au88x0_pcm.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560
  1. /*
  2. * This program is free software; you can redistribute it and/or modify
  3. * it under the terms of the GNU General Public License as published by
  4. * the Free Software Foundation; either version 2 of the License, or
  5. * (at your option) any later version.
  6. *
  7. * This program is distributed in the hope that it will be useful,
  8. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  9. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  10. * GNU Library General Public License for more details.
  11. *
  12. * You should have received a copy of the GNU General Public License
  13. * along with this program; if not, write to the Free Software
  14. * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  15. */
  16. /*
  17. * Vortex PCM ALSA driver.
  18. *
  19. * Supports ADB and WT DMA. Unfortunately, WT channels do not run yet.
  20. * It remains stuck,and DMA transfers do not happen.
  21. */
  22. #include <sound/asoundef.h>
  23. #include <linux/time.h>
  24. #include <sound/core.h>
  25. #include <sound/pcm.h>
  26. #include <sound/pcm_params.h>
  27. #include "au88x0.h"
  28. #define VORTEX_PCM_TYPE(x) (x->name[40])
  29. /* hardware definition */
  30. static struct snd_pcm_hardware snd_vortex_playback_hw_adb = {
  31. .info =
  32. (SNDRV_PCM_INFO_MMAP | /* SNDRV_PCM_INFO_RESUME | */
  33. SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_INTERLEAVED |
  34. SNDRV_PCM_INFO_MMAP_VALID),
  35. .formats =
  36. SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U8 |
  37. SNDRV_PCM_FMTBIT_MU_LAW | SNDRV_PCM_FMTBIT_A_LAW,
  38. .rates = SNDRV_PCM_RATE_CONTINUOUS,
  39. .rate_min = 5000,
  40. .rate_max = 48000,
  41. .channels_min = 1,
  42. .channels_max = 2,
  43. .buffer_bytes_max = 0x10000,
  44. .period_bytes_min = 0x20,
  45. .period_bytes_max = 0x1000,
  46. .periods_min = 2,
  47. .periods_max = 1024,
  48. };
  49. #ifndef CHIP_AU8820
  50. static struct snd_pcm_hardware snd_vortex_playback_hw_a3d = {
  51. .info =
  52. (SNDRV_PCM_INFO_MMAP | /* SNDRV_PCM_INFO_RESUME | */
  53. SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_INTERLEAVED |
  54. SNDRV_PCM_INFO_MMAP_VALID),
  55. .formats =
  56. SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U8 |
  57. SNDRV_PCM_FMTBIT_MU_LAW | SNDRV_PCM_FMTBIT_A_LAW,
  58. .rates = SNDRV_PCM_RATE_CONTINUOUS,
  59. .rate_min = 5000,
  60. .rate_max = 48000,
  61. .channels_min = 1,
  62. .channels_max = 1,
  63. .buffer_bytes_max = 0x10000,
  64. .period_bytes_min = 0x100,
  65. .period_bytes_max = 0x1000,
  66. .periods_min = 2,
  67. .periods_max = 64,
  68. };
  69. #endif
  70. static struct snd_pcm_hardware snd_vortex_playback_hw_spdif = {
  71. .info =
  72. (SNDRV_PCM_INFO_MMAP | /* SNDRV_PCM_INFO_RESUME | */
  73. SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_INTERLEAVED |
  74. SNDRV_PCM_INFO_MMAP_VALID),
  75. .formats =
  76. SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U8 |
  77. SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE | SNDRV_PCM_FMTBIT_MU_LAW |
  78. SNDRV_PCM_FMTBIT_A_LAW,
  79. .rates =
  80. SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
  81. .rate_min = 32000,
  82. .rate_max = 48000,
  83. .channels_min = 1,
  84. .channels_max = 2,
  85. .buffer_bytes_max = 0x10000,
  86. .period_bytes_min = 0x100,
  87. .period_bytes_max = 0x1000,
  88. .periods_min = 2,
  89. .periods_max = 64,
  90. };
  91. #ifndef CHIP_AU8810
  92. static struct snd_pcm_hardware snd_vortex_playback_hw_wt = {
  93. .info = (SNDRV_PCM_INFO_MMAP |
  94. SNDRV_PCM_INFO_INTERLEAVED |
