setup.c 28 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052
  1. /*
  2. * Architecture-specific setup.
  3. *
  4. * Copyright (C) 1998-2001, 2003-2004 Hewlett-Packard Co
  5. * David Mosberger-Tang <davidm@hpl.hp.com>
  6. * Stephane Eranian <eranian@hpl.hp.com>
  7. * Copyright (C) 2000, 2004 Intel Corp
  8. * Rohit Seth <rohit.seth@intel.com>
  9. * Suresh Siddha <suresh.b.siddha@intel.com>
  10. * Gordon Jin <gordon.jin@intel.com>
  11. * Copyright (C) 1999 VA Linux Systems
  12. * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
  13. *
  14. * 12/26/04 S.Siddha, G.Jin, R.Seth
  15. * Add multi-threading and multi-core detection
  16. * 11/12/01 D.Mosberger Convert get_cpuinfo() to seq_file based show_cpuinfo().
  17. * 04/04/00 D.Mosberger renamed cpu_initialized to cpu_online_map
  18. * 03/31/00 R.Seth cpu_initialized and current->processor fixes
  19. * 02/04/00 D.Mosberger some more get_cpuinfo fixes...
  20. * 02/01/00 R.Seth fixed get_cpuinfo for SMP
  21. * 01/07/99 S.Eranian added the support for command line argument
  22. * 06/24/99 W.Drummond added boot_cpu_data.
  23. * 05/28/05 Z. Menyhart Dynamic stride size for "flush_icache_range()"
  24. */
  25. #include <linux/module.h>
  26. #include <linux/init.h>
  27. #include <linux/acpi.h>
  28. #include <linux/bootmem.h>
  29. #include <linux/console.h>
  30. #include <linux/delay.h>
  31. #include <linux/kernel.h>
  32. #include <linux/reboot.h>
  33. #include <linux/sched.h>
  34. #include <linux/seq_file.h>
  35. #include <linux/string.h>
  36. #include <linux/threads.h>
  37. #include <linux/screen_info.h>
  38. #include <linux/dmi.h>
  39. #include <linux/serial.h>
  40. #include <linux/serial_core.h>
  41. #include <linux/efi.h>
  42. #include <linux/initrd.h>
  43. #include <linux/pm.h>
  44. #include <linux/cpufreq.h>
  45. #include <linux/kexec.h>
  46. #include <linux/crash_dump.h>
  47. #include <asm/machvec.h>
  48. #include <asm/mca.h>
  49. #include <asm/meminit.h>
  50. #include <asm/page.h>
  51. #include <asm/paravirt.h>
  52. #include <asm/paravirt_patch.h>
  53. #include <asm/patch.h>
  54. #include <asm/pgtable.h>
  55. #include <asm/processor.h>
  56. #include <asm/sal.h>
  57. #include <asm/sections.h>
  58. #include <asm/setup.h>
  59. #include <asm/smp.h>
  60. #include <asm/system.h>
  61. #include <asm/tlbflush.h>
  62. #include <asm/unistd.h>
  63. #include <asm/hpsim.h>
  64. #if defined(CONFIG_SMP) && (IA64_CPU_SIZE > PAGE_SIZE)
  65. # error "struct cpuinfo_ia64 too big!"
  66. #endif
  67. #ifdef CONFIG_SMP
  68. unsigned long __per_cpu_offset[NR_CPUS];
  69. EXPORT_SYMBOL(__per_cpu_offset);
  70. #endif
  71. DEFINE_PER_CPU(struct cpuinfo_ia64, ia64_cpu_info);
  72. DEFINE_PER_CPU(unsigned long, local_per_cpu_offset);
  73. unsigned long ia64_cycles_per_usec;
  74. struct ia64_boot_param *ia64_boot_param;
  75. struct screen_info screen_info;
  76. unsigned long vga_console_iobase;
  77. unsigned long vga_console_membase;
  78. static struct resource data_resource = {
  79. .name = "Kernel data",
  80. .flags = IORESOURCE_BUSY | IORESOURCE_MEM
  81. };
  82. static struct resource code_resource = {
  83. .name = "Kernel code",
  84. .flags = IORESOURCE_BUSY | IORESOURCE_MEM
  85. };
  86. static struct resource bss_resource = {
  87. .name = "Kernel bss",
  88. .flags = IORESOURCE_BUSY | IORESOURCE_MEM
  89. };
  90. unsigned long ia64_max_cacheline_size;
  91. unsigned long ia64_iobase; /* virtual address for I/O accesses */
  92. EXPORT_SYMBOL(ia64_iobase);
  93. struct io_space io_space[MAX_IO_SPACES];
  94. EXPORT_SYMBOL(io_space);
  95. unsigned int num_io_spaces;
  96. /*
  97. * "flush_icache_range()" needs to know what processor dependent stride size to use
  98. * when it makes i-cache(s) coherent with d-caches.
  99. */
  100. #define I_CACHE_STRIDE_SHIFT 5 /* Safest way to go: 32 bytes by 32 bytes */
  101. unsigned long ia64_i_cache_stride_shift = ~0;
  102. /*
  103. * "clflush_cache_range()" needs to know what processor dependent stride size to
  104. * use when it flushes cache lines including both d-cache and i-cache.
