flow.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438
  1. /* flow.c: Generic flow cache.
  2. *
  3. * Copyright (C) 2003 Alexey N. Kuznetsov (kuznet@ms2.inr.ac.ru)
  4. * Copyright (C) 2003 David S. Miller (davem@redhat.com)
  5. */
  6. #include <linux/kernel.h>
  7. #include <linux/module.h>
  8. #include <linux/list.h>
  9. #include <linux/jhash.h>
  10. #include <linux/interrupt.h>
  11. #include <linux/mm.h>
  12. #include <linux/random.h>
  13. #include <linux/init.h>
  14. #include <linux/slab.h>
  15. #include <linux/smp.h>
  16. #include <linux/completion.h>
  17. #include <linux/percpu.h>
  18. #include <linux/bitops.h>
  19. #include <linux/notifier.h>
  20. #include <linux/cpu.h>
  21. #include <linux/cpumask.h>
  22. #include <linux/mutex.h>
  23. #include <net/flow.h>
  24. #include <asm/atomic.h>
  25. #include <linux/security.h>
  26. struct flow_cache_entry {
  27. union {
  28. struct hlist_node hlist;
  29. struct list_head gc_list;
  30. } u;
  31. u16 family;
  32. u8 dir;
  33. u32 genid;
  34. struct flowi key;
  35. struct flow_cache_object *object;
  36. };
  37. struct flow_cache_percpu {
  38. struct hlist_head *hash_table;
  39. int hash_count;
  40. u32 hash_rnd;
  41. int hash_rnd_recalc;
  42. struct tasklet_struct flush_tasklet;
  43. };
  44. struct flow_flush_info {
  45. struct flow_cache *cache;
  46. atomic_t cpuleft;
  47. struct completion completion;
  48. };
  49. struct flow_cache {
  50. u32 hash_shift;
  51. struct flow_cache_percpu __percpu *percpu;
  52. struct notifier_block hotcpu_notifier;
  53. int low_watermark;
  54. int high_watermark;
  55. struct timer_list rnd_timer;
  56. };
  57. atomic_t flow_cache_genid = ATOMIC_INIT(0);
  58. EXPORT_SYMBOL(flow_cache_genid);
  59. static struct flow_cache flow_cache_global;
  60. static struct kmem_cache *flow_cachep __read_mostly;
  61. static DEFINE_SPINLOCK(flow_cache_gc_lock);
  62. static LIST_HEAD(flow_cache_gc_list);
  63. #define flow_cache_hash_size(cache) (1 << (cache)->hash_shift)
  64. #define FLOW_HASH_RND_PERIOD (10 * 60 * HZ)
  65. static void flow_cache_new_hashrnd(unsigned long arg)
  66. {
  67. struct flow_cache *fc = (void *) arg;
  68. int i;
  69. for_each_possible_cpu(i)
  70. per_cpu_ptr(fc->percpu, i)->hash_rnd_recalc = 1;
  71. fc->rnd_timer.expires = jiffies + FLOW_HASH_RND_PERIOD;
  72. add_timer(&fc->rnd_timer);
  73. }
  74. static int flow_entry_valid(struct flow_cache_entry *fle)
  75. {
  76. if (atomic_read(&flow_cache_genid) != fle->genid)
  77. return 0;
  78. if (fle->object && !fle->object->ops->check(fle->object))
  79. return 0;
  80. return 1;
  81. }
  82. static void flow_entry_kill(struct flow_cache_entry *fle)
