sock.c 65 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Generic socket support routines. Memory allocators, socket lock/release
  7. * handler for protocols to use and generic option handler.
  8. *
  9. *
  10. * Authors: Ross Biro
  11. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12. * Florian La Roche, <flla@stud.uni-sb.de>
  13. * Alan Cox, <A.Cox@swansea.ac.uk>
  14. *
  15. * Fixes:
  16. * Alan Cox : Numerous verify_area() problems
  17. * Alan Cox : Connecting on a connecting socket
  18. * now returns an error for tcp.
  19. * Alan Cox : sock->protocol is set correctly.
  20. * and is not sometimes left as 0.
  21. * Alan Cox : connect handles icmp errors on a
  22. * connect properly. Unfortunately there
  23. * is a restart syscall nasty there. I
  24. * can't match BSD without hacking the C
  25. * library. Ideas urgently sought!
  26. * Alan Cox : Disallow bind() to addresses that are
  27. * not ours - especially broadcast ones!!
  28. * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
  29. * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
  30. * instead they leave that for the DESTROY timer.
  31. * Alan Cox : Clean up error flag in accept
  32. * Alan Cox : TCP ack handling is buggy, the DESTROY timer
  33. * was buggy. Put a remove_sock() in the handler
  34. * for memory when we hit 0. Also altered the timer
  35. * code. The ACK stuff can wait and needs major
  36. * TCP layer surgery.
  37. * Alan Cox : Fixed TCP ack bug, removed remove sock
  38. * and fixed timer/inet_bh race.
  39. * Alan Cox : Added zapped flag for TCP
  40. * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
  41. * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
  42. * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
  43. * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
  44. * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
  45. * Rick Sladkey : Relaxed UDP rules for matching packets.
  46. * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
  47. * Pauline Middelink : identd support
  48. * Alan Cox : Fixed connect() taking signals I think.
  49. * Alan Cox : SO_LINGER supported
  50. * Alan Cox : Error reporting fixes
  51. * Anonymous : inet_create tidied up (sk->reuse setting)
  52. * Alan Cox : inet sockets don't set sk->type!
  53. * Alan Cox : Split socket option code
  54. * Alan Cox : Callbacks
  55. * Alan Cox : Nagle flag for Charles & Johannes stuff
  56. * Alex : Removed restriction on inet fioctl
  57. * Alan Cox : Splitting INET from NET core
  58. * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
  59. * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
  60. * Alan Cox : Split IP from generic code
  61. * Alan Cox : New kfree_skbmem()
  62. * Alan Cox : Make SO_DEBUG superuser only.
  63. * Alan Cox : Allow anyone to clear SO_DEBUG
  64. * (compatibility fix)
  65. * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
  66. * Alan Cox : Allocator for a socket is settable.
  67. * Alan Cox : SO_ERROR includes soft errors.
  68. * Alan Cox : Allow NULL arguments on some SO_ opts
  69. * Alan Cox : Generic socket allocation to make hooks
  70. * easier (suggested by Craig Metz).
  71. * Michael Pall : SO_ERROR returns positive errno again
  72. * Steve Whitehouse: Added default destructor to free
  73. * protocol private data.
  74. * Steve Whitehouse: Added various other default routines
  75. * common to several socket families.
  76. * Chris Evans : Call suser() check last on F_SETOWN
  77. * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
  78. * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
  79. * Andi Kleen : Fix write_space callback
  80. * Chris Evans : Security fixes - signedness again
  81. * Arnaldo C. Melo : cleanups, use skb_queue_purge
  82. *
  83. * To Fix:
  84. *
  85. *
  86. * This program is free software; you can redistribute it and/or
  87. * modify it under the terms of the GNU General Public License
  88. * as published by the Free Software Foundation; either version
  89. * 2 of the License, or (at your option) any later version.
  90. */
  91. #include <linux/capability.h>
  92. #include <linux/errno.h>
  93. #include <linux/types.h>
  94. #include <linux/socket.h>
  95. #include <linux/in.h>
  96. #include <linux/kernel.h>
  97. #include <linux/module.h>
  98. #include <linux/proc_fs.h>
  99. #include <linux/seq_file.h>
  100. #include <linux/sched.h>
  101. #include <linux/timer.h>
  102. #include <linux/string.h>
  103. #include <linux/sockios.h>
  104. #include <linux/net.h>
  105. #include <linux/mm.h>
  106. #include <linux/slab.h>
  107. #include <linux/interrupt.h>
  108. #include <linux/poll.h>
  109. #include <linux/tcp.h>
  110. #include <linux/init.h>
  111. #include <linux/highmem.h>
  112. #include <linux/user_namespace.h>
  113. #include <asm/uaccess.h>
  114. #include <asm/system.h>
  115. #include <linux/netdevice.h>
  116. #include <net/protocol.h>
  117. #include <linux/skbuff.h>
  118. #include <net/net_namespace.h>
  119. #include <net/request_sock.h>
  120. #include <net/sock.h>
  121. #include <linux/net_tstamp.h>
  122. #include <net/xfrm.h>
  123. #include <linux/ipsec.h>
  124. #include <net/cls_cgroup.h>
  125. #include <linux/filter.h>
  126. #ifdef CONFIG_INET
  127. #include <net/tcp.h>
  128. #endif
  129. /*
  130. * Each address family might have different locking rules, so we have
  131. * one slock key per address family:
  132. */
  133. static struct lock_class_key af_family_keys[AF_MAX];
  134. static struct lock_class_key af_family_slock_keys[AF_MAX];
  135. /*
  136. * Make lock validator output more readable. (we pre-construct these
  137. * strings build-time, so that runtime initialization of socket
  138. * locks is fast):
  139. */
  140. static const char *const af_family_key_strings[AF_MAX+1] = {
  141. "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
  142. "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
  143. "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
  144. "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
  145. "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
  146. "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
  147. "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
  148. "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
  149. "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
  150. "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
  151. "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
  152. "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
  153. "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG" ,
  154. "sk_lock-AF_MAX"
  155. };
  156. static const char *const af_family_slock_key_strings[AF_MAX+1] = {
  157. "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
  158. "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
  159. "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
  160. "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
  161. "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
  162. "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
  163. "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
  164. "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
  165. "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
  166. "slock-27" , "slock-28" , "slock-AF_CAN" ,
  167. "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
  168. "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
  169. "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG" ,
  170. "slock-AF_MAX"
  171. };
  172. static const char *const af_family_clock_key_strings[AF_MAX+1] = {
  173. "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
  174. "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
  175. "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
  176. "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
  177. "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
  178. "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
  179. "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
  180. "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
  181. "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
  182. "clock-27" , "clock-28" , "clock-AF_CAN" ,
  183. "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
  184. "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
  185. "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG" ,
  186. "clock-AF_MAX"
  187. };
  188. /*
  189. * sk_callback_lock locking rules are per-address-family,
  190. * so split the lock classes by using a per-AF key:
  191. */
  192. static struct lock_class_key af_callback_keys[AF_MAX];
  193. /* Take into consideration the size of the struct sk_buff overhead in the
  194. * determination of these values, since that is non-constant across
  195. * platforms. This makes socket queueing behavior and performance
  196. * not depend upon such differences.
  197. */
  198. #define _SK_MEM_PACKETS 256
  199. #define _SK_MEM_OVERHEAD (sizeof(struct sk_buff) + 256)
  200. #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
  201. #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
  202. /* Run time adjustable parameters. */
  203. __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
  204. __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
  205. __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
  206. __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
  207. /* Maximal space eaten by iovec or ancillary data plus some space */
  208. int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
  209. EXPORT_SYMBOL(sysctl_optmem_max);
  210. #if defined(CONFIG_CGROUPS) && !defined(CONFIG_NET_CLS_CGROUP)
  211. int net_cls_subsys_id = -1;
  212. EXPORT_SYMBOL_GPL(net_cls_subsys_id);
  213. #endif
  214. static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
  215. {
  216. struct timeval tv;
  217. if (optlen < sizeof(tv))
  218. return -EINVAL;
  219. if (copy_from_user(&tv, optval, sizeof(tv)))
  220. return -EFAULT;
  221. if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
  222. return -EDOM;
  223. if (tv.tv_sec < 0) {
  224. static int warned __read_mostly;
  225. *timeo_p = 0;
  226. if (warned < 10 && net_ratelimit()) {
  227. warned++;
  228. printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
  229. "tries to set negative timeout\n",
  230. current->comm, task_pid_nr(current));
  231. }
  232. return 0;
  233. }
  234. *timeo_p = MAX_SCHEDULE_TIMEOUT;
  235. if (tv.tv_sec == 0 && tv.tv_usec == 0)
  236. return 0;
  237. if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
  238. *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
  239. return 0;
  240. }
  241. static void sock_warn_obsolete_bsdism(const char *name)
  242. {
  243. static int warned;
  244. static char warncomm[TASK_COMM_LEN];
  245. if (strcmp(warncomm, current->comm) && warned < 5) {
  246. strcpy(warncomm, current->comm);
  247. printk(KERN_WARNING "process `%s' is using obsolete "
  248. "%s SO_BSDCOMPAT\n", warncomm, name);
  249. warned++;
  250. }
  251. }
  252. static void sock_disable_timestamp(struct sock *sk, int flag)
  253. {
  254. if (sock_flag(sk, flag)) {
  255. sock_reset_flag(sk, flag);
  256. if (!sock_flag(sk, SOCK_TIMESTAMP) &&
  257. !sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE)) {
  258. net_disable_timestamp();
  259. }
  260. }
  261. }
  262. int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
  263. {
  264. int err;
  265. int skb_len;
  266. unsigned long flags;
  267. struct sk_buff_head *list = &sk->sk_receive_queue;
  268. /* Cast sk->rcvbuf to unsigned... It's pointless, but reduces
  269. number of warnings when compiling with -W --ANK
  270. */
  271. if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
  272. (unsigned)sk->sk_rcvbuf) {
  273. atomic_inc(&sk->sk_drops);
  274. return -ENOMEM;
  275. }
  276. err = sk_filter(sk, skb);
  277. if (err)
  278. return err;
  279. if (!sk_rmem_schedule(sk, skb->truesize)) {
  280. atomic_inc(&sk->sk_drops);
  281. return -ENOBUFS;
  282. }
  283. skb->dev = NULL;
  284. skb_set_owner_r(skb, sk);
  285. /* Cache the SKB length before we tack it onto the receive
  286. * queue. Once it is added it no longer belongs to us and
  287. * may be freed by other threads of control pulling packets
  288. * from the queue.