  105. */
  106. /* Safest way to go: 32 bytes by 32 bytes */
  107. #define CACHE_STRIDE_SHIFT 5
  108. unsigned long ia64_cache_stride_shift = ~0;
  109. /*
  110. * The merge_mask variable needs to be set to (max(iommu_page_size(iommu)) - 1). This
  111. * mask specifies a mask of address bits that must be 0 in order for two buffers to be
  112. * mergeable by the I/O MMU (i.e., the end address of the first buffer and the start
  113. * address of the second buffer must be aligned to (merge_mask+1) in order to be
  114. * mergeable). By default, we assume there is no I/O MMU which can merge physically
  115. * discontiguous buffers, so we set the merge_mask to ~0UL, which corresponds to a iommu
  116. * page-size of 2^64.
  117. */
  118. unsigned long ia64_max_iommu_merge_mask = ~0UL;
  119. EXPORT_SYMBOL(ia64_max_iommu_merge_mask);
  120. /*
  121. * We use a special marker for the end of memory and it uses the extra (+1) slot
  122. */
  123. struct rsvd_region rsvd_region[IA64_MAX_RSVD_REGIONS + 1] __initdata;
  124. int num_rsvd_regions __initdata;
  125. /*
  126. * Filter incoming memory segments based on the primitive map created from the boot
  127. * parameters. Segments contained in the map are removed from the memory ranges. A
  128. * caller-specified function is called with the memory ranges that remain after filtering.
  129. * This routine does not assume the incoming segments are sorted.
  130. */
  131. int __init
  132. filter_rsvd_memory (u64 start, u64 end, void *arg)
  133. {
  134. u64 range_start, range_end, prev_start;
  135. void (*func)(unsigned long, unsigned long, int);
  136. int i;
  137. #if IGNORE_PFN0
  138. if (start == PAGE_OFFSET) {
  139. printk(KERN_WARNING "warning: skipping physical page 0\n");
  140. start += PAGE_SIZE;
  141. if (start >= end) return 0;
  142. }
  143. #endif
  144. /*
  145. * lowest possible address(walker uses virtual)
  146. */
  147. prev_start = PAGE_OFFSET;
  148. func = arg;
  149. for (i = 0; i < num_rsvd_regions; ++i) {
  150. range_start = max(start, prev_start);
  151. range_end = min(end, rsvd_region[i].start);
  152. if (range_start < range_end)
  153. call_pernode_memory(__pa(range_start), range_end - range_start, func);
  154. /* nothing more available in this segment */
  155. if (range_end == end) return 0;
  156. prev_start = rsvd_region[i].end;
  157. }
  158. /* end of memory marker allows full processing inside loop body */
  159. return 0;
  160. }
  161. /*
  162. * Similar to "filter_rsvd_memory()", but the reserved memory ranges
  163. * are not filtered out.
  164. */
  165. int __init
  166. filter_memory(u64 start, u64 end, void *arg)
  167. {
  168. void (*func)(unsigned long, unsigned long, int);
  169. #if IGNORE_PFN0
  170. if (start == PAGE_OFFSET) {
  171. printk(KERN_WARNING "warning: skipping physical page 0\n");
  172. start += PAGE_SIZE;
  173. if (start >= end)
  174. return 0;
  175. }
  176. #endif
  177. func = arg;
  178. if (start < end)
  179. call_pernode_memory(__pa(start), end - start, func);
  180. return 0;
  181. }
  182. static void __init
  183. sort_regions (struct rsvd_region *rsvd_region, int max)
  184. {
  185. int j;
  186. /* simple bubble sorting */
  187. while (max--) {
  188. for (j = 0; j < max; ++j) {
  189. if (rsvd_region[j].start > rsvd_region[j+1].start) {
  190. struct rsvd_region tmp;
  191. tmp = rsvd_region[j];
  192. rsvd_region[j] = rsvd_region[j + 1];
  193. rsvd_region[j + 1] = tmp;
  194. }
  195. }
  196. }
  197. }
  198. /*
  199. * Request address space for all standard resources
  200. */
  201. static int __init register_memory(void)
  202. {
  203. code_resource.start = ia64_tpa(_text);
  204. code_resource.end = ia64_tpa(_etext) - 1;
  205. data_resource.start = ia64_tpa(_etext);
  206. data_resource.end = ia64_tpa(_edata) - 1;
  207. bss_resource.start = ia64_tpa(__bss_start);
  208. bss_resource.end = ia64_tpa(_end) - 1;
  209. efi_initialize_iomem_resources(&code_resource, &data_resource,
  210. &bss_resource);
  211. return 0;
  212. }
  213. __initcall(register_memory);
  214. #ifdef CONFIG_KEXEC
  215. /*
  216. * This function checks if the reserved crashkernel is allowed on the specific
  217. * IA64 machine flavour. Machines without an IO TLB use swiotlb and require
  218. * some memory below 4 GB (i.e. in 32 bit area), see the implementation of
  219. * lib/swiotlb.c. The hpzx1 architecture has an IO TLB but cannot use that
  220. * in kdump case. See the comment in sba_init() in sba_iommu.c.
  221. *
  222. * So, the only machvec that really supports loading the kdump kernel
  223. * over 4 GB is "sn2".