  95. SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_MMAP_VALID),
  96. .formats = SNDRV_PCM_FMTBIT_S16_LE,
  97. .rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_CONTINUOUS, // SNDRV_PCM_RATE_48000,
  98. .rate_min = 8000,
  99. .rate_max = 48000,
  100. .channels_min = 1,
  101. .channels_max = 2,
  102. .buffer_bytes_max = 0x10000,
  103. .period_bytes_min = 0x0400,
  104. .period_bytes_max = 0x1000,
  105. .periods_min = 2,
  106. .periods_max = 64,
  107. };
  108. #endif
  109. #ifdef CHIP_AU8830
  110. static unsigned int au8830_channels[3] = {
  111. 1, 2, 4,
  112. };
  113. static struct snd_pcm_hw_constraint_list hw_constraints_au8830_channels = {
  114. .count = ARRAY_SIZE(au8830_channels),
  115. .list = au8830_channels,
  116. .mask = 0,
  117. };
  118. #endif
  119. /* open callback */
  120. static int snd_vortex_pcm_open(struct snd_pcm_substream *substream)
  121. {
  122. vortex_t *vortex = snd_pcm_substream_chip(substream);
  123. struct snd_pcm_runtime *runtime = substream->runtime;
  124. int err;
  125. /* Force equal size periods */
  126. if ((err =
  127. snd_pcm_hw_constraint_integer(runtime,
  128. SNDRV_PCM_HW_PARAM_PERIODS)) < 0)
  129. return err;
  130. /* Avoid PAGE_SIZE boundary to fall inside of a period. */
  131. if ((err =
  132. snd_pcm_hw_constraint_pow2(runtime, 0,
  133. SNDRV_PCM_HW_PARAM_PERIOD_BYTES)) < 0)
  134. return err;
  135. snd_pcm_hw_constraint_step(runtime, 0,
  136. SNDRV_PCM_HW_PARAM_BUFFER_BYTES, 64);
  137. if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT) {
  138. #ifndef CHIP_AU8820
  139. if (VORTEX_PCM_TYPE(substream->pcm) == VORTEX_PCM_A3D) {
  140. runtime->hw = snd_vortex_playback_hw_a3d;
  141. }
  142. #endif
  143. if (VORTEX_PCM_TYPE(substream->pcm) == VORTEX_PCM_SPDIF) {
  144. runtime->hw = snd_vortex_playback_hw_spdif;
  145. switch (vortex->spdif_sr) {
  146. case 32000:
  147. runtime->hw.rates = SNDRV_PCM_RATE_32000;
  148. break;
  149. case 44100:
  150. runtime->hw.rates = SNDRV_PCM_RATE_44100;
  151. break;
  152. case 48000:
  153. runtime->hw.rates = SNDRV_PCM_RATE_48000;
  154. break;
  155. }
  156. }
  157. if (VORTEX_PCM_TYPE(substream->pcm) == VORTEX_PCM_ADB
  158. || VORTEX_PCM_TYPE(substream->pcm) == VORTEX_PCM_I2S)
  159. runtime->hw = snd_vortex_playback_hw_adb;
  160. #ifdef CHIP_AU8830
  161. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
  162. VORTEX_PCM_TYPE(substream->pcm) == VORTEX_PCM_ADB) {
  163. runtime->hw.channels_max = 4;
  164. snd_pcm_hw_constraint_list(runtime, 0,
  165. SNDRV_PCM_HW_PARAM_CHANNELS,
  166. &hw_constraints_au8830_channels);
  167. }
  168. #endif
  169. substream->runtime->private_data = NULL;
  170. }
  171. #ifndef CHIP_AU8810
  172. else {
  173. runtime->hw = snd_vortex_playback_hw_wt;
  174. substream->runtime->private_data = NULL;
  175. }
  176. #endif
  177. return 0;
  178. }
  179. /* close callback */
  180. static int snd_vortex_pcm_close(struct snd_pcm_substream *substream)
  181. {
  182. //vortex_t *chip = snd_pcm_substream_chip(substream);
  183. stream_t *stream = (stream_t *) substream->runtime->private_data;
  184. // the hardware-specific codes will be here
  185. if (stream != NULL) {
  186. stream->substream = NULL;
  187. stream->nr_ch = 0;
  188. }
  189. substream->runtime->private_data = NULL;
  190. return 0;
  191. }
  192. /* hw_params callback */
  193. static int
  194. snd_vortex_pcm_hw_params(struct snd_pcm_substream *substream,
  195. struct snd_pcm_hw_params *hw_params)
  196. {
  197. vortex_t *chip = snd_pcm_substream_chip(substream);
  198. stream_t *stream = (stream_t *) (substream->runtime->private_data);
  199. int err;
  200. // Alloc buffer memory.