  289. */
  290. skb_len = skb->len;
  291. /* we escape from rcu protected region, make sure we dont leak
  292. * a norefcounted dst
  293. */
  294. skb_dst_force(skb);
  295. spin_lock_irqsave(&list->lock, flags);
  296. skb->dropcount = atomic_read(&sk->sk_drops);
  297. __skb_queue_tail(list, skb);
  298. spin_unlock_irqrestore(&list->lock, flags);
  299. if (!sock_flag(sk, SOCK_DEAD))
  300. sk->sk_data_ready(sk, skb_len);
  301. return 0;
  302. }
  303. EXPORT_SYMBOL(sock_queue_rcv_skb);
  304. int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
  305. {
  306. int rc = NET_RX_SUCCESS;
  307. if (sk_filter(sk, skb))
  308. goto discard_and_relse;
  309. skb->dev = NULL;
  310. if (sk_rcvqueues_full(sk, skb)) {
  311. atomic_inc(&sk->sk_drops);
  312. goto discard_and_relse;
  313. }
  314. if (nested)
  315. bh_lock_sock_nested(sk);
  316. else
  317. bh_lock_sock(sk);
  318. if (!sock_owned_by_user(sk)) {
  319. /*
  320. * trylock + unlock semantics:
  321. */
  322. mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
  323. rc = sk_backlog_rcv(sk, skb);
  324. mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
  325. } else if (sk_add_backlog(sk, skb)) {
  326. bh_unlock_sock(sk);
  327. atomic_inc(&sk->sk_drops);
  328. goto discard_and_relse;
  329. }
  330. bh_unlock_sock(sk);
  331. out:
  332. sock_put(sk);
  333. return rc;
  334. discard_and_relse:
  335. kfree_skb(skb);
  336. goto out;
  337. }
  338. EXPORT_SYMBOL(sk_receive_skb);
  339. void sk_reset_txq(struct sock *sk)
  340. {
  341. sk_tx_queue_clear(sk);
  342. }
  343. EXPORT_SYMBOL(sk_reset_txq);
  344. struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
  345. {
  346. struct dst_entry *dst = __sk_dst_get(sk);
  347. if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
  348. sk_tx_queue_clear(sk);
  349. rcu_assign_pointer(sk->sk_dst_cache, NULL);
  350. dst_release(dst);
  351. return NULL;
  352. }
  353. return dst;
  354. }
  355. EXPORT_SYMBOL(__sk_dst_check);
  356. struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
  357. {
  358. struct dst_entry *dst = sk_dst_get(sk);
  359. if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
  360. sk_dst_reset(sk);
  361. dst_release(dst);
  362. return NULL;
  363. }
  364. return dst;
  365. }
  366. EXPORT_SYMBOL(sk_dst_check);
  367. static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
  368. {
  369. int ret = -ENOPROTOOPT;
  370. #ifdef CONFIG_NETDEVICES
  371. struct net *net = sock_net(sk);
  372. char devname[IFNAMSIZ];
  373. int index;
  374. /* Sorry... */
  375. ret = -EPERM;
  376. if (!capable(CAP_NET_RAW))
  377. goto out;
  378. ret = -EINVAL;
  379. if (optlen < 0)
  380. goto out;
  381. /* Bind this socket to a particular device like "eth0",
  382. * as specified in the passed interface name. If the
  383. * name is "" or the option length is zero the socket
  384. * is not bound.
  385. */
  386. if (optlen > IFNAMSIZ - 1)
  387. optlen = IFNAMSIZ - 1;
  388. memset(devname, 0, sizeof(devname));
  389. ret = -EFAULT;
  390. if (copy_from_user(devname, optval, optlen))
  391. goto out;
  392. index = 0;
  393. if (devname[0] != '\0') {
  394. struct net_device *dev;
  395. rcu_read_lock();
  396. dev = dev_get_by_name_rcu(net, devname);
  397. if (dev)
  398. index = dev->ifindex;
  399. rcu_read_unlock();
  400. ret = -ENODEV;
  401. if (!dev)
  402. goto out;
  403. }
  404. lock_sock(sk);
  405. sk->sk_bound_dev_if = index;
  406. sk_dst_reset(sk);
  407. release_sock(sk);
  408. ret = 0;
  409. out:
  410. #endif
  411. return ret;
  412. }
  413. static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
  414. {
  415. if (valbool)
  416. sock_set_flag(sk, bit);
  417. else
  418. sock_reset_flag(sk, bit);
  419. }
  420. /*
  421. * This is meant for all protocols to use and covers goings on
  422. * at the socket level. Everything here is generic.
  423. */
  424. int sock_setsockopt(struct socket *sock, int level, int optname,
  425. char __user *optval, unsigned int optlen)
  426. {
  427. struct sock *sk = sock->sk;
  428. int val;
  429. int valbool;
  430. struct linger ling;
  431. int ret = 0;
  432. /*
  433. * Options without arguments
  434. */
  435. if (optname == SO_BINDTODEVICE)
  436. return sock_bindtodevice(sk, optval, optlen);
  437. if (optlen < sizeof(int))
  438. return -EINVAL;
  439. if (get_user(val, (int __user *)optval))
  440. return -EFAULT;
  441. valbool = val ? 1 : 0;
  442. lock_sock(sk);
  443. switch (optname) {
  444. case SO_DEBUG:
  445. if (val && !capable(CAP_NET_ADMIN))
  446. ret = -EACCES;
  447. else
  448. sock_valbool_flag(sk, SOCK_DBG, valbool);
  449. break;
  450. case SO_REUSEADDR:
  451. sk->sk_reuse = valbool;
  452. break;
  453. case SO_TYPE:
  454. case SO_PROTOCOL:
  455. case SO_DOMAIN:
  456. case SO_ERROR:
  457. ret = -ENOPROTOOPT;
  458. break;
  459. case SO_DONTROUTE:
  460. sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
  461. break;
  462. case SO_BROADCAST:
  463. sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
  464. break;
  465. case SO_SNDBUF:
  466. /* Don't error on this BSD doesn't and if you think
  467. about it this is right. Otherwise apps have to
  468. play 'guess the biggest size' games. RCVBUF/SNDBUF
  469. are treated in BSD as hints */
  470. if (val > sysctl_wmem_max)
  471. val = sysctl_wmem_max;
  472. set_sndbuf:
  473. sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
  474. if ((val * 2) < SOCK_MIN_SNDBUF)
  475. sk->sk_sndbuf = SOCK_MIN_SNDBUF;
  476. else
  477. sk->sk_sndbuf = val * 2;
  478. /*
  479. * Wake up sending tasks if we
  480. * upped the value.
  481. */
  482. sk->sk_write_space(sk);
  483. break;
  484. case SO_SNDBUFFORCE:
  485. if (!capable(CAP_NET_ADMIN)) {
  486. ret = -EPERM;
  487. break;
  488. }
  489. goto set_sndbuf;
  490. case SO_RCVBUF:
  491. /* Don't error on this BSD doesn't and if you think
  492. about it this is right. Otherwise apps have to
  493. play 'guess the biggest size' games. RCVBUF/SNDBUF
  494. are treated in BSD as hints */
  495. if (val > sysctl_rmem_max)
  496. val = sysctl_rmem_max;
  497. set_rcvbuf:
  498. sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
  499. /*
  500. * We double it on the way in to account for
  501. * "struct sk_buff" etc. overhead. Applications
  502. * assume that the SO_RCVBUF setting they make will
  503. * allow that much actual data to be received on that
  504. * socket.
  505. *
  506. * Applications are unaware that "struct sk_buff" and
  507. * other overheads allocate from the receive buffer
  508. * during socket buffer allocation.
  509. *
  510. * And after considering the possible alternatives,
  511. * returning the value we actually used in getsockopt
  512. * is the most desirable behavior.
