12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565 |
- /*
- * linux/mm/slab.c
- * Written by Mark Hemment, 1996/97.
- * (markhe@nextd.demon.co.uk)
- *
- * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
- *
- * Major cleanup, different bufctl logic, per-cpu arrays
- * (c) 2000 Manfred Spraul
- *
- * Cleanup, make the head arrays unconditional, preparation for NUMA
- * (c) 2002 Manfred Spraul
- *
- * An implementation of the Slab Allocator as described in outline in;
- * UNIX Internals: The New Frontiers by Uresh Vahalia
- * Pub: Prentice Hall ISBN 0-13-101908-2
- * or with a little more detail in;
- * The Slab Allocator: An Object-Caching Kernel Memory Allocator
- * Jeff Bonwick (Sun Microsystems).
- * Presented at: USENIX Summer 1994 Technical Conference
- *
- * The memory is organized in caches, one cache for each object type.
- * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
- * Each cache consists out of many slabs (they are small (usually one
- * page long) and always contiguous), and each slab contains multiple
- * initialized objects.
- *
- * This means, that your constructor is used only for newly allocated
- * slabs and you must pass objects with the same initializations to
- * kmem_cache_free.
- *
- * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
- * normal). If you need a special memory type, then must create a new
- * cache for that memory type.
- *
- * In order to reduce fragmentation, the slabs are sorted in 3 groups:
- * full slabs with 0 free objects
- * partial slabs
- * empty slabs with no allocated objects
- *
- * If partial slabs exist, then new allocations come from these slabs,
- * otherwise from empty slabs or new slabs are allocated.
- *
- * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
- * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
- *
- * Each cache has a short per-cpu head array, most allocs
- * and frees go into that array, and if that array overflows, then 1/2
- * of the entries in the array are given back into the global cache.
- * The head array is strictly LIFO and should improve the cache hit rates.
- * On SMP, it additionally reduces the spinlock operations.
- *
- * The c_cpuarray may not be read with enabled local interrupts -
- * it's changed with a smp_call_function().
- *
- * SMP synchronization:
- * constructors and destructors are called without any locking.
- * Several members in struct kmem_cache and struct slab never change, they
- * are accessed without any locking.
- * The per-cpu arrays are never accessed from the wrong cpu, no locking,
- * and local interrupts are disabled so slab code is preempt-safe.
- * The non-constant members are protected with a per-cache irq spinlock.
- *
- * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
- * in 2000 - many ideas in the current implementation are derived from
- * his patch.
- *
- * Further notes from the original documentation:
- *
- * 11 April '97. Started multi-threading - markhe
- * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
- * The sem is only needed when accessing/extending the cache-chain, which
- * can never happen inside an interrupt (kmem_cache_create(),
- * kmem_cache_shrink() and kmem_cache_reap()).
- *
- * At present, each engine can be growing a cache. This should be blocked.
- *
- * 15 March 2005. NUMA slab allocator.
- * Shai Fultheim <shai@scalex86.org>.
- * Shobhit Dayal <shobhit@calsoftinc.com>
- * Alok N Kataria <alokk@calsoftinc.com>
- * Christoph Lameter <christoph@lameter.com>
- *
- * Modified the slab allocator to be node aware on NUMA systems.
- * Each node has its own list of partial, free and full slabs.
- * All object allocations for a node occur from node specific slab lists.
- */
- #include <linux/slab.h>
- #include <linux/mm.h>
- #include <linux/poison.h>
- #include <linux/swap.h>
- #include <linux/cache.h>
- #include <linux/interrupt.h>
- #include <linux/init.h>
- #include <linux/compiler.h>
- #include <linux/cpuset.h>
- #include <linux/proc_fs.h>
- #include <linux/seq_file.h>
- #include <linux/notifier.h>
- #include <linux/kallsyms.h>
- #include <linux/cpu.h>
- #include <linux/sysctl.h>
- #include <linux/module.h>
- #include <linux/rcupdate.h>
- #include <linux/string.h>
- #include <linux/uaccess.h>
- #include <linux/nodemask.h>
- #include <linux/kmemleak.h>
- #include <linux/mempolicy.h>
- #include <linux/mutex.h>
- #include <linux/fault-inject.h>
- #include <linux/rtmutex.h>
- #include <linux/reciprocal_div.h>
- #include <linux/debugobjects.h>
- #include <linux/kmemcheck.h>
- #include <linux/memory.h>
- #include <linux/prefetch.h>
- #include <asm/cacheflush.h>
- #include <asm/tlbflush.h>
- #include <asm/page.h>
- /*
- * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
- * 0 for faster, smaller code (especially in the critical paths).