  224. */
  225. static int __init check_crashkernel_memory(unsigned long pbase, size_t size)
  226. {
  227. if (ia64_platform_is("sn2") || ia64_platform_is("uv"))
  228. return 1;
  229. else
  230. return pbase < (1UL << 32);
  231. }
  232. static void __init setup_crashkernel(unsigned long total, int *n)
  233. {
  234. unsigned long long base = 0, size = 0;
  235. int ret;
  236. ret = parse_crashkernel(boot_command_line, total,
  237. &size, &base);
  238. if (ret == 0 && size > 0) {
  239. if (!base) {
  240. sort_regions(rsvd_region, *n);
  241. base = kdump_find_rsvd_region(size,
  242. rsvd_region, *n);
  243. }
  244. if (!check_crashkernel_memory(base, size)) {
  245. pr_warning("crashkernel: There would be kdump memory "
  246. "at %ld GB but this is unusable because it "
  247. "must\nbe below 4 GB. Change the memory "
  248. "configuration of the machine.\n",
  249. (unsigned long)(base >> 30));
  250. return;
  251. }
  252. if (base != ~0UL) {
  253. printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
  254. "for crashkernel (System RAM: %ldMB)\n",
  255. (unsigned long)(size >> 20),
  256. (unsigned long)(base >> 20),
  257. (unsigned long)(total >> 20));
  258. rsvd_region[*n].start =
  259. (unsigned long)__va(base);
  260. rsvd_region[*n].end =
  261. (unsigned long)__va(base + size);
  262. (*n)++;
  263. crashk_res.start = base;
  264. crashk_res.end = base + size - 1;
  265. }
  266. }
  267. efi_memmap_res.start = ia64_boot_param->efi_memmap;
  268. efi_memmap_res.end = efi_memmap_res.start +
  269. ia64_boot_param->efi_memmap_size;
  270. boot_param_res.start = __pa(ia64_boot_param);
  271. boot_param_res.end = boot_param_res.start +
  272. sizeof(*ia64_boot_param);
  273. }
  274. #else
  275. static inline void __init setup_crashkernel(unsigned long total, int *n)
  276. {}
  277. #endif
  278. /**
  279. * reserve_memory - setup reserved memory areas
  280. *
  281. * Setup the reserved memory areas set aside for the boot parameters,
  282. * initrd, etc. There are currently %IA64_MAX_RSVD_REGIONS defined,
  283. * see arch/ia64/include/asm/meminit.h if you need to define more.
  284. */
  285. void __init
  286. reserve_memory (void)
  287. {
  288. int n = 0;
  289. unsigned long total_memory;
  290. /*
  291. * none of the entries in this table overlap
  292. */
  293. rsvd_region[n].start = (unsigned long) ia64_boot_param;
  294. rsvd_region[n].end = rsvd_region[n].start + sizeof(*ia64_boot_param);
  295. n++;
  296. rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->efi_memmap);
  297. rsvd_region[n].end = rsvd_region[n].start + ia64_boot_param->efi_memmap_size;
  298. n++;
  299. rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->command_line);
  300. rsvd_region[n].end = (rsvd_region[n].start
  301. + strlen(__va(ia64_boot_param->command_line)) + 1);
  302. n++;
  303. rsvd_region[n].start = (unsigned long) ia64_imva((void *)KERNEL_START);
  304. rsvd_region[n].end = (unsigned long) ia64_imva(_end);
  305. n++;
  306. n += paravirt_reserve_memory(&rsvd_region[n]);
  307. #ifdef CONFIG_BLK_DEV_INITRD
  308. if (ia64_boot_param->initrd_start) {
  309. rsvd_region[n].start = (unsigned long)__va(ia64_boot_param->initrd_start);
  310. rsvd_region[n].end = rsvd_region[n].start + ia64_boot_param->initrd_size;
  311. n++;
  312. }
  313. #endif
  314. #ifdef CONFIG_CRASH_DUMP
  315. if (reserve_elfcorehdr(&rsvd_region[n].start,
  316. &rsvd_region[n].end) == 0)
  317. n++;
  318. #endif
  319. total_memory = efi_memmap_init(&rsvd_region[n].start, &rsvd_region[n].end);
  320. n++;
  321. setup_crashkernel(total_memory, &n);
  322. /* end of memory marker */
  323. rsvd_region[n].start = ~0UL;
  324. rsvd_region[n].end = ~0UL;
  325. n++;
  326. num_rsvd_regions = n;
  327. BUG_ON(IA64_MAX_RSVD_REGIONS + 1 < n);
  328. sort_regions(rsvd_region, num_rsvd_regions);
  329. }
  330. /**
  331. * find_initrd - get initrd parameters from the boot parameter structure
  332. *
  333. * Grab the initrd start and end from the boot parameter struct given us by
  334. * the boot loader.