  513. */
  514. if ((val * 2) < SOCK_MIN_RCVBUF)
  515. sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
  516. else
  517. sk->sk_rcvbuf = val * 2;
  518. break;
  519. case SO_RCVBUFFORCE:
  520. if (!capable(CAP_NET_ADMIN)) {
  521. ret = -EPERM;
  522. break;
  523. }
  524. goto set_rcvbuf;
  525. case SO_KEEPALIVE:
  526. #ifdef CONFIG_INET
  527. if (sk->sk_protocol == IPPROTO_TCP)
  528. tcp_set_keepalive(sk, valbool);
  529. #endif
  530. sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
  531. break;
  532. case SO_OOBINLINE:
  533. sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
  534. break;
  535. case SO_NO_CHECK:
  536. sk->sk_no_check = valbool;
  537. break;
  538. case SO_PRIORITY:
  539. if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
  540. sk->sk_priority = val;
  541. else
  542. ret = -EPERM;
  543. break;
  544. case SO_LINGER:
  545. if (optlen < sizeof(ling)) {
  546. ret = -EINVAL; /* 1003.1g */
  547. break;
  548. }
  549. if (copy_from_user(&ling, optval, sizeof(ling))) {
  550. ret = -EFAULT;
  551. break;
  552. }
  553. if (!ling.l_onoff)
  554. sock_reset_flag(sk, SOCK_LINGER);
  555. else {
  556. #if (BITS_PER_LONG == 32)
  557. if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
  558. sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
  559. else
  560. #endif
  561. sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
  562. sock_set_flag(sk, SOCK_LINGER);
  563. }
  564. break;
  565. case SO_BSDCOMPAT:
  566. sock_warn_obsolete_bsdism("setsockopt");
  567. break;
  568. case SO_PASSCRED:
  569. if (valbool)
  570. set_bit(SOCK_PASSCRED, &sock->flags);
  571. else
  572. clear_bit(SOCK_PASSCRED, &sock->flags);
  573. break;
  574. case SO_TIMESTAMP:
  575. case SO_TIMESTAMPNS:
  576. if (valbool) {
  577. if (optname == SO_TIMESTAMP)
  578. sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
  579. else
  580. sock_set_flag(sk, SOCK_RCVTSTAMPNS);
  581. sock_set_flag(sk, SOCK_RCVTSTAMP);
  582. sock_enable_timestamp(sk, SOCK_TIMESTAMP);
  583. } else {
  584. sock_reset_flag(sk, SOCK_RCVTSTAMP);
  585. sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
  586. }
  587. break;
  588. case SO_TIMESTAMPING:
  589. if (val & ~SOF_TIMESTAMPING_MASK) {
  590. ret = -EINVAL;
  591. break;
  592. }
  593. sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
  594. val & SOF_TIMESTAMPING_TX_HARDWARE);
  595. sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
  596. val & SOF_TIMESTAMPING_TX_SOFTWARE);
  597. sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
  598. val & SOF_TIMESTAMPING_RX_HARDWARE);
  599. if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
  600. sock_enable_timestamp(sk,
  601. SOCK_TIMESTAMPING_RX_SOFTWARE);
  602. else
  603. sock_disable_timestamp(sk,
  604. SOCK_TIMESTAMPING_RX_SOFTWARE);
  605. sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
  606. val & SOF_TIMESTAMPING_SOFTWARE);
  607. sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
  608. val & SOF_TIMESTAMPING_SYS_HARDWARE);
  609. sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
  610. val & SOF_TIMESTAMPING_RAW_HARDWARE);
  611. break;
  612. case SO_RCVLOWAT:
  613. if (val < 0)
  614. val = INT_MAX;
  615. sk->sk_rcvlowat = val ? : 1;
  616. break;
  617. case SO_RCVTIMEO:
  618. ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
  619. break;
  620. case SO_SNDTIMEO:
  621. ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
  622. break;
  623. case SO_ATTACH_FILTER:
  624. ret = -EINVAL;
  625. if (optlen == sizeof(struct sock_fprog)) {
  626. struct sock_fprog fprog;
  627. ret = -EFAULT;
  628. if (copy_from_user(&fprog, optval, sizeof(fprog)))
  629. break;
  630. ret = sk_attach_filter(&fprog, sk);
  631. }
  632. break;
  633. case SO_DETACH_FILTER:
  634. ret = sk_detach_filter(sk);
  635. break;
  636. case SO_PASSSEC:
  637. if (valbool)
  638. set_bit(SOCK_PASSSEC, &sock->flags);
  639. else
  640. clear_bit(SOCK_PASSSEC, &sock->flags);
  641. break;
  642. case SO_MARK:
  643. if (!capable(CAP_NET_ADMIN))
  644. ret = -EPERM;
  645. else
  646. sk->sk_mark = val;
  647. break;
  648. /* We implement the SO_SNDLOWAT etc to
  649. not be settable (1003.1g 5.3) */
  650. case SO_RXQ_OVFL:
  651. if (valbool)
  652. sock_set_flag(sk, SOCK_RXQ_OVFL);
  653. else
  654. sock_reset_flag(sk, SOCK_RXQ_OVFL);
  655. break;
  656. default:
  657. ret = -ENOPROTOOPT;
  658. break;
  659. }
  660. release_sock(sk);
  661. return ret;
  662. }
  663. EXPORT_SYMBOL(sock_setsockopt);
  664. void cred_to_ucred(struct pid *pid, const struct cred *cred,
  665. struct ucred *ucred)
  666. {
  667. ucred->pid = pid_vnr(pid);
  668. ucred->uid = ucred->gid = -1;
  669. if (cred) {
  670. struct user_namespace *current_ns = current_user_ns();
  671. ucred->uid = user_ns_map_uid(current_ns, cred, cred->euid);
  672. ucred->gid = user_ns_map_gid(current_ns, cred, cred->egid);
  673. }
  674. }
  675. EXPORT_SYMBOL_GPL(cred_to_ucred);
  676. int sock_getsockopt(struct socket *sock, int level, int optname,
  677. char __user *optval, int __user *optlen)
  678. {
  679. struct sock *sk = sock->sk;
  680. union {
  681. int val;
  682. struct linger ling;
  683. struct timeval tm;
  684. } v;
  685. int lv = sizeof(int);
  686. int len;
  687. if (get_user(len, optlen))
  688. return -EFAULT;
  689. if (len < 0)
  690. return -EINVAL;
  691. memset(&v, 0, sizeof(v));
  692. switch (optname) {
  693. case SO_DEBUG:
  694. v.val = sock_flag(sk, SOCK_DBG);
  695. break;
  696. case SO_DONTROUTE:
  697. v.val = sock_flag(sk, SOCK_LOCALROUTE);
  698. break;
  699. case SO_BROADCAST:
  700. v.val = !!sock_flag(sk, SOCK_BROADCAST);
  701. break;
  702. case SO_SNDBUF:
  703. v.val = sk->sk_sndbuf;
  704. break;
  705. case SO_RCVBUF:
  706. v.val = sk->sk_rcvbuf;
  707. break;
  708. case SO_REUSEADDR:
  709. v.val = sk->sk_reuse;
  710. break;
  711. case SO_KEEPALIVE:
  712. v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
  713. break;
  714. case SO_TYPE:
  715. v.val = sk->sk_type;
  716. break;
  717. case SO_PROTOCOL:
  718. v.val = sk->sk_protocol;
  719. break;
  720. case SO_DOMAIN:
  721. v.val = sk->sk_family;
  722. break;
  723. case SO_ERROR:
  724. v.val = -sock_error(sk);
  725. if (v.val == 0)
  726. v.val = xchg(&sk->sk_err_soft, 0);
  727. break;
  728. case SO_OOBINLINE:
  729. v.val = !!sock_flag(sk, SOCK_URGINLINE);
  730. break;
  731. case SO_NO_CHECK:
  732. v.val = sk->sk_no_check;
  733. break;
  734. case SO_PRIORITY:
  735. v.val = sk->sk_priority;
  736. break;
  737. case SO_LINGER:
  738. lv = sizeof(v.ling);
  739. v.ling.l_onoff = !!sock_flag(sk, SOCK_LINGER);
  740. v.ling.l_linger = sk->sk_lingertime / HZ;
  741. break;
  742. case SO_BSDCOMPAT:
  743. sock_warn_obsolete_bsdism("getsockopt");
  744. break;
  745. case SO_TIMESTAMP:
  746. v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
  747. !sock_flag(sk, SOCK_RCVTSTAMPNS);
  748. break;
  749. case SO_TIMESTAMPNS:
  750. v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
  751. break;
  752. case SO_TIMESTAMPING:
  753. v.val = 0;
  754. if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
  755. v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
  756. if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
  757. v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
  758. if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
  759. v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
  760. if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
  761. v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
  762. if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
  763. v.val |= SOF_TIMESTAMPING_SOFTWARE;
  764. if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
  765. v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
  766. if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
  767. v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
  768. break;
  769. case SO_RCVTIMEO:
  770. lv = sizeof(struct timeval);
  771. if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
  772. v.tm.tv_sec = 0;
  773. v.tm.tv_usec = 0;
  774. } else {
  775. v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
  776. v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
  777. }
  778. break;
  779. case SO_SNDTIMEO:
  780. lv = sizeof(struct timeval);
  781. if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
  782. v.tm.tv_sec = 0;
  783. v.tm.tv_usec = 0;
  784. } else {
  785. v.tm.tv_sec = sk->sk_sndtimeo / HZ;
  786. v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
  787. }
  788. break;
  789. case SO_RCVLOWAT:
  790. v.val = sk->sk_rcvlowat;
  791. break;
  792. case SO_SNDLOWAT:
  793. v.val = 1;
  794. break;
  795. case SO_PASSCRED:
  796. v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
  797. break;
  798. case SO_PEERCRED:
  799. {
  800. struct ucred peercred;
  801. if (len > sizeof(peercred))
  802. len = sizeof(peercred);
  803. cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
  804. if (copy_to_user(optval, &peercred, len))
  805. return -EFAULT;
  806. goto lenout;
  807. }
  808. case SO_PEERNAME:
  809. {
  810. char address[128];
  811. if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
  812. return -ENOTCONN;
  813. if (lv < len)
  814. return -EINVAL;
  815. if (copy_to_user(optval, address, len))
  816. return -EFAULT;
  817. goto lenout;
  818. }
  819. /* Dubious BSD thing... Probably nobody even uses it, but
  820. * the UNIX standard wants it for whatever reason... -DaveM
  821. */
  822. case SO_ACCEPTCONN:
  823. v.val = sk->sk_state == TCP_LISTEN;
  824. break;
  825. case SO_PASSSEC:
  826. v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
  827. break;
  828. case SO_PEERSEC:
  829. return security_socket_getpeersec_stream(sock, optval, optlen, len);
  830. case SO_MARK:
  831. v.val = sk->sk_mark;
  832. break;
  833. case SO_RXQ_OVFL:
  834. v.val = !!sock_flag(sk, SOCK_RXQ_OVFL);
  835. break;
  836. default:
  837. return -ENOPROTOOPT;
  838. }
  839. if (len > lv)
  840. len = lv;
  841. if (copy_to_user(optval, &v, len))
  842. return -EFAULT;
  843. lenout:
  844. if (put_user(len, optlen))
  845. return -EFAULT;
  846. return 0;
  847. }
  848. /*
  849. * Initialize an sk_lock.
  850. *
  851. * (We also register the sk_lock with the lock validator.)
  852. */
  853. static inline void sock_lock_init(struct sock *sk)
  854. {
  855. sock_lock_init_class_and_name(sk,
  856. af_family_slock_key_strings[sk->sk_family],
  857. af_family_slock_keys + sk->sk_family,
  858. af_family_key_strings[sk->sk_family],
  859. af_family_keys + sk->sk_family);
  860. }
  861. /*
  862. * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
  863. * even temporarly, because of RCU lookups. sk_node should also be left as is.
  864. * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
  865. */
  866. static void sock_copy(struct sock *nsk, const struct sock *osk)
  867. {
  868. #ifdef CONFIG_SECURITY_NETWORK
  869. void *sptr = nsk->sk_security;
  870. #endif
  871. memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
  872. memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
  873. osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
  874. #ifdef CONFIG_SECURITY_NETWORK
  875. nsk->sk_security = sptr;
  876. security_sk_clone(osk, nsk);
  877. #endif
  878. }
  879. /*
  880. * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
  881. * un-modified. Special care is taken when initializing object to zero.
