd_end <= initrd_start)
  148. goto disable;
  149. if (initrd_start & ~PAGE_MASK) {
  150. pr_err("initrd start must be page aligned\n");
  151. goto disable;
  152. }
  153. if (initrd_start < PAGE_OFFSET) {
  154. pr_err("initrd start < PAGE_OFFSET\n");
  155. goto disable;
  156. }
  157. /*
  158. * Sanitize initrd addresses. For example firmware
  159. * can't guess if they need to pass them through
  160. * 64-bits values if the kernel has been built in pure
  161. * 32-bit. We need also to switch from KSEG0 to XKPHYS
  162. * addresses now, so the code can now safely use __pa().
  163. */
  164. end = __pa(initrd_end);
  165. initrd_end = (unsigned long)__va(end);
  166. initrd_start = (unsigned long)__va(__pa(initrd_start));
  167. ROOT_DEV = Root_RAM0;
  168. return PFN_UP(end);
  169. disable:
  170. initrd_start = 0;
  171. initrd_end = 0;
  172. return 0;
  173. }
  174. static void __init finalize_initrd(void)
  175. {
  176. unsigned long size = initrd_end - initrd_start;
  177. if (size == 0) {
  178. printk(KERN_INFO "Initrd not found or empty");
  179. goto disable;
  180. }
  181. if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) {
  182. printk(KERN_ERR "Initrd extends beyond end of memory");
  183. goto disable;
  184. }
  185. reserve_bootmem(__pa(initrd_start), size, BOOTMEM_DEFAULT);
  186. initrd_below_start_ok = 1;
  187. pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n",
  188. initrd_start, size);
  189. return;
  190. disable:
  191. printk(KERN_CONT " - disabling initrd\n");
  192. initrd_start = 0;
  193. initrd_end = 0;
  194. }
  195. #else /* !CONFIG_BLK_DEV_INITRD */
  196. static unsigned long __init init_initrd(void)
  197. {
  198. return 0;
  199. }
  200. #define finalize_initrd() do {} while (0)
  201. #endif
  202. /*
  203. * Initialize the bootmem allocator. It also setup initrd related data
  204. * if needed.
  205. */
  206. #ifdef CONFIG_SGI_IP27
  207. static void __init bootmem_init(void)
  208. {
  209. init_initrd();
  210. finalize_initrd();
  211. }
  212. #else /* !CONFIG_SGI_IP27 */
  213. static void __init bootmem_init(void)
  214. {
  215. unsigned long reserved_end;
  216. unsigned long mapstart = ~0UL;
  217. unsigned long bootmap_size;
  218. int i;
  219. /*
  220. * Init any data related to initrd. It's a nop if INITRD is
  221. * not selected. Once that done we can determine the low bound
  222. * of usable memory.
  223. */
  224. reserved_end = max(init_initrd(),
  225. (unsigned long) PFN_UP(__pa_symbol(&_end)));
  226. /*
  227. * max_low_pfn is not a number of pages. The number of pages
  228. * of the system is given by 'max_low_pfn - min_low_pfn'.
  229. */
  230. min_low_pfn = ~0UL;
  231. max_low_pfn = 0;
  232. /*
  233. * Find the highest page frame number we have available.
  234. */
  235. for (i = 0; i < boot_mem_map.nr_map; i++) {
  236. unsigned long start, end;
  237. if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
  238. continue;
  239. start = PFN_UP(boot_mem_map.map[i].addr);
  240. end = PFN_DOWN(boot_mem_map.map[i].addr
  241. + boot_mem_map.map[i].size);
  242. if (end > max_low_pfn)
  243. max_low_pfn = end;
  244. if (start < min_low_pfn)
  245. min_low_pfn = start;
  246. if (end <= reserved_end)
  247. continue;
  248. if (start >= mapstart)
  249. continue;
  250. mapstart = max(reserved_end, start);
  251. }
  252. if (min_low_pfn >= max_low_pfn)
  253. panic("Incorrect memory mapping !!!");
  254. if (min_low_pfn > ARCH_PFN_OFFSET) {
  255. pr_info("Wasting %lu bytes for tracking %lu unused pages\n",
  256. (min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page),
  257. min_low_pfn - ARCH_PFN_OFFSET);
  258. } else if (min_low_pfn < ARCH_PFN_OFFSET) {
  259. pr_info("%lu free pages won't be used\n",
  260. ARCH_PFN_OFFSET - min_low_pfn);
  261. }
  262. min_low_pfn = ARCH_PFN_OFFSET;
  263. /*
  264. * Determine low and high memory ranges
  265. */
  266. max_pfn = max_low_pfn;
  267. if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) {
  268. #ifdef CONFIG_HIGHMEM
  269. highstart_pfn = PFN_DOWN(HIGHMEM_START);
  270. highend_pfn = max_low_pfn;
  271. #endif
  272. max_low_pfn = PFN_DOWN(HIGHMEM_START);
  273. }
  274. /*
  275. * Initialize the boot-time allocator with low memory only.