  335. */
  336. void __init
  337. find_initrd (void)
  338. {
  339. #ifdef CONFIG_BLK_DEV_INITRD
  340. if (ia64_boot_param->initrd_start) {
  341. initrd_start = (unsigned long)__va(ia64_boot_param->initrd_start);
  342. initrd_end = initrd_start+ia64_boot_param->initrd_size;
  343. printk(KERN_INFO "Initial ramdisk at: 0x%lx (%llu bytes)\n",
  344. initrd_start, ia64_boot_param->initrd_size);
  345. }
  346. #endif
  347. }
  348. static void __init
  349. io_port_init (void)
  350. {
  351. unsigned long phys_iobase;
  352. /*
  353. * Set `iobase' based on the EFI memory map or, failing that, the
  354. * value firmware left in ar.k0.
  355. *
  356. * Note that in ia32 mode, IN/OUT instructions use ar.k0 to compute
  357. * the port's virtual address, so ia32_load_state() loads it with a
  358. * user virtual address. But in ia64 mode, glibc uses the
  359. * *physical* address in ar.k0 to mmap the appropriate area from
  360. * /dev/mem, and the inX()/outX() interfaces use MMIO. In both
  361. * cases, user-mode can only use the legacy 0-64K I/O port space.
  362. *
  363. * ar.k0 is not involved in kernel I/O port accesses, which can use
  364. * any of the I/O port spaces and are done via MMIO using the
  365. * virtual mmio_base from the appropriate io_space[].
  366. */
  367. phys_iobase = efi_get_iobase();
  368. if (!phys_iobase) {
  369. phys_iobase = ia64_get_kr(IA64_KR_IO_BASE);
  370. printk(KERN_INFO "No I/O port range found in EFI memory map, "
  371. "falling back to AR.KR0 (0x%lx)\n", phys_iobase);
  372. }
  373. ia64_iobase = (unsigned long) ioremap(phys_iobase, 0);
  374. ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
  375. /* setup legacy IO port space */
  376. io_space[0].mmio_base = ia64_iobase;
  377. io_space[0].sparse = 1;
  378. num_io_spaces = 1;
  379. }
  380. /**
  381. * early_console_setup - setup debugging console
  382. *
  383. * Consoles started here require little enough setup that we can start using
  384. * them very early in the boot process, either right after the machine
  385. * vector initialization, or even before if the drivers can detect their hw.
  386. *
  387. * Returns non-zero if a console couldn't be setup.
  388. */
  389. static inline int __init
  390. early_console_setup (char *cmdline)
  391. {
  392. int earlycons = 0;
  393. #ifdef CONFIG_SERIAL_SGI_L1_CONSOLE
  394. {
  395. extern int sn_serial_console_early_setup(void);
  396. if (!sn_serial_console_early_setup())
  397. earlycons++;
  398. }
  399. #endif
  400. #ifdef CONFIG_EFI_PCDP
  401. if (!efi_setup_pcdp_console(cmdline))
  402. earlycons++;
  403. #endif
  404. if (!simcons_register())
  405. earlycons++;
  406. return (earlycons) ? 0 : -1;
  407. }
  408. static inline void
  409. mark_bsp_online (void)
  410. {
  411. #ifdef CONFIG_SMP
  412. /* If we register an early console, allow CPU 0 to printk */
  413. cpu_set(smp_processor_id(), cpu_online_map);
  414. #endif
  415. }
  416. static __initdata int nomca;
  417. static __init int setup_nomca(char *s)
  418. {
  419. nomca = 1;
  420. return 0;
  421. }
  422. early_param("nomca", setup_nomca);
  423. #ifdef CONFIG_CRASH_DUMP
  424. int __init reserve_elfcorehdr(u64 *start, u64 *end)
  425. {
  426. u64 length;
  427. /* We get the address using the kernel command line,
  428. * but the size is extracted from the EFI tables.
  429. * Both address and size are required for reservation
  430. * to work properly.
  431. */
  432. if (!is_vmcore_usable())
  433. return -EINVAL;
  434. if ((length = vmcore_find_descriptor_size(elfcorehdr_addr)) == 0) {
  435. vmcore_unusable();
  436. return -EINVAL;
  437. }
  438. *start = (unsigned long)__va(elfcorehdr_addr);
  439. *end = *start + length;
  440. return 0;
  441. }
  442. #endif /* CONFIG_PROC_VMCORE */
  443. void __init
  444. setup_arch (char **cmdline_p)
  445. {
  446. unw_init();
  447. paravirt_arch_setup_early();
  448. ia64_patch_vtop((u64) __start___vtop_patchlist, (u64) __end___vtop_patchlist);
  449. paravirt_patch_apply();
  450. *cmdline_p = __va(ia64_boot_param->command_line);
  451. strlcpy(boot_command_line, *cmdline_p, COMMAND_LINE_SIZE);
  452. efi_init();
  453. io_port_init();
  454. #ifdef CONFIG_IA64_GENERIC
  455. /* machvec needs to be parsed from the command line
  456. * before parse_early_param() is called to ensure
  457. * that ia64_mv is initialised before any command line
  458. * settings may cause console setup to occur
  459. */
  460. machvec_init_from_cmdline(*cmdline_p);
  461. #endif
  462. parse_early_param();
  463. if (early_console_setup(*cmdline_p) == 0)
  464. mark_bsp_online();
  465. #ifdef CONFIG_ACPI
  466. /* Initialize the ACPI boot-time table parser */
  467. acpi_table_init();
  468. early_acpi_boot_init();
  469. # ifdef CONFIG_ACPI_NUMA
  470. acpi_numa_init();
  471. # ifdef CONFIG_ACPI_HOTPLUG_CPU
  472. prefill_possible_map();
  473. # endif
  474. per_cpu_scan_finalize((cpus_weight(early_cpu_possible_map) == 0 ?