  882. */
  883. static inline void sk_prot_clear_nulls(struct sock *sk, int size)
  884. {
  885. if (offsetof(struct sock, sk_node.next) != 0)
  886. memset(sk, 0, offsetof(struct sock, sk_node.next));
  887. memset(&sk->sk_node.pprev, 0,
  888. size - offsetof(struct sock, sk_node.pprev));
  889. }
  890. void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
  891. {
  892. unsigned long nulls1, nulls2;
  893. nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
  894. nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
  895. if (nulls1 > nulls2)
  896. swap(nulls1, nulls2);
  897. if (nulls1 != 0)
  898. memset((char *)sk, 0, nulls1);
  899. memset((char *)sk + nulls1 + sizeof(void *), 0,
  900. nulls2 - nulls1 - sizeof(void *));
  901. memset((char *)sk + nulls2 + sizeof(void *), 0,
  902. size - nulls2 - sizeof(void *));
  903. }
  904. EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
  905. static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
  906. int family)
  907. {
  908. struct sock *sk;
  909. struct kmem_cache *slab;
  910. slab = prot->slab;
  911. if (slab != NULL) {
  912. sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
  913. if (!sk)
  914. return sk;
  915. if (priority & __GFP_ZERO) {
  916. if (prot->clear_sk)
  917. prot->clear_sk(sk, prot->obj_size);
  918. else
  919. sk_prot_clear_nulls(sk, prot->obj_size);
  920. }
  921. } else
  922. sk = kmalloc(prot->obj_size, priority);
  923. if (sk != NULL) {
  924. kmemcheck_annotate_bitfield(sk, flags);
  925. if (security_sk_alloc(sk, family, priority))
  926. goto out_free;
  927. if (!try_module_get(prot->owner))
  928. goto out_free_sec;
  929. sk_tx_queue_clear(sk);
  930. }
  931. return sk;
  932. out_free_sec:
  933. security_sk_free(sk);
  934. out_free:
  935. if (slab != NULL)
  936. kmem_cache_free(slab, sk);
  937. else
  938. kfree(sk);
  939. return NULL;
  940. }
  941. static void sk_prot_free(struct proto *prot, struct sock *sk)
  942. {
  943. struct kmem_cache *slab;
  944. struct module *owner;
  945. owner = prot->owner;
  946. slab = prot->slab;
  947. security_sk_free(sk);
  948. if (slab != NULL)
  949. kmem_cache_free(slab, sk);
  950. else
  951. kfree(sk);
  952. module_put(owner);
  953. }
  954. #ifdef CONFIG_CGROUPS
  955. void sock_update_classid(struct sock *sk)
  956. {
  957. u32 classid;
  958. rcu_read_lock(); /* doing current task, which cannot vanish. */
  959. classid = task_cls_classid(current);
  960. rcu_read_unlock();
  961. if (classid && classid != sk->sk_classid)
  962. sk->sk_classid = classid;
  963. }
  964. EXPORT_SYMBOL(sock_update_classid);
  965. #endif
  966. /**
  967. * sk_alloc - All socket objects are allocated here
  968. * @net: the applicable net namespace
  969. * @family: protocol family
  970. * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
  971. * @prot: struct proto associated with this new sock instance
  972. */
  973. struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
  974. struct proto *prot)
  975. {
  976. struct sock *sk;
  977. sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
  978. if (sk) {
  979. sk->sk_family = family;
  980. /*
  981. * See comment in struct sock definition to understand
  982. * why we need sk_prot_creator -acme
  983. */
  984. sk->sk_prot = sk->sk_prot_creator = prot;
  985. sock_lock_init(sk);
  986. sock_net_set(sk, get_net(net));
  987. atomic_set(&sk->sk_wmem_alloc, 1);
  988. sock_update_classid(sk);
  989. }
  990. return sk;
  991. }
  992. EXPORT_SYMBOL(sk_alloc);
  993. static void __sk_free(struct sock *sk)
  994. {
  995. struct sk_filter *filter;
  996. if (sk->sk_destruct)
  997. sk->sk_destruct(sk);
  998. filter = rcu_dereference_check(sk->sk_filter,
  999. atomic_read(&sk->sk_wmem_alloc) == 0);
  1000. if (filter) {
  1001. sk_filter_uncharge(sk, filter);
  1002. rcu_assign_pointer(sk->sk_filter, NULL);
  1003. }
  1004. sock_disable_timestamp(sk, SOCK_TIMESTAMP);
  1005. sock_disable_timestamp(sk, SOCK_TIMESTAMPING_RX_SOFTWARE);
  1006. if (atomic_read(&sk->sk_omem_alloc))
  1007. printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
  1008. __func__, atomic_read(&sk->sk_omem_alloc));
  1009. if (sk->sk_peer_cred)
  1010. put_cred(sk->sk_peer_cred);
  1011. put_pid(sk->sk_peer_pid);
  1012. put_net(sock_net(sk));
  1013. sk_prot_free(sk->sk_prot_creator, sk);
  1014. }
  1015. void sk_free(struct sock *sk)
  1016. {
  1017. /*
  1018. * We subtract one from sk_wmem_alloc and can know if
  1019. * some packets are still in some tx queue.
  1020. * If not null, sock_wfree() will call __sk_free(sk) later
  1021. */
  1022. if (atomic_dec_and_test(&sk->sk_wmem_alloc))
  1023. __sk_free(sk);
  1024. }
  1025. EXPORT_SYMBOL(sk_free);
  1026. /*
  1027. * Last sock_put should drop reference to sk->sk_net. It has already
  1028. * been dropped in sk_change_net. Taking reference to stopping namespace
  1029. * is not an option.
  1030. * Take reference to a socket to remove it from hash _alive_ and after that
  1031. * destroy it in the context of init_net.
  1032. */
  1033. void sk_release_kernel(struct sock *sk)
  1034. {
  1035. if (sk == NULL || sk->sk_socket == NULL)
  1036. return;
  1037. sock_hold(sk);
  1038. sock_release(sk->sk_socket);
  1039. release_net(sock_net(sk));
  1040. sock_net_set(sk, get_net(&init_net));
  1041. sock_put(sk);
  1042. }
  1043. EXPORT_SYMBOL(sk_release_kernel);
  1044. struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
  1045. {
  1046. struct sock *newsk;
  1047. newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
  1048. if (newsk != NULL) {
  1049. struct sk_filter *filter;
  1050. sock_copy(newsk, sk);
  1051. /* SANITY */
  1052. get_net(sock_net(newsk));
  1053. sk_node_init(&newsk->sk_node);
  1054. sock_lock_init(newsk);
  1055. bh_lock_sock(newsk);
  1056. newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
  1057. newsk->sk_backlog.len = 0;
  1058. atomic_set(&newsk->sk_rmem_alloc, 0);
  1059. /*
  1060. * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
  1061. */
  1062. atomic_set(&newsk->sk_wmem_alloc, 1);
  1063. atomic_set(&newsk->sk_omem_alloc, 0);
  1064. skb_queue_head_init(&newsk->sk_receive_queue);
  1065. skb_queue_head_init(&newsk->sk_write_queue);
  1066. #ifdef CONFIG_NET_DMA
  1067. skb_queue_head_init(&newsk->sk_async_wait_queue);
  1068. #endif
  1069. spin_lock_init(&newsk->sk_dst_lock);
  1070. rwlock_init(&newsk->sk_callback_lock);
  1071. lockdep_set_class_and_name(&newsk->sk_callback_lock,
  1072. af_callback_keys + newsk->sk_family,
  1073. af_family_clock_key_strings[newsk->sk_family]);
  1074. newsk->sk_dst_cache = NULL;
  1075. newsk->sk_wmem_queued = 0;
  1076. newsk->sk_forward_alloc = 0;
  1077. newsk->sk_send_head = NULL;
  1078. newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
  1079. sock_reset_flag(newsk, SOCK_DONE);
  1080. skb_queue_head_init(&newsk->sk_error_queue);
  1081. filter = rcu_dereference_protected(newsk->sk_filter, 1);
  1082. if (filter != NULL)
  1083. sk_filter_charge(newsk, filter);
  1084. if (unlikely(xfrm_sk_clone_policy(newsk))) {
  1085. /* It is still raw copy of parent, so invalidate
  1086. * destructor and make plain sk_free() */
  1087. newsk->sk_destruct = NULL;
  1088. bh_unlock_sock(newsk);
  1089. sk_free(newsk);
  1090. newsk = NULL;
  1091. goto out;
  1092. }
  1093. newsk->sk_err = 0;
  1094. newsk->sk_priority = 0;
  1095. /*
  1096. * Before updating sk_refcnt, we must commit prior changes to memory
  1097. * (Documentation/RCU/rculist_nulls.txt for details)
  1098. */
  1099. smp_wmb();
  1100. atomic_set(&newsk->sk_refcnt, 2);
  1101. /*
  1102. * Increment the counter in the same struct proto as the master
  1103. * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
  1104. * is the same as sk->sk_prot->socks, as this field was copied
  1105. * with memcpy).
  1106. *
  1107. * This _changes_ the previous behaviour, where
  1108. * tcp_create_openreq_child always was incrementing the
  1109. * equivalent to tcp_prot->socks (inet_sock_nr), so this have
  1110. * to be taken into account in all callers. -acme
  1111. */
  1112. sk_refcnt_debug_inc(newsk);
  1113. sk_set_socket(newsk, NULL);
  1114. newsk->sk_wq = NULL;
  1115. if (newsk->sk_prot->sockets_allocated)
  1116. percpu_counter_inc(newsk->sk_prot->sockets_allocated);
  1117. if (sock_flag(newsk, SOCK_TIMESTAMP) ||
  1118. sock_flag(newsk, SOCK_TIMESTAMPING_RX_SOFTWARE))
  1119. net_enable_timestamp();
  1120. }
  1121. out:
  1122. return newsk;
  1123. }
  1124. EXPORT_SYMBOL_GPL(sk_clone);
  1125. void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
  1126. {
  1127. __sk_dst_set(sk, dst);
  1128. sk->sk_route_caps = dst->dev->features;
  1129. if (sk->sk_route_caps & NETIF_F_GSO)
  1130. sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
  1131. sk->sk_route_caps &= ~sk->sk_route_nocaps;
  1132. if (sk_can_gso(sk)) {
  1133. if (dst->header_len) {
  1134. sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
  1135. } else {
  1136. sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
  1137. sk->sk_gso_max_size = dst->dev->gso_max_size;
  1138. }
  1139. }
  1140. }
  1141. EXPORT_SYMBOL_GPL(sk_setup_caps);
  1142. void __init sk_init(void)
  1143. {
  1144. if (totalram_pages <= 4096) {
  1145. sysctl_wmem_max = 32767;
  1146. sysctl_rmem_max = 32767;
  1147. sysctl_wmem_default = 32767;
  1148. sysctl_rmem_default = 32767;
  1149. } else if (totalram_pages >= 131072) {
  1150. sysctl_wmem_max = 131071;
  1151. sysctl_rmem_max = 131071;
  1152. }
  1153. }
  1154. /*
  1155. * Simple resource managers for sockets.