  83. {
  84. if (fle->object)
  85. fle->object->ops->delete(fle->object);
  86. kmem_cache_free(flow_cachep, fle);
  87. }
  88. static void flow_cache_gc_task(struct work_struct *work)
  89. {
  90. struct list_head gc_list;
  91. struct flow_cache_entry *fce, *n;
  92. INIT_LIST_HEAD(&gc_list);
  93. spin_lock_bh(&flow_cache_gc_lock);
  94. list_splice_tail_init(&flow_cache_gc_list, &gc_list);
  95. spin_unlock_bh(&flow_cache_gc_lock);
  96. list_for_each_entry_safe(fce, n, &gc_list, u.gc_list)
  97. flow_entry_kill(fce);
  98. }
  99. static DECLARE_WORK(flow_cache_gc_work, flow_cache_gc_task);
  100. static void flow_cache_queue_garbage(struct flow_cache_percpu *fcp,
  101. int deleted, struct list_head *gc_list)
  102. {
  103. if (deleted) {
  104. fcp->hash_count -= deleted;
  105. spin_lock_bh(&flow_cache_gc_lock);
  106. list_splice_tail(gc_list, &flow_cache_gc_list);
  107. spin_unlock_bh(&flow_cache_gc_lock);
  108. schedule_work(&flow_cache_gc_work);
  109. }
  110. }
  111. static void __flow_cache_shrink(struct flow_cache *fc,
  112. struct flow_cache_percpu *fcp,
  113. int shrink_to)
  114. {
  115. struct flow_cache_entry *fle;
  116. struct hlist_node *entry, *tmp;
  117. LIST_HEAD(gc_list);
  118. int i, deleted = 0;
  119. for (i = 0; i < flow_cache_hash_size(fc); i++) {
  120. int saved = 0;
  121. hlist_for_each_entry_safe(fle, entry, tmp,
  122. &fcp->hash_table[i], u.hlist) {
  123. if (saved < shrink_to &&
  124. flow_entry_valid(fle)) {
  125. saved++;
  126. } else {
  127. deleted++;
  128. hlist_del(&fle->u.hlist);
  129. list_add_tail(&fle->u.gc_list, &gc_list);
  130. }
  131. }
  132. }
  133. flow_cache_queue_garbage(fcp, deleted, &gc_list);
  134. }
  135. static void flow_cache_shrink(struct flow_cache *fc,
  136. struct flow_cache_percpu *fcp)
  137. {
  138. int shrink_to = fc->low_watermark / flow_cache_hash_size(fc);
  139. __flow_cache_shrink(fc, fcp, shrink_to);
  140. }
  141. static void flow_new_hash_rnd(struct flow_cache *fc,
  142. struct flow_cache_percpu *fcp)
  143. {
  144. get_random_bytes(&fcp->hash_rnd, sizeof(u32));
  145. fcp->hash_rnd_recalc = 0;
  146. __flow_cache_shrink(fc, fcp, 0);
  147. }
  148. static u32 flow_hash_code(struct flow_cache *fc,
  149. struct flow_cache_percpu *fcp,
  150. const struct flowi *key,
  151. size_t keysize)
  152. {
  153. const u32 *k = (const u32 *) key;
  154. const u32 length = keysize * sizeof(flow_compare_t) / sizeof(u32);
  155. return jhash2(k, length, fcp->hash_rnd)
  156. & (flow_cache_hash_size(fc) - 1);
  157. }
  158. /* I hear what you're saying, use memcmp. But memcmp cannot make
  159. * important assumptions that we can here, such as alignment.