  201. err =
  202. snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
  203. if (err < 0) {
  204. printk(KERN_ERR "Vortex: pcm page alloc failed!\n");
  205. return err;
  206. }
  207. /*
  208. printk(KERN_INFO "Vortex: periods %d, period_bytes %d, channels = %d\n", params_periods(hw_params),
  209. params_period_bytes(hw_params), params_channels(hw_params));
  210. */
  211. spin_lock_irq(&chip->lock);
  212. // Make audio routes and config buffer DMA.
  213. if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT) {
  214. int dma, type = VORTEX_PCM_TYPE(substream->pcm);
  215. /* Dealloc any routes. */
  216. if (stream != NULL)
  217. vortex_adb_allocroute(chip, stream->dma,
  218. stream->nr_ch, stream->dir,
  219. stream->type);
  220. /* Alloc routes. */
  221. dma =
  222. vortex_adb_allocroute(chip, -1,
  223. params_channels(hw_params),
  224. substream->stream, type);
  225. if (dma < 0) {
  226. spin_unlock_irq(&chip->lock);
  227. return dma;
  228. }
  229. stream = substream->runtime->private_data = &chip->dma_adb[dma];
  230. stream->substream = substream;
  231. /* Setup Buffers. */
  232. vortex_adbdma_setbuffers(chip, dma,
  233. params_period_bytes(hw_params),
  234. params_periods(hw_params));
  235. }
  236. #ifndef CHIP_AU8810
  237. else {
  238. /* if (stream != NULL)
  239. vortex_wt_allocroute(chip, substream->number, 0); */
  240. vortex_wt_allocroute(chip, substream->number,
  241. params_channels(hw_params));
  242. stream = substream->runtime->private_data =
  243. &chip->dma_wt[substream->number];
  244. stream->dma = substream->number;
  245. stream->substream = substream;
  246. vortex_wtdma_setbuffers(chip, substream->number,
  247. params_period_bytes(hw_params),
  248. params_periods(hw_params));
  249. }
  250. #endif
  251. spin_unlock_irq(&chip->lock);
  252. return 0;
  253. }
  254. /* hw_free callback */
  255. static int snd_vortex_pcm_hw_free(struct snd_pcm_substream *substream)
  256. {
  257. vortex_t *chip = snd_pcm_substream_chip(substream);
  258. stream_t *stream = (stream_t *) (substream->runtime->private_data);
  259. spin_lock_irq(&chip->lock);
  260. // Delete audio routes.
  261. if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT) {
  262. if (stream != NULL)
  263. vortex_adb_allocroute(chip, stream->dma,
  264. stream->nr_ch, stream->dir,
  265. stream->type);
  266. }
  267. #ifndef CHIP_AU8810
  268. else {
  269. if (stream != NULL)
  270. vortex_wt_allocroute(chip, stream->dma, 0);
  271. }
  272. #endif
  273. substream->runtime->private_data = NULL;
  274. spin_unlock_irq(&chip->lock);
  275. return snd_pcm_lib_free_pages(substream);
  276. }
  277. /* prepare callback */
  278. static int snd_vortex_pcm_prepare(struct snd_pcm_substream *substream)
  279. {
  280. vortex_t *chip = snd_pcm_substream_chip(substream);
  281. struct snd_pcm_runtime *runtime = substream->runtime;
  282. stream_t *stream = (stream_t *) substream->runtime->private_data;
  283. int dma = stream->dma, fmt, dir;
  284. // set up the hardware with the current configuration.
  285. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  286. dir = 1;
  287. else
  288. dir = 0;
  289. fmt = vortex_alsafmt_aspfmt(runtime->format);
  290. spin_lock_irq(&chip->lock);
  291. if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT) {
  292. vortex_adbdma_setmode(chip, dma, 1, dir, fmt, 0 /*? */ ,
  293. 0);
  294. vortex_adbdma_setstartbuffer(chip, dma, 0);
  295. if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_SPDIF)
  296. vortex_adb_setsrc(chip, dma, runtime->rate, dir);
  297. }
  298. #ifndef CHIP_AU8810
  299. else {
  300. vortex_wtdma_setmode(chip, dma, 1, fmt, 0, 0);
  301. // FIXME: Set rate (i guess using vortex_wt_writereg() somehow).