  1156. */
  1157. /*
  1158. * Write buffer destructor automatically called from kfree_skb.
  1159. */
  1160. void sock_wfree(struct sk_buff *skb)
  1161. {
  1162. struct sock *sk = skb->sk;
  1163. unsigned int len = skb->truesize;
  1164. if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
  1165. /*
  1166. * Keep a reference on sk_wmem_alloc, this will be released
  1167. * after sk_write_space() call
  1168. */
  1169. atomic_sub(len - 1, &sk->sk_wmem_alloc);
  1170. sk->sk_write_space(sk);
  1171. len = 1;
  1172. }
  1173. /*
  1174. * if sk_wmem_alloc reaches 0, we must finish what sk_free()
  1175. * could not do because of in-flight packets
  1176. */
  1177. if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
  1178. __sk_free(sk);
  1179. }
  1180. EXPORT_SYMBOL(sock_wfree);
  1181. /*
  1182. * Read buffer destructor automatically called from kfree_skb.
  1183. */
  1184. void sock_rfree(struct sk_buff *skb)
  1185. {
  1186. struct sock *sk = skb->sk;
  1187. unsigned int len = skb->truesize;
  1188. atomic_sub(len, &sk->sk_rmem_alloc);
  1189. sk_mem_uncharge(sk, len);
  1190. }
  1191. EXPORT_SYMBOL(sock_rfree);
  1192. int sock_i_uid(struct sock *sk)
  1193. {
  1194. int uid;
  1195. read_lock_bh(&sk->sk_callback_lock);
  1196. uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
  1197. read_unlock_bh(&sk->sk_callback_lock);
  1198. return uid;
  1199. }
  1200. EXPORT_SYMBOL(sock_i_uid);
  1201. unsigned long sock_i_ino(struct sock *sk)
  1202. {
  1203. unsigned long ino;
  1204. read_lock_bh(&sk->sk_callback_lock);
  1205. ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
  1206. read_unlock_bh(&sk->sk_callback_lock);
  1207. return ino;
  1208. }
  1209. EXPORT_SYMBOL(sock_i_ino);
  1210. /*
  1211. * Allocate a skb from the socket's send buffer.
  1212. */
  1213. struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
  1214. gfp_t priority)
  1215. {
  1216. if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
  1217. struct sk_buff *skb = alloc_skb(size, priority);
  1218. if (skb) {
  1219. skb_set_owner_w(skb, sk);
  1220. return skb;
  1221. }
  1222. }
  1223. return NULL;
  1224. }
  1225. EXPORT_SYMBOL(sock_wmalloc);
  1226. /*
  1227. * Allocate a skb from the socket's receive buffer.
  1228. */
  1229. struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
  1230. gfp_t priority)
  1231. {
  1232. if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
  1233. struct sk_buff *skb = alloc_skb(size, priority);
  1234. if (skb) {
  1235. skb_set_owner_r(skb, sk);
  1236. return skb;
  1237. }
  1238. }
  1239. return NULL;
  1240. }
  1241. /*
  1242. * Allocate a memory block from the socket's option memory buffer.
  1243. */
  1244. void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
  1245. {
  1246. if ((unsigned)size <= sysctl_optmem_max &&
  1247. atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
  1248. void *mem;
  1249. /* First do the add, to avoid the race if kmalloc
  1250. * might sleep.
  1251. */
  1252. atomic_add(size, &sk->sk_omem_alloc);
  1253. mem = kmalloc(size, priority);
  1254. if (mem)
  1255. return mem;
  1256. atomic_sub(size, &sk->sk_omem_alloc);
  1257. }
  1258. return NULL;
  1259. }
  1260. EXPORT_SYMBOL(sock_kmalloc);
  1261. /*
  1262. * Free an option memory block.
  1263. */
  1264. void sock_kfree_s(struct sock *sk, void *mem, int size)
  1265. {
  1266. kfree(mem);
  1267. atomic_sub(size, &sk->sk_omem_alloc);
  1268. }
  1269. EXPORT_SYMBOL(sock_kfree_s);
  1270. /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
  1271. I think, these locks should be removed for datagram sockets.
  1272. */
  1273. static long sock_wait_for_wmem(struct sock *sk, long timeo)
  1274. {
  1275. DEFINE_WAIT(wait);
  1276. clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
  1277. for (;;) {
  1278. if (!timeo)
  1279. break;
  1280. if (signal_pending(current))
  1281. break;
  1282. set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
  1283. prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
  1284. if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
  1285. break;
  1286. if (sk->sk_shutdown & SEND_SHUTDOWN)
  1287. break;
  1288. if (sk->sk_err)
  1289. break;
  1290. timeo = schedule_timeout(timeo);
  1291. }
  1292. finish_wait(sk_sleep(sk), &wait);
  1293. return timeo;
  1294. }
  1295. /*
  1296. * Generic send/receive buffer handlers
  1297. */
  1298. struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
  1299. unsigned long data_len, int noblock,
  1300. int *errcode)
  1301. {
  1302. struct sk_buff *skb;
  1303. gfp_t gfp_mask;
  1304. long timeo;
  1305. int err;
  1306. gfp_mask = sk->sk_allocation;
  1307. if (gfp_mask & __GFP_WAIT)
  1308. gfp_mask |= __GFP_REPEAT;
  1309. timeo = sock_sndtimeo(sk, noblock);
  1310. while (1) {
  1311. err = sock_error(sk);
  1312. if (err != 0)
  1313. goto failure;
  1314. err = -EPIPE;
  1315. if (sk->sk_shutdown & SEND_SHUTDOWN)
  1316. goto failure;
  1317. if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
  1318. skb = alloc_skb(header_len, gfp_mask);
  1319. if (skb) {
  1320. int npages;
  1321. int i;
  1322. /* No pages, we're done... */
  1323. if (!data_len)
  1324. break;
  1325. npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
  1326. skb->truesize += data_len;
  1327. skb_shinfo(skb)->nr_frags = npages;
  1328. for (i = 0; i < npages; i++) {
  1329. struct page *page;
  1330. skb_frag_t *frag;
  1331. page = alloc_pages(sk->sk_allocation, 0);
  1332. if (!page) {
  1333. err = -ENOBUFS;
  1334. skb_shinfo(skb)->nr_frags = i;
  1335. kfree_skb(skb);
  1336. goto failure;
  1337. }
  1338. frag = &skb_shinfo(skb)->frags[i];
  1339. frag->page = page;
  1340. frag->page_offset = 0;
  1341. frag->size = (data_len >= PAGE_SIZE ?
  1342. PAGE_SIZE :
  1343. data_len);
  1344. data_len -= PAGE_SIZE;
  1345. }
  1346. /* Full success... */
  1347. break;
  1348. }
  1349. err = -ENOBUFS;
  1350. goto failure;
  1351. }
  1352. set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
  1353. set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
  1354. err = -EAGAIN;
  1355. if (!timeo)
  1356. goto failure;
  1357. if (signal_pending(current))
  1358. goto interrupted;
  1359. timeo = sock_wait_for_wmem(sk, timeo);
  1360. }
  1361. skb_set_owner_w(skb, sk);
  1362. return skb;
  1363. interrupted:
  1364. err = sock_intr_errno(timeo);
  1365. failure:
  1366. *errcode = err;
  1367. return NULL;
  1368. }
  1369. EXPORT_SYMBOL(sock_alloc_send_pskb);
  1370. struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
  1371. int noblock, int *errcode)
  1372. {
  1373. return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
  1374. }
  1375. EXPORT_SYMBOL(sock_alloc_send_skb);
  1376. static void __lock_sock(struct sock *sk)
  1377. __releases(&sk->sk_lock.slock)
  1378. __acquires(&sk->sk_lock.slock)
  1379. {
  1380. DEFINE_WAIT(wait);
  1381. for (;;) {
  1382. prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
  1383. TASK_UNINTERRUPTIBLE);
  1384. spin_unlock_bh(&sk->sk_lock.slock);
  1385. schedule();
  1386. spin_lock_bh(&sk->sk_lock.slock);
  1387. if (!sock_owned_by_user(sk))
  1388. break;
  1389. }
  1390. finish_wait(&sk->sk_lock.wq, &wait);
  1391. }
  1392. static void __release_sock(struct sock *sk)
  1393. __releases(&sk->sk_lock.slock)
  1394. __acquires(&sk->sk_lock.slock)
  1395. {
  1396. struct sk_buff *skb = sk->sk_backlog.head;
  1397. do {
  1398. sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
  1399. bh_unlock_sock(sk);
  1400. do {
  1401. struct sk_buff *next = skb->next;
  1402. WARN_ON_ONCE(skb_dst_is_noref(skb));
  1403. skb->next = NULL;
  1404. sk_backlog_rcv(sk, skb);
  1405. /*
  1406. * We are in process context here with softirqs
  1407. * disabled, use cond_resched_softirq() to preempt.
  1408. * This is safe to do because we've taken the backlog
  1409. * queue private:
  1410. */
  1411. cond_resched_softirq();
  1412. skb = next;
  1413. } while (skb != NULL);
  1414. bh_lock_sock(sk);
  1415. } while ((skb = sk->sk_backlog.head) != NULL);
  1416. /*
  1417. * Doing the zeroing here guarantee we can not loop forever
  1418. * while a wild producer attempts to flood us.
  1419. */
  1420. sk->sk_backlog.len = 0;
  1421. }
  1422. /**
  1423. * sk_wait_data - wait for data to arrive at sk_receive_queue
  1424. * @sk: sock to wait on
  1425. * @timeo: for how long
  1426. *
  1427. * Now socket state including sk->sk_err is changed only under lock,
  1428. * hence we may omit checks after joining wait queue.
  1429. * We check receive queue before schedule() only as optimization;
  1430. * it is very likely that release_sock() added new data.