  160. */
  161. static int flow_key_compare(const struct flowi *key1, const struct flowi *key2,
  162. size_t keysize)
  163. {
  164. const flow_compare_t *k1, *k1_lim, *k2;
  165. k1 = (const flow_compare_t *) key1;
  166. k1_lim = k1 + keysize;
  167. k2 = (const flow_compare_t *) key2;
  168. do {
  169. if (*k1++ != *k2++)
  170. return 1;
  171. } while (k1 < k1_lim);
  172. return 0;
  173. }
  174. struct flow_cache_object *
  175. flow_cache_lookup(struct net *net, const struct flowi *key, u16 family, u8 dir,
  176. flow_resolve_t resolver, void *ctx)
  177. {
  178. struct flow_cache *fc = &flow_cache_global;
  179. struct flow_cache_percpu *fcp;
  180. struct flow_cache_entry *fle, *tfle;
  181. struct hlist_node *entry;
  182. struct flow_cache_object *flo;
  183. size_t keysize;
  184. unsigned int hash;
  185. local_bh_disable();
  186. fcp = this_cpu_ptr(fc->percpu);
  187. fle = NULL;
  188. flo = NULL;
  189. keysize = flow_key_size(family);
  190. if (!keysize)
  191. goto nocache;
  192. /* Packet really early in init? Making flow_cache_init a
  193. * pre-smp initcall would solve this. --RR */
  194. if (!fcp->hash_table)
  195. goto nocache;
  196. if (fcp->hash_rnd_recalc)
  197. flow_new_hash_rnd(fc, fcp);
  198. hash = flow_hash_code(fc, fcp, key, keysize);
  199. hlist_for_each_entry(tfle, entry, &fcp->hash_table[hash], u.hlist) {
  200. if (tfle->family == family &&
  201. tfle->dir == dir &&
  202. flow_key_compare(key, &tfle->key, keysize) == 0) {
  203. fle = tfle;
  204. break;
  205. }
  206. }
  207. if (unlikely(!fle)) {
  208. if (fcp->hash_count > fc->high_watermark)
  209. flow_cache_shrink(fc, fcp);
  210. fle = kmem_cache_alloc(flow_cachep, GFP_ATOMIC);
  211. if (fle) {
  212. fle->family = family;
  213. fle->dir = dir;
  214. memcpy(&fle->key, key, keysize * sizeof(flow_compare_t));
  215. fle->object = NULL;
  216. hlist_add_head(&fle->u.hlist, &fcp->hash_table[hash]);
  217. fcp->hash_count++;
  218. }
  219. } else if (likely(fle->genid == atomic_read(&flow_cache_genid))) {
  220. flo = fle->object;
  221. if (!flo)
  222. goto ret_object;
  223. flo = flo->ops->get(flo);
  224. if (flo)
  225. goto ret_object;
  226. } else if (fle->object) {
  227. flo = fle->object;
  228. flo->ops->delete(flo);
  229. fle->object = NULL;
  230. }
  231. nocache:
  232. flo = NULL;
  233. if (fle) {
  234. flo = fle->object;
  235. fle->object = NULL;
  236. }
  237. flo = resolver(net, key, family, dir, flo, ctx);
  238. if (fle) {
  239. fle->genid = atomic_read(&flow_cache_genid);
  240. if (!IS_ERR(flo))
  241. fle->object = flo;
  242. else
  243. fle->genid--;
  244. } else {
  245. if (flo && !IS_ERR(flo))
  246. flo->ops->delete(flo);
  247. }
  248. ret_object:
  249. local_bh_enable();
  250. return flo;
  251. }
  252. EXPORT_SYMBOL(flow_cache_lookup);
  253. static void flow_cache_flush_tasklet(unsigned long data)
  254. {
  255. struct flow_flush_info *info = (void *)data;
  256. struct flow_cache *fc = info->cache;
  257. struct flow_cache_percpu *fcp;
  258. struct flow_cache_entry *fle;
  259. struct hlist_node *entry, *tmp;
  260. LIST_HEAD(gc_list);
  261. int i, deleted = 0;
  262. fcp = this_cpu_ptr(fc->percpu);
  263. for (i = 0; i < flow_cache_hash_size(fc); i++) {
  264. hlist_for_each_entry_safe(fle, entry, tmp,
  265. &fcp->hash_table[i], u.hlist) {
  266. if (flow_entry_valid(fle))
  267. continue;
  268. deleted++;
  269. hlist_del(&fle->u.hlist);
  270. list_add_tail(&fle->u.gc_list, &gc_list);
  271. }
  272. }