  302. vortex_wtdma_setstartbuffer(chip, dma, 0);
  303. }
  304. #endif
  305. spin_unlock_irq(&chip->lock);
  306. return 0;
  307. }
  308. /* trigger callback */
  309. static int snd_vortex_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
  310. {
  311. vortex_t *chip = snd_pcm_substream_chip(substream);
  312. stream_t *stream = (stream_t *) substream->runtime->private_data;
  313. int dma = stream->dma;
  314. spin_lock(&chip->lock);
  315. switch (cmd) {
  316. case SNDRV_PCM_TRIGGER_START:
  317. // do something to start the PCM engine
  318. //printk(KERN_INFO "vortex: start %d\n", dma);
  319. stream->fifo_enabled = 1;
  320. if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT) {
  321. vortex_adbdma_resetup(chip, dma);
  322. vortex_adbdma_startfifo(chip, dma);
  323. }
  324. #ifndef CHIP_AU8810
  325. else {
  326. printk(KERN_INFO "vortex: wt start %d\n", dma);
  327. vortex_wtdma_startfifo(chip, dma);
  328. }
  329. #endif
  330. break;
  331. case SNDRV_PCM_TRIGGER_STOP:
  332. // do something to stop the PCM engine
  333. //printk(KERN_INFO "vortex: stop %d\n", dma);
  334. stream->fifo_enabled = 0;
  335. if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT)
  336. vortex_adbdma_pausefifo(chip, dma);
  337. //vortex_adbdma_stopfifo(chip, dma);
  338. #ifndef CHIP_AU8810
  339. else {
  340. printk(KERN_INFO "vortex: wt stop %d\n", dma);
  341. vortex_wtdma_stopfifo(chip, dma);
  342. }
  343. #endif
  344. break;
  345. case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
  346. //printk(KERN_INFO "vortex: pause %d\n", dma);
  347. if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT)
  348. vortex_adbdma_pausefifo(chip, dma);
  349. #ifndef CHIP_AU8810
  350. else
  351. vortex_wtdma_pausefifo(chip, dma);
  352. #endif
  353. break;
  354. case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
  355. //printk(KERN_INFO "vortex: resume %d\n", dma);
  356. if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT)
  357. vortex_adbdma_resumefifo(chip, dma);
  358. #ifndef CHIP_AU8810
  359. else
  360. vortex_wtdma_resumefifo(chip, dma);
  361. #endif
  362. break;
  363. default:
  364. spin_unlock(&chip->lock);
  365. return -EINVAL;
  366. }
  367. spin_unlock(&chip->lock);
  368. return 0;
  369. }
  370. /* pointer callback */
  371. static snd_pcm_uframes_t snd_vortex_pcm_pointer(struct snd_pcm_substream *substream)
  372. {
  373. vortex_t *chip = snd_pcm_substream_chip(substream);
  374. stream_t *stream = (stream_t *) substream->runtime->private_data;
  375. int dma = stream->dma;
  376. snd_pcm_uframes_t current_ptr = 0;
  377. spin_lock(&chip->lock);
  378. if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT)
  379. current_ptr = vortex_adbdma_getlinearpos(chip, dma);
  380. #ifndef CHIP_AU8810
  381. else
  382. current_ptr = vortex_wtdma_getlinearpos(chip, dma);
  383. #endif
  384. //printk(KERN_INFO "vortex: pointer = 0x%x\n", current_ptr);
  385. spin_unlock(&chip->lock);
  386. return (bytes_to_frames(substream->runtime, current_ptr));
  387. }
  388. /* operators */
  389. static struct snd_pcm_ops snd_vortex_playback_ops = {
  390. .open = snd_vortex_pcm_open,
  391. .close = snd_vortex_pcm_close,
  392. .ioctl = snd_pcm_lib_ioctl,
  393. .hw_params = snd_vortex_pcm_hw_params,
  394. .hw_free = snd_vortex_pcm_hw_free,
  395. .prepare = snd_vortex_pcm_prepare,
  396. .trigger = snd_vortex_pcm_trigger,
  397. .pointer = snd_vortex_pcm_pointer,
  398. .page = snd_pcm_sgbuf_ops_page,
  399. };
  400. /*
  401. * definitions of capture are omitted here...