  1431. */
  1432. int sk_wait_data(struct sock *sk, long *timeo)
  1433. {
  1434. int rc;
  1435. DEFINE_WAIT(wait);
  1436. prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
  1437. set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
  1438. rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
  1439. clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
  1440. finish_wait(sk_sleep(sk), &wait);
  1441. return rc;
  1442. }
  1443. EXPORT_SYMBOL(sk_wait_data);
  1444. /**
  1445. * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
  1446. * @sk: socket
  1447. * @size: memory size to allocate
  1448. * @kind: allocation type
  1449. *
  1450. * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
  1451. * rmem allocation. This function assumes that protocols which have
  1452. * memory_pressure use sk_wmem_queued as write buffer accounting.
  1453. */
  1454. int __sk_mem_schedule(struct sock *sk, int size, int kind)
  1455. {
  1456. struct proto *prot = sk->sk_prot;
  1457. int amt = sk_mem_pages(size);
  1458. long allocated;
  1459. sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
  1460. allocated = atomic_long_add_return(amt, prot->memory_allocated);
  1461. /* Under limit. */
  1462. if (allocated <= prot->sysctl_mem[0]) {
  1463. if (prot->memory_pressure && *prot->memory_pressure)
  1464. *prot->memory_pressure = 0;
  1465. return 1;
  1466. }
  1467. /* Under pressure. */
  1468. if (allocated > prot->sysctl_mem[1])
  1469. if (prot->enter_memory_pressure)
  1470. prot->enter_memory_pressure(sk);
  1471. /* Over hard limit. */
  1472. if (allocated > prot->sysctl_mem[2])
  1473. goto suppress_allocation;
  1474. /* guarantee minimum buffer size under pressure */
  1475. if (kind == SK_MEM_RECV) {
  1476. if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
  1477. return 1;
  1478. } else { /* SK_MEM_SEND */
  1479. if (sk->sk_type == SOCK_STREAM) {
  1480. if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
  1481. return 1;
  1482. } else if (atomic_read(&sk->sk_wmem_alloc) <
  1483. prot->sysctl_wmem[0])
  1484. return 1;
  1485. }
  1486. if (prot->memory_pressure) {
  1487. int alloc;
  1488. if (!*prot->memory_pressure)
  1489. return 1;
  1490. alloc = percpu_counter_read_positive(prot->sockets_allocated);
  1491. if (prot->sysctl_mem[2] > alloc *
  1492. sk_mem_pages(sk->sk_wmem_queued +
  1493. atomic_read(&sk->sk_rmem_alloc) +
  1494. sk->sk_forward_alloc))
  1495. return 1;
  1496. }
  1497. suppress_allocation:
  1498. if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
  1499. sk_stream_moderate_sndbuf(sk);
  1500. /* Fail only if socket is _under_ its sndbuf.
  1501. * In this case we cannot block, so that we have to fail.
  1502. */
  1503. if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
  1504. return 1;
  1505. }
  1506. /* Alas. Undo changes. */
  1507. sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
  1508. atomic_long_sub(amt, prot->memory_allocated);
  1509. return 0;
  1510. }
  1511. EXPORT_SYMBOL(__sk_mem_schedule);
  1512. /**
  1513. * __sk_reclaim - reclaim memory_allocated
  1514. * @sk: socket
  1515. */
  1516. void __sk_mem_reclaim(struct sock *sk)
  1517. {
  1518. struct proto *prot = sk->sk_prot;
  1519. atomic_long_sub(sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT,
  1520. prot->memory_allocated);
  1521. sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
  1522. if (prot->memory_pressure && *prot->memory_pressure &&
  1523. (atomic_long_read(prot->memory_allocated) < prot->sysctl_mem[0]))
  1524. *prot->memory_pressure = 0;
  1525. }
  1526. EXPORT_SYMBOL(__sk_mem_reclaim);
  1527. /*
  1528. * Set of default routines for initialising struct proto_ops when
  1529. * the protocol does not support a particular function. In certain
  1530. * cases where it makes no sense for a protocol to have a "do nothing"
  1531. * function, some default processing is provided.
  1532. */
  1533. int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
  1534. {
  1535. return -EOPNOTSUPP;
  1536. }
  1537. EXPORT_SYMBOL(sock_no_bind);
  1538. int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
  1539. int len, int flags)
  1540. {
  1541. return -EOPNOTSUPP;
  1542. }
  1543. EXPORT_SYMBOL(sock_no_connect);
  1544. int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
  1545. {
  1546. return -EOPNOTSUPP;
  1547. }
  1548. EXPORT_SYMBOL(sock_no_socketpair);
  1549. int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
  1550. {
  1551. return -EOPNOTSUPP;
  1552. }
  1553. EXPORT_SYMBOL(sock_no_accept);
  1554. int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
  1555. int *len, int peer)
  1556. {
  1557. return -EOPNOTSUPP;
  1558. }
  1559. EXPORT_SYMBOL(sock_no_getname);
  1560. unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
  1561. {
  1562. return 0;
  1563. }
  1564. EXPORT_SYMBOL(sock_no_poll);
  1565. int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
  1566. {
  1567. return -EOPNOTSUPP;
  1568. }
  1569. EXPORT_SYMBOL(sock_no_ioctl);
  1570. int sock_no_listen(struct socket *sock, int backlog)
  1571. {
  1572. return -EOPNOTSUPP;
  1573. }
  1574. EXPORT_SYMBOL(sock_no_listen);
  1575. int sock_no_shutdown(struct socket *sock, int how)
  1576. {
  1577. return -EOPNOTSUPP;
  1578. }
  1579. EXPORT_SYMBOL(sock_no_shutdown);
  1580. int sock_no_setsockopt(struct socket *sock, int level, int optname,
  1581. char __user *optval, unsigned int optlen)
  1582. {
  1583. return -EOPNOTSUPP;
  1584. }
  1585. EXPORT_SYMBOL(sock_no_setsockopt);
  1586. int sock_no_getsockopt(struct socket *sock, int level, int optname,
  1587. char __user *optval, int __user *optlen)
  1588. {
  1589. return -EOPNOTSUPP;
  1590. }
  1591. EXPORT_SYMBOL(sock_no_getsockopt);
  1592. int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
  1593. size_t len)
  1594. {
  1595. return -EOPNOTSUPP;
  1596. }
  1597. EXPORT_SYMBOL(sock_no_sendmsg);
  1598. int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
  1599. size_t len, int flags)
  1600. {
  1601. return -EOPNOTSUPP;
  1602. }
  1603. EXPORT_SYMBOL(sock_no_recvmsg);
  1604. int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
  1605. {
  1606. /* Mirror missing mmap method error code */
  1607. return -ENODEV;
  1608. }
  1609. EXPORT_SYMBOL(sock_no_mmap);
  1610. ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
  1611. {
  1612. ssize_t res;
  1613. struct msghdr msg = {.msg_flags = flags};
  1614. struct kvec iov;
  1615. char *kaddr = kmap(page);
  1616. iov.iov_base = kaddr + offset;
  1617. iov.iov_len = size;
  1618. res = kernel_sendmsg(sock, &msg, &iov, 1, size);
  1619. kunmap(page);
  1620. return res;
  1621. }
  1622. EXPORT_SYMBOL(sock_no_sendpage);
  1623. /*
  1624. * Default Socket Callbacks
  1625. */
  1626. static void sock_def_wakeup(struct sock *sk)
  1627. {
  1628. struct socket_wq *wq;
  1629. rcu_read_lock();
  1630. wq = rcu_dereference(sk->sk_wq);
  1631. if (wq_has_sleeper(wq))
  1632. wake_up_interruptible_all(&wq->wait);
  1633. rcu_read_unlock();
  1634. }
  1635. static void sock_def_error_report(struct sock *sk)
  1636. {
  1637. struct socket_wq *wq;
  1638. rcu_read_lock();
  1639. wq = rcu_dereference(sk->sk_wq);
  1640. if (wq_has_sleeper(wq))
  1641. wake_up_interruptible_poll(&wq->wait, POLLERR);
  1642. sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
  1643. rcu_read_unlock();
  1644. }
  1645. static void sock_def_readable(struct sock *sk, int len)
  1646. {
  1647. struct socket_wq *wq;
  1648. rcu_read_lock();
  1649. wq = rcu_dereference(sk->sk_wq);
  1650. if (wq_has_sleeper(wq))
  1651. wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
  1652. POLLRDNORM | POLLRDBAND);
  1653. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
  1654. rcu_read_unlock();
  1655. }
  1656. static void sock_def_write_space(struct sock *sk)
  1657. {
  1658. struct socket_wq *wq;
  1659. rcu_read_lock();
  1660. /* Do not wake up a writer until he can make "significant"
  1661. * progress. --DaveM
  1662. */
  1663. if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
  1664. wq = rcu_dereference(sk->sk_wq);
  1665. if (wq_has_sleeper(wq))
  1666. wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
  1667. POLLWRNORM | POLLWRBAND);
  1668. /* Should agree with poll, otherwise some programs break */
  1669. if (sock_writeable(sk))
  1670. sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
  1671. }
  1672. rcu_read_unlock();
  1673. }
  1674. static void sock_def_destruct(struct sock *sk)
  1675. {
  1676. kfree(sk->sk_protinfo);
  1677. }
  1678. void sk_send_sigurg(struct sock *sk)
  1679. {
  1680. if (sk->sk_socket && sk->sk_socket->file)
  1681. if (send_sigurg(&sk->sk_socket->file->f_owner))
  1682. sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
  1683. }
  1684. EXPORT_SYMBOL(sk_send_sigurg);
  1685. void sk_reset_timer(struct sock *sk, struct timer_list* timer,
  1686. unsigned long expires)
  1687. {
  1688. if (!mod_timer(timer, expires))
  1689. sock_hold(sk);
  1690. }