  475. 32 : cpus_weight(early_cpu_possible_map)),
  476. additional_cpus > 0 ? additional_cpus : 0);
  477. # endif
  478. #endif /* CONFIG_APCI_BOOT */
  479. #ifdef CONFIG_SMP
  480. smp_build_cpu_map();
  481. #endif
  482. find_memory();
  483. /* process SAL system table: */
  484. ia64_sal_init(__va(efi.sal_systab));
  485. #ifdef CONFIG_ITANIUM
  486. ia64_patch_rse((u64) __start___rse_patchlist, (u64) __end___rse_patchlist);
  487. #else
  488. {
  489. unsigned long num_phys_stacked;
  490. if (ia64_pal_rse_info(&num_phys_stacked, 0) == 0 && num_phys_stacked > 96)
  491. ia64_patch_rse((u64) __start___rse_patchlist, (u64) __end___rse_patchlist);
  492. }
  493. #endif
  494. #ifdef CONFIG_SMP
  495. cpu_physical_id(0) = hard_smp_processor_id();
  496. #endif
  497. cpu_init(); /* initialize the bootstrap CPU */
  498. mmu_context_init(); /* initialize context_id bitmap */
  499. paravirt_banner();
  500. paravirt_arch_setup_console(cmdline_p);
  501. #ifdef CONFIG_VT
  502. if (!conswitchp) {
  503. # if defined(CONFIG_DUMMY_CONSOLE)
  504. conswitchp = &dummy_con;
  505. # endif
  506. # if defined(CONFIG_VGA_CONSOLE)
  507. /*
  508. * Non-legacy systems may route legacy VGA MMIO range to system
  509. * memory. vga_con probes the MMIO hole, so memory looks like
  510. * a VGA device to it. The EFI memory map can tell us if it's
  511. * memory so we can avoid this problem.
  512. */
  513. if (efi_mem_type(0xA0000) != EFI_CONVENTIONAL_MEMORY)
  514. conswitchp = &vga_con;
  515. # endif
  516. }
  517. #endif
  518. /* enable IA-64 Machine Check Abort Handling unless disabled */
  519. if (paravirt_arch_setup_nomca())
  520. nomca = 1;
  521. if (!nomca)
  522. ia64_mca_init();
  523. platform_setup(cmdline_p);
  524. #ifndef CONFIG_IA64_HP_SIM
  525. check_sal_cache_flush();
  526. #endif
  527. paging_init();
  528. }
  529. /*
  530. * Display cpu info for all CPUs.
  531. */
  532. static int
  533. show_cpuinfo (struct seq_file *m, void *v)
  534. {
  535. #ifdef CONFIG_SMP
  536. # define lpj c->loops_per_jiffy
  537. # define cpunum c->cpu
  538. #else
  539. # define lpj loops_per_jiffy
  540. # define cpunum 0
  541. #endif
  542. static struct {
  543. unsigned long mask;
  544. const char *feature_name;
  545. } feature_bits[] = {
  546. { 1UL << 0, "branchlong" },
  547. { 1UL << 1, "spontaneous deferral"},
  548. { 1UL << 2, "16-byte atomic ops" }
  549. };
  550. char features[128], *cp, *sep;
  551. struct cpuinfo_ia64 *c = v;
  552. unsigned long mask;
  553. unsigned long proc_freq;
  554. int i, size;
  555. mask = c->features;
  556. /* build the feature string: */
  557. memcpy(features, "standard", 9);
  558. cp = features;
  559. size = sizeof(features);
  560. sep = "";
  561. for (i = 0; i < ARRAY_SIZE(feature_bits) && size > 1; ++i) {
  562. if (mask & feature_bits[i].mask) {
  563. cp += snprintf(cp, size, "%s%s", sep,
  564. feature_bits[i].feature_name),
  565. sep = ", ";
  566. mask &= ~feature_bits[i].mask;
  567. size = sizeof(features) - (cp - features);
  568. }
  569. }
  570. if (mask && size > 1) {
  571. /* print unknown features as a hex value */
  572. snprintf(cp, size, "%s0x%lx", sep, mask);
  573. }
  574. proc_freq = cpufreq_quick_get(cpunum);
  575. if (!proc_freq)
  576. proc_freq = c->proc_freq / 1000;
  577. seq_printf(m,
  578. "processor : %d\n"
  579. "vendor : %s\n"
  580. "arch : IA-64\n"
  581. "family : %u\n"
  582. "model : %u\n"
  583. "model name : %s\n"
  584. "revision : %u\n"
  585. "archrev : %u\n"
  586. "features : %s\n"
  587. "cpu number : %lu\n"
  588. "cpu regs : %u\n"
  589. "cpu MHz : %lu.%03lu\n"
  590. "itc MHz : %lu.%06lu\n"
  591. "BogoMIPS : %lu.%02lu\n",
  592. cpunum, c->vendor, c->family, c->model,
  593. c->model_name, c->revision, c->archrev,
  594. features, c->ppn, c->number,
  595. proc_freq / 1000, proc_freq % 1000,
  596. c->itc_freq / 1000000, c->itc_freq % 1000000,
  597. lpj*HZ/500000, (lpj*HZ/5000) % 100);
  598. #ifdef CONFIG_SMP
  599. seq_printf(m, "siblings : %u\n", cpus_weight(cpu_core_map[cpunum]));