  276. */
  277. bootmap_size = init_bootmem_node(NODE_DATA(0), mapstart,
  278. min_low_pfn, max_low_pfn);
  279. for (i = 0; i < boot_mem_map.nr_map; i++) {
  280. unsigned long start, end;
  281. start = PFN_UP(boot_mem_map.map[i].addr);
  282. end = PFN_DOWN(boot_mem_map.map[i].addr
  283. + boot_mem_map.map[i].size);
  284. if (start <= min_low_pfn)
  285. start = min_low_pfn;
  286. if (start >= end)
  287. continue;
  288. #ifndef CONFIG_HIGHMEM
  289. if (end > max_low_pfn)
  290. end = max_low_pfn;
  291. /*
  292. * ... finally, is the area going away?
  293. */
  294. if (end <= start)
  295. continue;
  296. #endif
  297. add_active_range(0, start, end);
  298. }
  299. /*
  300. * Register fully available low RAM pages with the bootmem allocator.
  301. */
  302. for (i = 0; i < boot_mem_map.nr_map; i++) {
  303. unsigned long start, end, size;
  304. /*
  305. * Reserve usable memory.
  306. */
  307. if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
  308. continue;
  309. start = PFN_UP(boot_mem_map.map[i].addr);
  310. end = PFN_DOWN(boot_mem_map.map[i].addr
  311. + boot_mem_map.map[i].size);
  312. /*
  313. * We are rounding up the start address of usable memory
  314. * and at the end of the usable range downwards.
  315. */
  316. if (start >= max_low_pfn)
  317. continue;
  318. if (start < reserved_end)
  319. start = reserved_end;
  320. if (end > max_low_pfn)
  321. end = max_low_pfn;
  322. /*
  323. * ... finally, is the area going away?
  324. */
  325. if (end <= start)
  326. continue;
  327. size = end - start;
  328. /* Register lowmem ranges */
  329. free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT);
  330. memory_present(0, start, end);
  331. }
  332. /*
  333. * Reserve the bootmap memory.
  334. */
  335. reserve_bootmem(PFN_PHYS(mapstart), bootmap_size, BOOTMEM_DEFAULT);
  336. /*
  337. * Reserve initrd memory if needed.
  338. */
  339. finalize_initrd();
  340. }
  341. #endif /* CONFIG_SGI_IP27 */
  342. /*
  343. * arch_mem_init - initialize memory management subsystem
  344. *
  345. * o plat_mem_setup() detects the memory configuration and will record detected
  346. * memory areas using add_memory_region.
  347. *
  348. * At this stage the memory configuration of the system is known to the
  349. * kernel but generic memory management system is still entirely uninitialized.
  350. *
  351. * o bootmem_init()
  352. * o sparse_init()
  353. * o paging_init()
  354. *
  355. * At this stage the bootmem allocator is ready to use.
  356. *
  357. * NOTE: historically plat_mem_setup did the entire platform initialization.
  358. * This was rather impractical because it meant plat_mem_setup had to
  359. * get away without any kind of memory allocator. To keep old code from
  360. * breaking plat_setup was just renamed to plat_setup and a second platform
  361. * initialization hook for anything else was introduced.
  362. */
  363. static int usermem __initdata;
  364. static int __init early_parse_mem(char *p)
  365. {
  366. unsigned long start, size;
  367. /*
  368. * If a user specifies memory size, we
  369. * blow away any automatically generated
  370. * size.