  1691. EXPORT_SYMBOL(sk_reset_timer);
  1692. void sk_stop_timer(struct sock *sk, struct timer_list* timer)
  1693. {
  1694. if (timer_pending(timer) && del_timer(timer))
  1695. __sock_put(sk);
  1696. }
  1697. EXPORT_SYMBOL(sk_stop_timer);
  1698. void sock_init_data(struct socket *sock, struct sock *sk)
  1699. {
  1700. skb_queue_head_init(&sk->sk_receive_queue);
  1701. skb_queue_head_init(&sk->sk_write_queue);
  1702. skb_queue_head_init(&sk->sk_error_queue);
  1703. #ifdef CONFIG_NET_DMA
  1704. skb_queue_head_init(&sk->sk_async_wait_queue);
  1705. #endif
  1706. sk->sk_send_head = NULL;
  1707. init_timer(&sk->sk_timer);
  1708. sk->sk_allocation = GFP_KERNEL;
  1709. sk->sk_rcvbuf = sysctl_rmem_default;
  1710. sk->sk_sndbuf = sysctl_wmem_default;
  1711. sk->sk_state = TCP_CLOSE;
  1712. sk_set_socket(sk, sock);
  1713. sock_set_flag(sk, SOCK_ZAPPED);
  1714. if (sock) {
  1715. sk->sk_type = sock->type;
  1716. sk->sk_wq = sock->wq;
  1717. sock->sk = sk;
  1718. } else
  1719. sk->sk_wq = NULL;
  1720. spin_lock_init(&sk->sk_dst_lock);
  1721. rwlock_init(&sk->sk_callback_lock);
  1722. lockdep_set_class_and_name(&sk->sk_callback_lock,
  1723. af_callback_keys + sk->sk_family,
  1724. af_family_clock_key_strings[sk->sk_family]);
  1725. sk->sk_state_change = sock_def_wakeup;
  1726. sk->sk_data_ready = sock_def_readable;
  1727. sk->sk_write_space = sock_def_write_space;
  1728. sk->sk_error_report = sock_def_error_report;
  1729. sk->sk_destruct = sock_def_destruct;
  1730. sk->sk_sndmsg_page = NULL;
  1731. sk->sk_sndmsg_off = 0;
  1732. sk->sk_peer_pid = NULL;
  1733. sk->sk_peer_cred = NULL;
  1734. sk->sk_write_pending = 0;
  1735. sk->sk_rcvlowat = 1;
  1736. sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
  1737. sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
  1738. sk->sk_stamp = ktime_set(-1L, 0);
  1739. /*
  1740. * Before updating sk_refcnt, we must commit prior changes to memory
  1741. * (Documentation/RCU/rculist_nulls.txt for details)
  1742. */
  1743. smp_wmb();
  1744. atomic_set(&sk->sk_refcnt, 1);
  1745. atomic_set(&sk->sk_drops, 0);
  1746. }
  1747. EXPORT_SYMBOL(sock_init_data);
  1748. void lock_sock_nested(struct sock *sk, int subclass)
  1749. {
  1750. might_sleep();
  1751. spin_lock_bh(&sk->sk_lock.slock);
  1752. if (sk->sk_lock.owned)
  1753. __lock_sock(sk);
  1754. sk->sk_lock.owned = 1;
  1755. spin_unlock(&sk->sk_lock.slock);
  1756. /*
  1757. * The sk_lock has mutex_lock() semantics here:
  1758. */
  1759. mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
  1760. local_bh_enable();
  1761. }
  1762. EXPORT_SYMBOL(lock_sock_nested);
  1763. void release_sock(struct sock *sk)
  1764. {
  1765. /*
  1766. * The sk_lock has mutex_unlock() semantics:
  1767. */
  1768. mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
  1769. spin_lock_bh(&sk->sk_lock.slock);
  1770. if (sk->sk_backlog.tail)
  1771. __release_sock(sk);
  1772. sk->sk_lock.owned = 0;
  1773. if (waitqueue_active(&sk->sk_lock.wq))
  1774. wake_up(&sk->sk_lock.wq);
  1775. spin_unlock_bh(&sk->sk_lock.slock);
  1776. }
  1777. EXPORT_SYMBOL(release_sock);
  1778. /**
  1779. * lock_sock_fast - fast version of lock_sock
  1780. * @sk: socket
  1781. *
  1782. * This version should be used for very small section, where process wont block
  1783. * return false if fast path is taken
  1784. * sk_lock.slock locked, owned = 0, BH disabled
  1785. * return true if slow path is taken
  1786. * sk_lock.slock unlocked, owned = 1, BH enabled
  1787. */
  1788. bool lock_sock_fast(struct sock *sk)
  1789. {
  1790. might_sleep();
  1791. spin_lock_bh(&sk->sk_lock.slock);
  1792. if (!sk->sk_lock.owned)
  1793. /*
  1794. * Note : We must disable BH
  1795. */
  1796. return false;
  1797. __lock_sock(sk);
  1798. sk->sk_lock.owned = 1;
  1799. spin_unlock(&sk->sk_lock.slock);
  1800. /*
  1801. * The sk_lock has mutex_lock() semantics here:
  1802. */
  1803. mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
  1804. local_bh_enable();
  1805. return true;
  1806. }
  1807. EXPORT_SYMBOL(lock_sock_fast);
  1808. int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
  1809. {
  1810. struct timeval tv;
  1811. if (!sock_flag(sk, SOCK_TIMESTAMP))
  1812. sock_enable_timestamp(sk, SOCK_TIMESTAMP);
  1813. tv = ktime_to_timeval(sk->sk_stamp);
  1814. if (tv.tv_sec == -1)
  1815. return -ENOENT;
  1816. if (tv.tv_sec == 0) {
  1817. sk->sk_stamp = ktime_get_real();
  1818. tv = ktime_to_timeval(sk->sk_stamp);
  1819. }
  1820. return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
  1821. }
  1822. EXPORT_SYMBOL(sock_get_timestamp);
  1823. int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
  1824. {
  1825. struct timespec ts;
  1826. if (!sock_flag(sk, SOCK_TIMESTAMP))
  1827. sock_enable_timestamp(sk, SOCK_TIMESTAMP);
  1828. ts = ktime_to_timespec(sk->sk_stamp);
  1829. if (ts.tv_sec == -1)
  1830. return -ENOENT;
  1831. if (ts.tv_sec == 0) {
  1832. sk->sk_stamp = ktime_get_real();
  1833. ts = ktime_to_timespec(sk->sk_stamp);
  1834. }
  1835. return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
  1836. }
  1837. EXPORT_SYMBOL(sock_get_timestampns);
  1838. void sock_enable_timestamp(struct sock *sk, int flag)
  1839. {
  1840. if (!sock_flag(sk, flag)) {
  1841. sock_set_flag(sk, flag);
  1842. /*
  1843. * we just set one of the two flags which require net
  1844. * time stamping, but time stamping might have been on
  1845. * already because of the other one
  1846. */
  1847. if (!sock_flag(sk,
  1848. flag == SOCK_TIMESTAMP ?
  1849. SOCK_TIMESTAMPING_RX_SOFTWARE :
  1850. SOCK_TIMESTAMP))
  1851. net_enable_timestamp();
  1852. }
  1853. }
  1854. /*
  1855. * Get a socket option on an socket.
  1856. *
  1857. * FIX: POSIX 1003.1g is very ambiguous here. It states that
  1858. * asynchronous errors should be reported by getsockopt. We assume
  1859. * this means if you specify SO_ERROR (otherwise whats the point of it).
  1860. */
  1861. int sock_common_getsockopt(struct socket *sock, int level, int optname,
  1862. char __user *optval, int __user *optlen)
  1863. {
  1864. struct sock *sk = sock->sk;
  1865. return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
  1866. }
  1867. EXPORT_SYMBOL(sock_common_getsockopt);
  1868. #ifdef CONFIG_COMPAT
  1869. int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
  1870. char __user *optval, int __user *optlen)
  1871. {
  1872. struct sock *sk = sock->sk;
  1873. if (sk->sk_prot->compat_getsockopt != NULL)
  1874. return sk->sk_prot->compat_getsockopt(sk, level, optname,
  1875. optval, optlen);
  1876. return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
  1877. }
  1878. EXPORT_SYMBOL(compat_sock_common_getsockopt);
  1879. #endif
  1880. int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
  1881. struct msghdr *msg, size_t size, int flags)
  1882. {
  1883. struct sock *sk = sock->sk;
  1884. int addr_len = 0;
  1885. int err;
  1886. err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
  1887. flags & ~MSG_DONTWAIT, &addr_len);
  1888. if (err >= 0)
  1889. msg->msg_namelen = addr_len;
  1890. return err;
  1891. }
  1892. EXPORT_SYMBOL(sock_common_recvmsg);
  1893. /*
  1894. * Set socket options on an inet socket.
  1895. */
  1896. int sock_common_setsockopt(struct socket *sock, int level, int optname,
  1897. char __user *optval, unsigned int optlen)
  1898. {
  1899. struct sock *sk = sock->sk;
  1900. return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
  1901. }
  1902. EXPORT_SYMBOL(sock_common_setsockopt);
  1903. #ifdef CONFIG_COMPAT
  1904. int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
  1905. char __user *optval, unsigned int optlen)
  1906. {
  1907. struct sock *sk = sock->sk;
  1908. if (sk->sk_prot->compat_setsockopt != NULL)
  1909. return sk->sk_prot->compat_setsockopt(sk, level, optname,
  1910. optval, optlen);
  1911. return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
  1912. }
  1913. EXPORT_SYMBOL(compat_sock_common_setsockopt);
  1914. #endif
  1915. void sk_common_release(struct sock *sk)
  1916. {
  1917. if (sk->sk_prot->destroy)
  1918. sk->sk_prot->destroy(sk);
  1919. /*
  1920. * Observation: when sock_common_release is called, processes have
  1921. * no access to socket. But net still has.
  1922. * Step one, detach it from networking:
  1923. *
  1924. * A. Remove from hash tables.
  1925. */
  1926. sk->sk_prot->unhash(sk);
  1927. /*
  1928. * In this point socket cannot receive new packets, but it is possible
  1929. * that some packets are in flight because some CPU runs receiver and
  1930. * did hash table lookup before we unhashed socket. They will achieve
  1931. * receive queue and will be purged by socket destructor.
  1932. *
  1933. * Also we still have packets pending on receive queue and probably,
  1934. * our own packets waiting in device queues. sock_destroy will drain
  1935. * receive queue, but transmitted packets will delay socket destruction
  1936. * until the last reference will be released.