  600. if (c->socket_id != -1)
  601. seq_printf(m, "physical id: %u\n", c->socket_id);
  602. if (c->threads_per_core > 1 || c->cores_per_socket > 1)
  603. seq_printf(m,
  604. "core id : %u\n"
  605. "thread id : %u\n",
  606. c->core_id, c->thread_id);
  607. #endif
  608. seq_printf(m,"\n");
  609. return 0;
  610. }
  611. static void *
  612. c_start (struct seq_file *m, loff_t *pos)
  613. {
  614. #ifdef CONFIG_SMP
  615. while (*pos < nr_cpu_ids && !cpu_online(*pos))
  616. ++*pos;
  617. #endif
  618. return *pos < nr_cpu_ids ? cpu_data(*pos) : NULL;
  619. }
  620. static void *
  621. c_next (struct seq_file *m, void *v, loff_t *pos)
  622. {
  623. ++*pos;
  624. return c_start(m, pos);
  625. }
  626. static void
  627. c_stop (struct seq_file *m, void *v)
  628. {
  629. }
  630. const struct seq_operations cpuinfo_op = {
  631. .start = c_start,
  632. .next = c_next,
  633. .stop = c_stop,
  634. .show = show_cpuinfo
  635. };
  636. #define MAX_BRANDS 8
  637. static char brandname[MAX_BRANDS][128];
  638. static char * __cpuinit
  639. get_model_name(__u8 family, __u8 model)
  640. {
  641. static int overflow;
  642. char brand[128];
  643. int i;
  644. memcpy(brand, "Unknown", 8);
  645. if (ia64_pal_get_brand_info(brand)) {
  646. if (family == 0x7)
  647. memcpy(brand, "Merced", 7);
  648. else if (family == 0x1f) switch (model) {
  649. case 0: memcpy(brand, "McKinley", 9); break;
  650. case 1: memcpy(brand, "Madison", 8); break;
  651. case 2: memcpy(brand, "Madison up to 9M cache", 23); break;
  652. }
  653. }
  654. for (i = 0; i < MAX_BRANDS; i++)
  655. if (strcmp(brandname[i], brand) == 0)
  656. return brandname[i];
  657. for (i = 0; i < MAX_BRANDS; i++)
  658. if (brandname[i][0] == '\0')
  659. return strcpy(brandname[i], brand);
  660. if (overflow++ == 0)
  661. printk(KERN_ERR
  662. "%s: Table overflow. Some processor model information will be missing\n",
  663. __func__);
  664. return "Unknown";
  665. }
  666. static void __cpuinit
  667. identify_cpu (struct cpuinfo_ia64 *c)
  668. {
  669. union {
  670. unsigned long bits[5];
  671. struct {
  672. /* id 0 & 1: */
  673. char vendor[16];
  674. /* id 2 */
  675. u64 ppn; /* processor serial number */
  676. /* id 3: */
  677. unsigned number : 8;
  678. unsigned revision : 8;
  679. unsigned model : 8;
  680. unsigned family : 8;
  681. unsigned archrev : 8;
  682. unsigned reserved : 24;
  683. /* id 4: */
  684. u64 features;
  685. } field;
  686. } cpuid;
  687. pal_vm_info_1_u_t vm1;
  688. pal_vm_info_2_u_t vm2;
  689. pal_status_t status;
  690. unsigned long impl_va_msb = 50, phys_addr_size = 44; /* Itanium defaults */
  691. int i;
  692. for (i = 0; i < 5; ++i)
  693. cpuid.bits[i] = ia64_get_cpuid(i);
  694. memcpy(c->vendor, cpuid.field.vendor, 16);
  695. #ifdef CONFIG_SMP
  696. c->cpu = smp_processor_id();
  697. /* below default values will be overwritten by identify_siblings()
  698. * for Multi-Threading/Multi-Core capable CPUs
  699. */
  700. c->threads_per_core = c->cores_per_socket = c->num_log = 1;
  701. c->socket_id = -1;
  702. identify_siblings(c);
  703. if (c->threads_per_core > smp_num_siblings)
  704. smp_num_siblings = c->threads_per_core;
  705. #endif
  706. c->ppn = cpuid.field.ppn;
  707. c->number = cpuid.field.number;
  708. c->revision = cpuid.field.revision;
  709. c->model = cpuid.field.model;
  710. c->family = cpuid.field.family;
  711. c->archrev = cpuid.field.archrev;
  712. c->features = cpuid.field.features;
  713. c->model_name = get_model_name(c->family, c->model);
  714. status = ia64_pal_vm_summary(&vm1, &vm2);
  715. if (status == PAL_STATUS_SUCCESS) {
  716. impl_va_msb = vm2.pal_vm_info_2_s.impl_va_msb;
  717. phys_addr_size = vm1.pal_vm_info_1_s.phys_add_size;
  718. }
  719. c->unimpl_va_mask = ~((7L<<61) | ((1L << (impl_va_msb + 1)) - 1));
  720. c->unimpl_pa_mask = ~((1L<<63) | ((1L << phys_addr_size) - 1));
  721. }
  722. /*
  723. * Do the following calculations:
  724. *
  725. * 1. the max. cache line size.