  273. flow_cache_queue_garbage(fcp, deleted, &gc_list);
  274. if (atomic_dec_and_test(&info->cpuleft))
  275. complete(&info->completion);
  276. }
  277. static void flow_cache_flush_per_cpu(void *data)
  278. {
  279. struct flow_flush_info *info = data;
  280. int cpu;
  281. struct tasklet_struct *tasklet;
  282. cpu = smp_processor_id();
  283. tasklet = &per_cpu_ptr(info->cache->percpu, cpu)->flush_tasklet;
  284. tasklet->data = (unsigned long)info;
  285. tasklet_schedule(tasklet);
  286. }
  287. void flow_cache_flush(void)
  288. {
  289. struct flow_flush_info info;
  290. static DEFINE_MUTEX(flow_flush_sem);
  291. /* Don't want cpus going down or up during this. */
  292. get_online_cpus();
  293. mutex_lock(&flow_flush_sem);
  294. info.cache = &flow_cache_global;
  295. atomic_set(&info.cpuleft, num_online_cpus());
  296. init_completion(&info.completion);
  297. local_bh_disable();
  298. smp_call_function(flow_cache_flush_per_cpu, &info, 0);
  299. flow_cache_flush_tasklet((unsigned long)&info);
  300. local_bh_enable();
  301. wait_for_completion(&info.completion);
  302. mutex_unlock(&flow_flush_sem);
  303. put_online_cpus();
  304. }
  305. static int __cpuinit flow_cache_cpu_prepare(struct flow_cache *fc, int cpu)
  306. {
  307. struct flow_cache_percpu *fcp = per_cpu_ptr(fc->percpu, cpu);
  308. size_t sz = sizeof(struct hlist_head) * flow_cache_hash_size(fc);
  309. if (!fcp->hash_table) {
  310. fcp->hash_table = kzalloc_node(sz, GFP_KERNEL, cpu_to_node(cpu));
  311. if (!fcp->hash_table) {
  312. pr_err("NET: failed to allocate flow cache sz %zu\n", sz);
  313. return -ENOMEM;
  314. }
  315. fcp->hash_rnd_recalc = 1;
  316. fcp->hash_count = 0;
  317. tasklet_init(&fcp->flush_tasklet, flow_cache_flush_tasklet, 0);
  318. }
  319. return 0;
  320. }
  321. static int __cpuinit flow_cache_cpu(struct notifier_block *nfb,
  322. unsigned long action,
  323. void *hcpu)
  324. {
  325. struct flow_cache *fc = container_of(nfb, struct flow_cache, hotcpu_notifier);
  326. int res, cpu = (unsigned long) hcpu;
  327. struct flow_cache_percpu *fcp = per_cpu_ptr(fc->percpu, cpu);
  328. switch (action) {
  329. case CPU_UP_PREPARE:
  330. case CPU_UP_PREPARE_FROZEN:
  331. res = flow_cache_cpu_prepare(fc, cpu);
  332. if (res)
  333. return notifier_from_errno(res);
  334. break;
  335. case CPU_DEAD:
  336. case CPU_DEAD_FROZEN:
  337. __flow_cache_shrink(fc, fcp, 0);
  338. break;
  339. }
  340. return NOTIFY_OK;
  341. }
  342. static int __init flow_cache_init(struct flow_cache *fc)
  343. {
  344. int i;
  345. fc->hash_shift = 10;
  346. fc->low_watermark = 2 * flow_cache_hash_size(fc);
  347. fc->high_watermark = 4 * flow_cache_hash_size(fc);
  348. fc->percpu = alloc_percpu(struct flow_cache_percpu);
  349. if (!fc->percpu)
  350. return -ENOMEM;
  351. for_each_online_cpu(i) {
  352. if (flow_cache_cpu_prepare(fc, i))
  353. return -ENOMEM;
  354. }
  355. fc->hotcpu_notifier = (struct notifier_block){
  356. .notifier_call = flow_cache_cpu,
  357. };
  358. register_hotcpu_notifier(&fc->hotcpu_notifier);
  359. setup_timer(&fc->rnd_timer, flow_cache_new_hashrnd,
  360. (unsigned long) fc);
  361. fc->rnd_timer.expires = jiffies + FLOW_HASH_RND_PERIOD;
  362. add_timer(&fc->rnd_timer);
  363. return 0;
  364. }
  365. static int __init flow_cache_init_global(void)
  366. {
  367. flow_cachep = kmem_cache_create("flow_cache",
  368. sizeof(struct flow_cache_entry),
  369. 0, SLAB_PANIC, NULL);
  370. return flow_cache_init(&flow_cache_global);
  371. }
  372. module_init(flow_cache_init_global);