  1937. */
  1938. sock_orphan(sk);
  1939. xfrm_sk_free_policy(sk);
  1940. sk_refcnt_debug_release(sk);
  1941. sock_put(sk);
  1942. }
  1943. EXPORT_SYMBOL(sk_common_release);
  1944. static DEFINE_RWLOCK(proto_list_lock);
  1945. static LIST_HEAD(proto_list);
  1946. #ifdef CONFIG_PROC_FS
  1947. #define PROTO_INUSE_NR 64 /* should be enough for the first time */
  1948. struct prot_inuse {
  1949. int val[PROTO_INUSE_NR];
  1950. };
  1951. static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
  1952. #ifdef CONFIG_NET_NS
  1953. void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
  1954. {
  1955. __this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
  1956. }
  1957. EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
  1958. int sock_prot_inuse_get(struct net *net, struct proto *prot)
  1959. {
  1960. int cpu, idx = prot->inuse_idx;
  1961. int res = 0;
  1962. for_each_possible_cpu(cpu)
  1963. res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
  1964. return res >= 0 ? res : 0;
  1965. }
  1966. EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
  1967. static int __net_init sock_inuse_init_net(struct net *net)
  1968. {
  1969. net->core.inuse = alloc_percpu(struct prot_inuse);
  1970. return net->core.inuse ? 0 : -ENOMEM;
  1971. }
  1972. static void __net_exit sock_inuse_exit_net(struct net *net)
  1973. {
  1974. free_percpu(net->core.inuse);
  1975. }
  1976. static struct pernet_operations net_inuse_ops = {
  1977. .init = sock_inuse_init_net,
  1978. .exit = sock_inuse_exit_net,
  1979. };
  1980. static __init int net_inuse_init(void)
  1981. {
  1982. if (register_pernet_subsys(&net_inuse_ops))
  1983. panic("Cannot initialize net inuse counters");
  1984. return 0;
  1985. }
  1986. core_initcall(net_inuse_init);
  1987. #else
  1988. static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
  1989. void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
  1990. {
  1991. __this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
  1992. }
  1993. EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
  1994. int sock_prot_inuse_get(struct net *net, struct proto *prot)
  1995. {
  1996. int cpu, idx = prot->inuse_idx;
  1997. int res = 0;
  1998. for_each_possible_cpu(cpu)
  1999. res += per_cpu(prot_inuse, cpu).val[idx];
  2000. return res >= 0 ? res : 0;
  2001. }
  2002. EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
  2003. #endif
  2004. static void assign_proto_idx(struct proto *prot)
  2005. {
  2006. prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
  2007. if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
  2008. printk(KERN_ERR "PROTO_INUSE_NR exhausted\n");
  2009. return;
  2010. }
  2011. set_bit(prot->inuse_idx, proto_inuse_idx);
  2012. }
  2013. static void release_proto_idx(struct proto *prot)
  2014. {
  2015. if (prot->inuse_idx != PROTO_INUSE_NR - 1)
  2016. clear_bit(prot->inuse_idx, proto_inuse_idx);
  2017. }
  2018. #else
  2019. static inline void assign_proto_idx(struct proto *prot)
  2020. {
  2021. }
  2022. static inline void release_proto_idx(struct proto *prot)
  2023. {
  2024. }
  2025. #endif
  2026. int proto_register(struct proto *prot, int alloc_slab)
  2027. {
  2028. if (alloc_slab) {
  2029. prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
  2030. SLAB_HWCACHE_ALIGN | prot->slab_flags,
  2031. NULL);
  2032. if (prot->slab == NULL) {
  2033. printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
  2034. prot->name);
  2035. goto out;
  2036. }
  2037. if (prot->rsk_prot != NULL) {
  2038. prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
  2039. if (prot->rsk_prot->slab_name == NULL)
  2040. goto out_free_sock_slab;
  2041. prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
  2042. prot->rsk_prot->obj_size, 0,
  2043. SLAB_HWCACHE_ALIGN, NULL);
  2044. if (prot->rsk_prot->slab == NULL) {
  2045. printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
  2046. prot->name);
  2047. goto out_free_request_sock_slab_name;
  2048. }
  2049. }
  2050. if (prot->twsk_prot != NULL) {
  2051. prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
  2052. if (prot->twsk_prot->twsk_slab_name == NULL)
  2053. goto out_free_request_sock_slab;
  2054. prot->twsk_prot->twsk_slab =
  2055. kmem_cache_create(prot->twsk_prot->twsk_slab_name,
  2056. prot->twsk_prot->twsk_obj_size,
  2057. 0,
  2058. SLAB_HWCACHE_ALIGN |
  2059. prot->slab_flags,
  2060. NULL);
  2061. if (prot->twsk_prot->twsk_slab == NULL)
  2062. goto out_free_timewait_sock_slab_name;
  2063. }
  2064. }
  2065. write_lock(&proto_list_lock);
  2066. list_add(&prot->node, &proto_list);
  2067. assign_proto_idx(prot);
  2068. write_unlock(&proto_list_lock);
  2069. return 0;
  2070. out_free_timewait_sock_slab_name:
  2071. kfree(prot->twsk_prot->twsk_slab_name);
  2072. out_free_request_sock_slab:
  2073. if (prot->rsk_prot && prot->rsk_prot->slab) {
  2074. kmem_cache_destroy(prot->rsk_prot->slab);
  2075. prot->rsk_prot->slab = NULL;
  2076. }
  2077. out_free_request_sock_slab_name:
  2078. if (prot->rsk_prot)
  2079. kfree(prot->rsk_prot->slab_name);
  2080. out_free_sock_slab:
  2081. kmem_cache_destroy(prot->slab);
  2082. prot->slab = NULL;
  2083. out:
  2084. return -ENOBUFS;
  2085. }
  2086. EXPORT_SYMBOL(proto_register);
  2087. void proto_unregister(struct proto *prot)
  2088. {
  2089. write_lock(&proto_list_lock);
  2090. release_proto_idx(prot);
  2091. list_del(&prot->node);
  2092. write_unlock(&proto_list_lock);
  2093. if (prot->slab != NULL) {
  2094. kmem_cache_destroy(prot->slab);
  2095. prot->slab = NULL;
  2096. }
  2097. if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
  2098. kmem_cache_destroy(prot->rsk_prot->slab);
  2099. kfree(prot->rsk_prot->slab_name);
  2100. prot->rsk_prot->slab = NULL;
  2101. }
  2102. if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
  2103. kmem_cache_destroy(prot->twsk_prot->twsk_slab);
  2104. kfree(prot->twsk_prot->twsk_slab_name);
  2105. prot->twsk_prot->twsk_slab = NULL;
  2106. }
  2107. }
  2108. EXPORT_SYMBOL(proto_unregister);
  2109. #ifdef CONFIG_PROC_FS
  2110. static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
  2111. __acquires(proto_list_lock)
  2112. {
  2113. read_lock(&proto_list_lock);
  2114. return seq_list_start_head(&proto_list, *pos);
  2115. }
  2116. static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  2117. {
  2118. return seq_list_next(v, &proto_list, pos);
  2119. }
  2120. static void proto_seq_stop(struct seq_file *seq, void *v)
  2121. __releases(proto_list_lock)
  2122. {
  2123. read_unlock(&proto_list_lock);
  2124. }
  2125. static char proto_method_implemented(const void *method)
  2126. {
  2127. return method == NULL ? 'n' : 'y';
  2128. }
  2129. static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
  2130. {
  2131. seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
  2132. "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
  2133. proto->name,
  2134. proto->obj_size,
  2135. sock_prot_inuse_get(seq_file_net(seq), proto),
  2136. proto->memory_allocated != NULL ? atomic_long_read(proto->memory_allocated) : -1L,
  2137. proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
  2138. proto->max_header,
  2139. proto->slab == NULL ? "no" : "yes",
  2140. module_name(proto->owner),
  2141. proto_method_implemented(proto->close),
  2142. proto_method_implemented(proto->connect),
  2143. proto_method_implemented(proto->disconnect),
  2144. proto_method_implemented(proto->accept),
  2145. proto_method_implemented(proto->ioctl),
  2146. proto_method_implemented(proto->init),
  2147. proto_method_implemented(proto->destroy),
  2148. proto_method_implemented(proto->shutdown),
  2149. proto_method_implemented(proto->setsockopt),
  2150. proto_method_implemented(proto->getsockopt),
  2151. proto_method_implemented(proto->sendmsg),
  2152. proto_method_implemented(proto->recvmsg),
  2153. proto_method_implemented(proto->sendpage),
  2154. proto_method_implemented(proto->bind),
  2155. proto_method_implemented(proto->backlog_rcv),
  2156. proto_method_implemented(proto->hash),
  2157. proto_method_implemented(proto->unhash),
  2158. proto_method_implemented(proto->get_port),
  2159. proto_method_implemented(proto->enter_memory_pressure));
  2160. }
  2161. static int proto_seq_show(struct seq_file *seq, void *v)
  2162. {
  2163. if (v == &proto_list)
  2164. seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
  2165. "protocol",
  2166. "size",
  2167. "sockets",
  2168. "memory",
  2169. "press",
  2170. "maxhdr",
  2171. "slab",
  2172. "module",
  2173. "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
  2174. else
  2175. proto_seq_printf(seq, list_entry(v, struct proto, node));
  2176. return 0;
  2177. }
  2178. static const struct seq_operations proto_seq_ops = {
  2179. .start = proto_seq_start,
  2180. .next = proto_seq_next,
  2181. .stop = proto_seq_stop,
  2182. .show = proto_seq_show,
  2183. };
  2184. static int proto_seq_open(struct inode *inode, struct file *file)
  2185. {
  2186. return seq_open_net(inode, file, &proto_seq_ops,
  2187. sizeof(struct seq_net_private));
  2188. }
  2189. static const struct file_operations proto_seq_fops = {
  2190. .owner = THIS_MODULE,
  2191. .open = proto_seq_open,
  2192. .read = seq_read,
  2193. .llseek = seq_lseek,
  2194. .release = seq_release_net,
  2195. };
  2196. static __net_init int proto_init_net(struct net *net)
  2197. {
  2198. if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
  2199. return -ENOMEM;
  2200. return 0;
  2201. }
  2202. static __net_exit void proto_exit_net(struct net *net)
  2203. {
  2204. proc_net_remove(net, "protocols");
  2205. }
  2206. static __net_initdata struct pernet_operations proto_net_ops = {
  2207. .init = proto_init_net,
  2208. .exit = proto_exit_net,
  2209. };
  2210. static int __init proto_init(void)
  2211. {
  2212. return register_pernet_subsys(&proto_net_ops);
  2213. }
  2214. subsys_initcall(proto_init);
  2215. #endif /* PROC_FS */