- *
- * STATS - 1 to collect stats for /proc/slabinfo.
- * 0 for faster, smaller code (especially in the critical paths).
- *
- * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
- */
- #ifdef CONFIG_DEBUG_SLAB
- #define DEBUG 1
- #define STATS 1
- #define FORCED_DEBUG 1
- #else
- #define DEBUG 0
- #define STATS 0
- #define FORCED_DEBUG 0
- #endif
- /* Shouldn't this be in a header file somewhere? */
- #define BYTES_PER_WORD sizeof(void *)
- #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
- #ifndef ARCH_KMALLOC_FLAGS
- #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
- #endif
- /* Legal flag mask for kmem_cache_create(). */
- #if DEBUG
- # define CREATE_MASK (SLAB_RED_ZONE | \
- SLAB_POISON | SLAB_HWCACHE_ALIGN | \
- SLAB_CACHE_DMA | \
- SLAB_STORE_USER | \
- SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
- SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
- SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
- #else
- # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
- SLAB_CACHE_DMA | \
- SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
- SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
- SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
- #endif
- /*
- * kmem_bufctl_t:
- *
- * Bufctl's are used for linking objs within a slab
- * linked offsets.
- *
- * This implementation relies on "struct page" for locating the cache &
- * slab an object belongs to.
- * This allows the bufctl structure to be small (one int), but limits
- * the number of objects a slab (not a cache) can contain when off-slab
- * bufctls are used. The limit is the size of the largest general cache
- * that does not use off-slab slabs.
- * For 32bit archs with 4 kB pages, is this 56.
- * This is not serious, as it is only for large objects, when it is unwise
- * to have too many per slab.
- * Note: This limit can be raised by introducing a general cache whose size
- * is less than 512 (PAGE_SIZE<<3), but greater than 256.
- */
- typedef unsigned int kmem_bufctl_t;
- #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
- #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
- #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
- #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
- /*
- * struct slab_rcu
- *
- * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
- * arrange for kmem_freepages to be called via RCU. This is useful if
- * we need to approach a kernel structure obliquely, from its address
- * obtained without the usual locking. We can lock the structure to
- * stabilize it and check it's still at the given address, only if we
- * can be sure that the memory has not been meanwhile reused for some
- * other kind of object (which our subsystem's lock might corrupt).
- *
- * rcu_read_lock before reading the address, then rcu_read_unlock after
- * taking the spinlock within the structure expected at that address.
- */
- struct slab_rcu {
- struct rcu_head head;
- struct kmem_cache *cachep;
- void *addr;
- };
- /*
- * struct slab
- *
- * Manages the objs in a slab. Placed either at the beginning of mem allocated
- * for a slab, or allocated from an general cache.
- * Slabs are chained into three list: fully used, partial, fully free slabs.
- */
- struct slab {
- union {
- struct {
- struct list_head list;
- unsigned long colouroff;
- void *s_mem; /* including colour offset */
- unsigned int inuse; /* num of objs active in slab */
- kmem_bufctl_t free;
- unsigned short nodeid;
- };
- struct slab_rcu __slab_cover_slab_rcu;
- };
- };
- /*
- * struct array_cache
- *
- * Purpose:
- * - LIFO ordering, to hand out cache-warm objects from _alloc
- * - reduce the number of linked list operations
- * - reduce spinlock operations
- *
- * The limit is stored in the per-cpu structure to reduce the data cache
- * footprint.
- *
- */
- struct array_cache {
- unsigned int avail;
- unsigned int limit;
- unsigned int batchcount;
- unsigned int touched;
- spinlock_t lock;
- void *entry[]; /*
- * Must have this definition in here for the proper
- * alignment of array_cache. Also simplifies accessing
- * the entries.
- */
- };
- /*
- * bootstrap: The caches do not work without cpuarrays anymore, but the
- * cpuarrays are allocated from the generic caches...
- */
- #define BOOT_CPUCACHE_ENTRIES 1
- struct arraycache_init {
- struct array_cache cache;
- void *entries[BOOT_CPUCACHE_ENTRIES];
- };
- /*
- * The slab lists for all objects.
- */
- struct kmem_list3 {
- struct list_head slabs_partial; /* partial list first, better asm code */
- struct list_head slabs_full;
- struct list_head slabs_free;
- unsigned long free_objects;
- unsigned int free_limit;
- unsigned int colour_next; /* Per-node cache coloring */
- spinlock_t list_lock;
- struct array_cache *shared; /* shared per node */
- struct array_cache **alien; /* on other nodes */
- unsigned long next_reap; /* updated without locking */
- int free_touched; /* updated without locking */
- };
- /*
- * Need this for bootstrapping a per node allocator.