  726. * 2. the minimum of the i-cache stride sizes for "flush_icache_range()".
  727. * 3. the minimum of the cache stride sizes for "clflush_cache_range()".
  728. */
  729. static void __cpuinit
  730. get_cache_info(void)
  731. {
  732. unsigned long line_size, max = 1;
  733. unsigned long l, levels, unique_caches;
  734. pal_cache_config_info_t cci;
  735. long status;
  736. status = ia64_pal_cache_summary(&levels, &unique_caches);
  737. if (status != 0) {
  738. printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n",
  739. __func__, status);
  740. max = SMP_CACHE_BYTES;
  741. /* Safest setup for "flush_icache_range()" */
  742. ia64_i_cache_stride_shift = I_CACHE_STRIDE_SHIFT;
  743. /* Safest setup for "clflush_cache_range()" */
  744. ia64_cache_stride_shift = CACHE_STRIDE_SHIFT;
  745. goto out;
  746. }
  747. for (l = 0; l < levels; ++l) {
  748. /* cache_type (data_or_unified)=2 */
  749. status = ia64_pal_cache_config_info(l, 2, &cci);
  750. if (status != 0) {
  751. printk(KERN_ERR "%s: ia64_pal_cache_config_info"
  752. "(l=%lu, 2) failed (status=%ld)\n",
  753. __func__, l, status);
  754. max = SMP_CACHE_BYTES;
  755. /* The safest setup for "flush_icache_range()" */
  756. cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
  757. /* The safest setup for "clflush_cache_range()" */
  758. ia64_cache_stride_shift = CACHE_STRIDE_SHIFT;
  759. cci.pcci_unified = 1;
  760. } else {
  761. if (cci.pcci_stride < ia64_cache_stride_shift)
  762. ia64_cache_stride_shift = cci.pcci_stride;
  763. line_size = 1 << cci.pcci_line_size;
  764. if (line_size > max)
  765. max = line_size;
  766. }
  767. if (!cci.pcci_unified) {
  768. /* cache_type (instruction)=1*/
  769. status = ia64_pal_cache_config_info(l, 1, &cci);
  770. if (status != 0) {
  771. printk(KERN_ERR "%s: ia64_pal_cache_config_info"
  772. "(l=%lu, 1) failed (status=%ld)\n",
  773. __func__, l, status);
  774. /* The safest setup for flush_icache_range() */
  775. cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
  776. }
  777. }
  778. if (cci.pcci_stride < ia64_i_cache_stride_shift)
  779. ia64_i_cache_stride_shift = cci.pcci_stride;
  780. }
  781. out:
  782. if (max > ia64_max_cacheline_size)
  783. ia64_max_cacheline_size = max;
  784. }
  785. /*
  786. * cpu_init() initializes state that is per-CPU. This function acts
  787. * as a 'CPU state barrier', nothing should get across.
  788. */
  789. void __cpuinit
  790. cpu_init (void)
  791. {
  792. extern void __cpuinit ia64_mmu_init (void *);
  793. static unsigned long max_num_phys_stacked = IA64_NUM_PHYS_STACK_REG;
  794. unsigned long num_phys_stacked;
  795. pal_vm_info_2_u_t vmi;
  796. unsigned int max_ctx;
  797. struct cpuinfo_ia64 *cpu_info;
  798. void *cpu_data;
  799. cpu_data = per_cpu_init();
  800. #ifdef CONFIG_SMP
  801. /*
  802. * insert boot cpu into sibling and core mapes
  803. * (must be done after per_cpu area is setup)
  804. */
  805. if (smp_processor_id() == 0) {
  806. cpu_set(0, per_cpu(cpu_sibling_map, 0));
  807. cpu_set(0, cpu_core_map[0]);
  808. } else {
  809. /*
  810. * Set ar.k3 so that assembly code in MCA handler can compute
  811. * physical addresses of per cpu variables with a simple:
  812. * phys = ar.k3 + &per_cpu_var
  813. * and the alt-dtlb-miss handler can set per-cpu mapping into
  814. * the TLB when needed. head.S already did this for cpu0.
  815. */
  816. ia64_set_kr(IA64_KR_PER_CPU_DATA,
  817. ia64_tpa(cpu_data) - (long) __per_cpu_start);
  818. }
  819. #endif
  820. get_cache_info();
  821. /*
  822. * We can't pass "local_cpu_data" to identify_cpu() because we haven't called
  823. * ia64_mmu_init() yet. And we can't call ia64_mmu_init() first because it
  824. * depends on the data returned by identify_cpu(). We break the dependency by
  825. * accessing cpu_data() through the canonical per-CPU address.