  371. */
  372. if (usermem == 0) {
  373. boot_mem_map.nr_map = 0;
  374. usermem = 1;
  375. }
  376. start = 0;
  377. size = memparse(p, &p);
  378. if (*p == '@')
  379. start = memparse(p + 1, &p);
  380. add_memory_region(start, size, BOOT_MEM_RAM);
  381. return 0;
  382. }
  383. early_param("mem", early_parse_mem);
  384. static void __init arch_mem_init(char **cmdline_p)
  385. {
  386. extern void plat_mem_setup(void);
  387. /* call board setup routine */
  388. plat_mem_setup();
  389. pr_info("Determined physical RAM map:\n");
  390. print_memory_map();
  391. #ifdef CONFIG_CMDLINE_BOOL
  392. #ifdef CONFIG_CMDLINE_OVERRIDE
  393. strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
  394. #else
  395. if (builtin_cmdline[0]) {
  396. strlcat(arcs_cmdline, " ", COMMAND_LINE_SIZE);
  397. strlcat(arcs_cmdline, builtin_cmdline, COMMAND_LINE_SIZE);
  398. }
  399. strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
  400. #endif
  401. #else
  402. strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
  403. #endif
  404. strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
  405. *cmdline_p = command_line;
  406. parse_early_param();
  407. if (usermem) {
  408. pr_info("User-defined physical RAM map:\n");
  409. print_memory_map();
  410. }
  411. bootmem_init();
  412. device_tree_init();
  413. sparse_init();
  414. plat_swiotlb_setup();
  415. paging_init();
  416. }
  417. static void __init resource_init(void)
  418. {
  419. int i;
  420. if (UNCAC_BASE != IO_BASE)
  421. return;
  422. code_resource.start = __pa_symbol(&_text);
  423. code_resource.end = __pa_symbol(&_etext) - 1;
  424. data_resource.start = __pa_symbol(&_etext);
  425. data_resource.end = __pa_symbol(&_edata) - 1;
  426. /*
  427. * Request address space for all standard RAM.
  428. */
  429. for (i = 0; i < boot_mem_map.nr_map; i++) {
  430. struct resource *res;
  431. unsigned long start, end;
  432. start = boot_mem_map.map[i].addr;
  433. end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1;
  434. if (start >= HIGHMEM_START)
  435. continue;
  436. if (end >= HIGHMEM_START)
  437. end = HIGHMEM_START - 1;
  438. res = alloc_bootmem(sizeof(struct resource));
  439. switch (boot_mem_map.map[i].type) {
  440. case BOOT_MEM_RAM:
  441. case BOOT_MEM_ROM_DATA:
  442. res->name = "System RAM";
  443. break;
  444. case BOOT_MEM_RESERVED:
  445. default:
  446. res->name = "reserved";
  447. }
  448. res->start = start;
  449. res->end = end;
  450. res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
  451. request_resource(&iomem_resource, res);
  452. /*
  453. * We don't know which RAM region contains kernel data,
  454. * so we try it repeatedly and let the resource manager
  455. * test it.
  456. */
  457. request_resource(res, &code_resource);
  458. request_resource(res, &data_resource);
  459. }
  460. }
  461. void __init setup_arch(char **cmdline_p)
  462. {
  463. cpu_probe();
  464. prom_init();
  465. #ifdef CONFIG_EARLY_PRINTK
  466. setup_early_printk();
  467. #endif
  468. cpu_report();
  469. check_bugs_early();
  470. #if defined(CONFIG_VT)
  471. #if defined(CONFIG_VGA_CONSOLE)
  472. conswitchp = &vga_con;
  473. #elif defined(CONFIG_DUMMY_CONSOLE)
  474. conswitchp = &dummy_con;
  475. #endif
  476. #endif
  477. arch_mem_init(cmdline_p);
  478. resource_init();
  479. plat_smp_setup();
  480. }
  481. unsigned long kernelsp[NR_CPUS];
  482. unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3;
  483. #ifdef CONFIG_DEBUG_FS
  484. struct dentry *mips_debugfs_dir;
  485. static int __init debugfs_mips(void)
  486. {
  487. struct dentry *d;
  488. d = debugfs_create_dir("mips", NULL);
  489. if (!d)
  490. return -ENOMEM;
  491. mips_debugfs_dir = d;
  492. return 0;
  493. }
  494. arch_initcall(debugfs_mips);
  495. #endif