- */
- #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
- static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
- #define CACHE_CACHE 0
- #define SIZE_AC MAX_NUMNODES
- #define SIZE_L3 (2 * MAX_NUMNODES)
- static int drain_freelist(struct kmem_cache *cache,
- struct kmem_list3 *l3, int tofree);
- static void free_block(struct kmem_cache *cachep, void **objpp, int len,
- int node);
- static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
- static void cache_reap(struct work_struct *unused);
- /*
- * This function must be completely optimized away if a constant is passed to
- * it. Mostly the same as what is in linux/slab.h except it returns an index.
- */
- static __always_inline int index_of(const size_t size)
- {
- extern void __bad_size(void);
- if (__builtin_constant_p(size)) {
- int i = 0;
- #define CACHE(x) \
- if (size <=x) \
- return i; \
- else \
- i++;
- #include <linux/kmalloc_sizes.h>
- #undef CACHE
- __bad_size();
- } else
- __bad_size();
- return 0;
- }
- static int slab_early_init = 1;
- #define INDEX_AC index_of(sizeof(struct arraycache_init))
- #define INDEX_L3 index_of(sizeof(struct kmem_list3))
- static void kmem_list3_init(struct kmem_list3 *parent)
- {
- INIT_LIST_HEAD(&parent->slabs_full);
- INIT_LIST_HEAD(&parent->slabs_partial);
- INIT_LIST_HEAD(&parent->slabs_free);
- parent->shared = NULL;
- parent->alien = NULL;
- parent->colour_next = 0;
- spin_lock_init(&parent->list_lock);
- parent->free_objects = 0;
- parent->free_touched = 0;
- }
- #define MAKE_LIST(cachep, listp, slab, nodeid) \
- do { \
- INIT_LIST_HEAD(listp); \
- list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
- } while (0)
- #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
- do { \
- MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
- MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
- MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
- } while (0)
- #define CFLGS_OFF_SLAB (0x80000000UL)
- #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
- #define BATCHREFILL_LIMIT 16
- /*
- * Optimization question: fewer reaps means less probability for unnessary
- * cpucache drain/refill cycles.
- *
- * OTOH the cpuarrays can contain lots of objects,
- * which could lock up otherwise freeable slabs.
- */
- #define REAPTIMEOUT_CPUC (2*HZ)
- #define REAPTIMEOUT_LIST3 (4*HZ)
- #if STATS
- #define STATS_INC_ACTIVE(x) ((x)->num_active++)
- #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
- #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
- #define STATS_INC_GROWN(x) ((x)->grown++)
- #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
- #define STATS_SET_HIGH(x) \
- do { \
- if ((x)->num_active > (x)->high_mark) \
- (x)->high_mark = (x)->num_active; \
- } while (0)
- #define STATS_INC_ERR(x) ((x)->errors++)
- #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
- #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
- #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
- #define STATS_SET_FREEABLE(x, i) \
- do { \
- if ((x)->max_freeable < i) \
- (x)->max_freeable = i; \
- } while (0)
- #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
- #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
- #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
- #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
- #else
- #define STATS_INC_ACTIVE(x) do { } while (0)
- #define STATS_DEC_ACTIVE(x) do { } while (0)
- #define STATS_INC_ALLOCED(x) do { } while (0)
- #define STATS_INC_GROWN(x) do { } while (0)
- #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
- #define STATS_SET_HIGH(x) do { } while (0)
- #define STATS_INC_ERR(x) do { } while (0)
- #define STATS_INC_NODEALLOCS(x) do { } while (0)
- #define STATS_INC_NODEFREES(x) do { } while (0)
- #define STATS_INC_ACOVERFLOW(x) do { } while (0)
- #define STATS_SET_FREEABLE(x, i) do { } while (0)
- #define STATS_INC_ALLOCHIT(x) do { } while (0)
- #define STATS_INC_ALLOCMISS(x) do { } while (0)
- #define STATS_INC_FREEHIT(x) do { } while (0)
- #define STATS_INC_FREEMISS(x) do { } while (0)
- #endif
- #if DEBUG
- /*
- * memory layout of objects:
- * 0 : objp
- * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
- * the end of an object is aligned with the end of the real
- * allocation. Catches writes behind the end of the allocation.
- * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
- * redzone word.
- * cachep->obj_offset: The real object.
- * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
- * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
- * [BYTES_PER_WORD long]
- */
- static int obj_offset(struct kmem_cache *cachep)
- {
- return cachep->obj_offset;
- }
- static int obj_size(struct kmem_cache *cachep)
- {
- return cachep->obj_size;
- }
- static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
- {
- BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
- return (unsigned long long*) (objp + obj_offset(cachep) -
- sizeof(unsigned long long));
- }
- static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
- {
- BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
- if (cachep->flags & SLAB_STORE_USER)
- return (unsigned long long *)(objp + cachep->buffer_size -
- sizeof(unsigned long long) -
- REDZONE_ALIGN);
- return (unsigned long long *) (objp + cachep->buffer_size -
- sizeof(unsigned long long));
- }
- static void **dbg_userword(struct kmem_cache *cachep, void *objp)
- {
- BUG_ON(!(cachep->flags & SLAB_STORE_USER));
- return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
- }
- #else
- #define obj_offset(x) 0
- #define obj_size(cachep) (cachep->buffer_size)
- #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
- #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
- #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
- #endif
- #ifdef CONFIG_TRACING
- size_t slab_buffer_size(struct kmem_cache *cachep)
- {
- return cachep->buffer_size;
- }
- EXPORT_SYMBOL(slab_buffer_size);
- #endif
- /*
- * Do not go above this order unless 0 objects fit into the slab.
- */
- #define BREAK_GFP_ORDER_HI 1
- #define BREAK_GFP_ORDER_LO 0
- static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
- /*
- * Functions for storing/retrieving the cachep and or slab from the page
- * allocator. These are used to find the slab an obj belongs to. With kfree(),
- * these are used to find the cache which an obj belongs to.
- */
- static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
- {
- page->lru.next = (struct list_head *)cache;
- }
- static inline struct kmem_cache *page_get_cache(struct page *page)
- {
- page = compound_head(page);
- BUG_ON(!PageSlab(page));
- return (struct kmem_cache *)page->lru.next;
- }
- static inline void page_set_slab(struct page *page, struct slab *slab)
- {
- page->lru.prev = (struct list_head *)slab;
- }
- static inline struct slab *page_get_slab(struct page *page)
- {
- BUG_ON(!PageSlab(page));
- return (struct slab *)page->lru.prev;
- }
- static inline struct kmem_cache *virt_to_cache(const void *obj)
- {
- struct page *page = virt_to_head_page(obj);
- return page_get_cache(page);
- }
- static inline struct slab *virt_to_slab(const void *obj)
- {
- struct page *page = virt_to_head_page(obj);
- return page_get_slab(page);
- }
- static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
- unsigned int idx)
- {
- return slab->s_mem + cache->buffer_size * idx;
- }
- /*
- * We want to avoid an expensive divide : (offset / cache->buffer_size)
- * Using the fact that buffer_size is a constant for a particular cache,
- * we can replace (offset / cache->buffer_size) by
- * reciprocal_divide(offset, cache->reciprocal_buffer_size)
- */
- static inline unsigned int obj_to_index(const struct kmem_cache *cache,
- const struct slab *slab, void *obj)
- {
- u32 offset = (obj - slab->s_mem);
- return reciprocal_divide(offset, cache->reciprocal_buffer_size);
- }
- /*
- * These are the default caches for kmalloc. Custom caches can have other sizes.
- */
- struct cache_sizes malloc_sizes[] = {
- #define CACHE(x) { .cs_size = (x) },
- #include <linux/kmalloc_sizes.h>
- CACHE(ULONG_MAX)
- #undef CACHE
- };
- EXPORT_SYMBOL(malloc_sizes);
- /* Must match cache_sizes above. Out of line to keep cache footprint low. */
- struct cache_names {
- char *name;
- char *name_dma;
- };
- static struct cache_names __initdata cache_names[] = {
- #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
- #include <linux/kmalloc_sizes.h>
- {NULL,}
- #undef CACHE
- };
- static struct arraycache_init initarray_cache __initdata =
- { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
- static struct arraycache_init initarray_generic =
- { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
- /* internal cache of cache description objs */
- static struct kmem_cache cache_cache = {
- .batchcount = 1,
- .limit = BOOT_CPUCACHE_ENTRIES,
- .shared = 1,
- .buffer_size = sizeof(struct kmem_cache),
- .name = "kmem_cache",
- };
- #define BAD_ALIEN_MAGIC 0x01020304ul
- /*
- * chicken and egg problem: delay the per-cpu array allocation
- * until the general caches are up.