  402. */
  403. static char *vortex_pcm_prettyname[VORTEX_PCM_LAST] = {
  404. CARD_NAME " ADB",
  405. CARD_NAME " SPDIF",
  406. CARD_NAME " A3D",
  407. CARD_NAME " WT",
  408. CARD_NAME " I2S",
  409. };
  410. static char *vortex_pcm_name[VORTEX_PCM_LAST] = {
  411. "adb",
  412. "spdif",
  413. "a3d",
  414. "wt",
  415. "i2s",
  416. };
  417. /* SPDIF kcontrol */
  418. static int snd_vortex_spdif_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
  419. {
  420. uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
  421. uinfo->count = 1;
  422. return 0;
  423. }
  424. static int snd_vortex_spdif_mask_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
  425. {
  426. ucontrol->value.iec958.status[0] = 0xff;
  427. ucontrol->value.iec958.status[1] = 0xff;
  428. ucontrol->value.iec958.status[2] = 0xff;
  429. ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS;
  430. return 0;
  431. }
  432. static int snd_vortex_spdif_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
  433. {
  434. vortex_t *vortex = snd_kcontrol_chip(kcontrol);
  435. ucontrol->value.iec958.status[0] = 0x00;
  436. ucontrol->value.iec958.status[1] = IEC958_AES1_CON_ORIGINAL|IEC958_AES1_CON_DIGDIGCONV_ID;
  437. ucontrol->value.iec958.status[2] = 0x00;
  438. switch (vortex->spdif_sr) {
  439. case 32000: ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_32000; break;
  440. case 44100: ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_44100; break;
  441. case 48000: ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_48000; break;
  442. }
  443. return 0;
  444. }
  445. static int snd_vortex_spdif_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
  446. {
  447. vortex_t *vortex = snd_kcontrol_chip(kcontrol);
  448. int spdif_sr = 48000;
  449. switch (ucontrol->value.iec958.status[3] & IEC958_AES3_CON_FS) {
  450. case IEC958_AES3_CON_FS_32000: spdif_sr = 32000; break;
  451. case IEC958_AES3_CON_FS_44100: spdif_sr = 44100; break;
  452. case IEC958_AES3_CON_FS_48000: spdif_sr = 48000; break;
  453. }
  454. if (spdif_sr == vortex->spdif_sr)
  455. return 0;
  456. vortex->spdif_sr = spdif_sr;
  457. vortex_spdif_init(vortex, vortex->spdif_sr, 1);
  458. return 1;
  459. }
  460. /* spdif controls */
  461. static struct snd_kcontrol_new snd_vortex_mixer_spdif[] __devinitdata = {
  462. {
  463. .iface = SNDRV_CTL_ELEM_IFACE_PCM,
  464. .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
  465. .info = snd_vortex_spdif_info,
  466. .get = snd_vortex_spdif_get,
  467. .put = snd_vortex_spdif_put,
  468. },
  469. {
  470. .access = SNDRV_CTL_ELEM_ACCESS_READ,
  471. .iface = SNDRV_CTL_ELEM_IFACE_PCM,
  472. .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
  473. .info = snd_vortex_spdif_info,
  474. .get = snd_vortex_spdif_mask_get
  475. },
  476. };
  477. /* create a pcm device */
  478. static int __devinit snd_vortex_new_pcm(vortex_t *chip, int idx, int nr)
  479. {
  480. struct snd_pcm *pcm;
  481. struct snd_kcontrol *kctl;
  482. int i;
  483. int err, nr_capt;
  484. if (!chip || idx < 0 || idx >= VORTEX_PCM_LAST)
  485. return -ENODEV;
  486. /* idx indicates which kind of PCM device. ADB, SPDIF, I2S and A3D share the
  487. * same dma engine. WT uses it own separate dma engine which can't capture. */
  488. if (idx == VORTEX_PCM_ADB)
  489. nr_capt = nr;
  490. else
  491. nr_capt = 0;
  492. err = snd_pcm_new(chip->card, vortex_pcm_prettyname[idx], idx, nr,
  493. nr_capt, &pcm);
  494. if (err < 0)
  495. return err;
  496. snprintf(pcm->name, sizeof(pcm->name),
  497. "%s %s", CARD_NAME_SHORT, vortex_pcm_name[idx]);
  498. chip->pcm[idx] = pcm;
  499. // This is an evil hack, but it saves a lot of duplicated code.
  500. VORTEX_PCM_TYPE(pcm) = idx;
  501. pcm->private_data = chip;
  502. /* set operators */
  503. snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
  504. &snd_vortex_playback_ops);
  505. if (idx == VORTEX_PCM_ADB)
  506. snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
  507. &snd_vortex_playback_ops);
  508. /* pre-allocation of Scatter-Gather buffers */
  509. snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV_SG,
  510. snd_dma_pci_data(chip->pci_dev),
  511. 0x10000, 0x10000);
  512. if (VORTEX_PCM_TYPE(pcm) == VORTEX_PCM_SPDIF) {
  513. for (i = 0; i < ARRAY_SIZE(snd_vortex_mixer_spdif); i++) {
  514. kctl = snd_ctl_new1(&snd_vortex_mixer_spdif[i], chip);
  515. if (!kctl)
  516. return -ENOMEM;
  517. if ((err = snd_ctl_add(chip->card, kctl)) < 0)
  518. return err;
  519. }
  520. }
  521. return 0;
  522. }