  826. */
  827. cpu_info = cpu_data + ((char *) &__ia64_per_cpu_var(ia64_cpu_info) - __per_cpu_start);
  828. identify_cpu(cpu_info);
  829. #ifdef CONFIG_MCKINLEY
  830. {
  831. # define FEATURE_SET 16
  832. struct ia64_pal_retval iprv;
  833. if (cpu_info->family == 0x1f) {
  834. PAL_CALL_PHYS(iprv, PAL_PROC_GET_FEATURES, 0, FEATURE_SET, 0);
  835. if ((iprv.status == 0) && (iprv.v0 & 0x80) && (iprv.v2 & 0x80))
  836. PAL_CALL_PHYS(iprv, PAL_PROC_SET_FEATURES,
  837. (iprv.v1 | 0x80), FEATURE_SET, 0);
  838. }
  839. }
  840. #endif
  841. /* Clear the stack memory reserved for pt_regs: */
  842. memset(task_pt_regs(current), 0, sizeof(struct pt_regs));
  843. ia64_set_kr(IA64_KR_FPU_OWNER, 0);
  844. /*
  845. * Initialize the page-table base register to a global
  846. * directory with all zeroes. This ensure that we can handle
  847. * TLB-misses to user address-space even before we created the
  848. * first user address-space. This may happen, e.g., due to
  849. * aggressive use of lfetch.fault.
  850. */
  851. ia64_set_kr(IA64_KR_PT_BASE, __pa(ia64_imva(empty_zero_page)));
  852. /*
  853. * Initialize default control register to defer speculative faults except
  854. * for those arising from TLB misses, which are not deferred. The
  855. * kernel MUST NOT depend on a particular setting of these bits (in other words,
  856. * the kernel must have recovery code for all speculative accesses). Turn on
  857. * dcr.lc as per recommendation by the architecture team. Most IA-32 apps
  858. * shouldn't be affected by this (moral: keep your ia32 locks aligned and you'll
  859. * be fine).
  860. */
  861. ia64_setreg(_IA64_REG_CR_DCR, ( IA64_DCR_DP | IA64_DCR_DK | IA64_DCR_DX | IA64_DCR_DR
  862. | IA64_DCR_DA | IA64_DCR_DD | IA64_DCR_LC));
  863. atomic_inc(&init_mm.mm_count);
  864. current->active_mm = &init_mm;
  865. BUG_ON(current->mm);
  866. ia64_mmu_init(ia64_imva(cpu_data));
  867. ia64_mca_cpu_init(ia64_imva(cpu_data));
  868. /* Clear ITC to eliminate sched_clock() overflows in human time. */
  869. ia64_set_itc(0);
  870. /* disable all local interrupt sources: */
  871. ia64_set_itv(1 << 16);
  872. ia64_set_lrr0(1 << 16);
  873. ia64_set_lrr1(1 << 16);
  874. ia64_setreg(_IA64_REG_CR_PMV, 1 << 16);
  875. ia64_setreg(_IA64_REG_CR_CMCV, 1 << 16);
  876. /* clear TPR & XTP to enable all interrupt classes: */
  877. ia64_setreg(_IA64_REG_CR_TPR, 0);
  878. /* Clear any pending interrupts left by SAL/EFI */
  879. while (ia64_get_ivr() != IA64_SPURIOUS_INT_VECTOR)
  880. ia64_eoi();
  881. #ifdef CONFIG_SMP
  882. normal_xtp();
  883. #endif
  884. /* set ia64_ctx.max_rid to the maximum RID that is supported by all CPUs: */
  885. if (ia64_pal_vm_summary(NULL, &vmi) == 0) {
  886. max_ctx = (1U << (vmi.pal_vm_info_2_s.rid_size - 3)) - 1;
  887. setup_ptcg_sem(vmi.pal_vm_info_2_s.max_purges, NPTCG_FROM_PAL);
  888. } else {
  889. printk(KERN_WARNING "cpu_init: PAL VM summary failed, assuming 18 RID bits\n");
  890. max_ctx = (1U << 15) - 1; /* use architected minimum */
  891. }
  892. while (max_ctx < ia64_ctx.max_ctx) {
  893. unsigned int old = ia64_ctx.max_ctx;
  894. if (cmpxchg(&ia64_ctx.max_ctx, old, max_ctx) == old)
  895. break;
  896. }
  897. if (ia64_pal_rse_info(&num_phys_stacked, NULL) != 0) {
  898. printk(KERN_WARNING "cpu_init: PAL RSE info failed; assuming 96 physical "
  899. "stacked regs\n");
  900. num_phys_stacked = 96;
  901. }
  902. /* size of physical stacked register partition plus 8 bytes: */
  903. if (num_phys_stacked > max_num_phys_stacked) {
  904. ia64_patch_phys_stack_reg(num_phys_stacked*8 + 8);
  905. max_num_phys_stacked = num_phys_stacked;
  906. }
  907. platform_cpu_init();
  908. pm_idle = default_idle;
  909. }
  910. void __init
  911. check_bugs (void)
  912. {
  913. ia64_patch_mckinley_e9((unsigned long) __start___mckinley_e9_bundles,
  914. (unsigned long) __end___mckinley_e9_bundles);
  915. }
  916. static int __init run_dmi_scan(void)
  917. {
  918. dmi_scan_machine();
  919. return 0;
  920. }
  921. core_initcall(run_dmi_scan);