- */
- static enum {
- NONE,
- PARTIAL_AC,
- PARTIAL_L3,
- EARLY,
- FULL
- } g_cpucache_up;
- /*
- * used by boot code to determine if it can use slab based allocator
- */
- int slab_is_available(void)
- {
- return g_cpucache_up >= EARLY;
- }
- #ifdef CONFIG_LOCKDEP
- /*
- * Slab sometimes uses the kmalloc slabs to store the slab headers
- * for other slabs "off slab".
- * The locking for this is tricky in that it nests within the locks
- * of all other slabs in a few places; to deal with this special
- * locking we put on-slab caches into a separate lock-class.
- *
- * We set lock class for alien array caches which are up during init.
- * The lock annotation will be lost if all cpus of a node goes down and
- * then comes back up during hotplug
- */
- static struct lock_class_key on_slab_l3_key;
- static struct lock_class_key on_slab_alc_key;
- static void init_node_lock_keys(int q)
- {
- struct cache_sizes *s = malloc_sizes;
- if (g_cpucache_up != FULL)
- return;
- for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
- struct array_cache **alc;
- struct kmem_list3 *l3;
- int r;
- l3 = s->cs_cachep->nodelists[q];
- if (!l3 || OFF_SLAB(s->cs_cachep))
- continue;
- lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
- alc = l3->alien;
- /*
- * FIXME: This check for BAD_ALIEN_MAGIC
- * should go away when common slab code is taught to
- * work even without alien caches.
- * Currently, non NUMA code returns BAD_ALIEN_MAGIC
- * for alloc_alien_cache,
- */
- if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
- continue;
- for_each_node(r) {
- if (alc[r])
- lockdep_set_class(&alc[r]->lock,
- &on_slab_alc_key);
- }
- }
- }
- static inline void init_lock_keys(void)
- {
- int node;
- for_each_node(node)
- init_node_lock_keys(node);
- }
- #else
- static void init_node_lock_keys(int q)
- {
- }
- static inline void init_lock_keys(void)
- {
- }
- #endif
- /*
- * Guard access to the cache-chain.
- */
- static DEFINE_MUTEX(cache_chain_mutex);
- static struct list_head cache_chain;
- static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
- static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
- {
- return cachep->array[smp_processor_id()];
- }
- static inline struct kmem_cache *__find_general_cachep(size_t size,
- gfp_t gfpflags)
- {
- struct cache_sizes *csizep = malloc_sizes;
- #if DEBUG
- /* This happens if someone tries to call
- * kmem_cache_create(), or __kmalloc(), before
- * the generic caches are initialized.
- */
- BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
- #endif
- if (!size)
- return ZERO_SIZE_PTR;
- while (size > csizep->cs_size)
- csizep++;
- /*
- * Really subtle: The last entry with cs->cs_size==ULONG_MAX
- * has cs_{dma,}cachep==NULL. Thus no special case
- * for large kmalloc calls required.
- */
- #ifdef CONFIG_ZONE_DMA
- if (unlikely(gfpflags & GFP_DMA))
- return csizep->cs_dmacachep;
- #endif
- return csizep->cs_cachep;
- }
- static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
- {
- return __find_general_cachep(size, gfpflags);
- }
- static size_t slab_mgmt_size(size_t nr_objs, size_t align)
- {
- return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
- }
- /*
- * Calculate the number of objects and left-over bytes for a given buffer size.
- */
- static void cache_estimate(unsigned long gfporder, size_t buffer_size,
- size_t align, int flags, size_t *left_over,
- unsigned int *num)
- {
- int nr_objs;
- size_t mgmt_size;
- size_t slab_size = PAGE_SIZE << gfporder;
- /*
- * The slab management structure can be either off the slab or
- * on it. For the latter case, the memory allocated for a
- * slab is used for:
- *
- * - The struct slab
- * - One kmem_bufctl_t for each object
- * - Padding to respect alignment of @align
- * - @buffer_size bytes for each object
- *
- * If the slab management structure is off the slab, then the
- * alignment will already be calculated into the size. Because
- * the slabs are all pages aligned, the objects will be at the
- * correct alignment when allocated.
- */
- if (flags & CFLGS_OFF_SLAB) {
- mgmt_size = 0;
- nr_objs = slab_size / buffer_size;
- if (nr_objs > SLAB_LIMIT)
- nr_objs = SLAB_LIMIT;
- } else {
- /*
- * Ignore padding for the initial guess. The padding
- * is at most @align-1 bytes, and @buffer_size is at
- * least @align. In the worst case, this result will
- * be one greater than the number of objects that fit
- * into the memory allocation when taking the padding
- * into account.
- */
- nr_objs = (slab_size - sizeof(struct slab)) /
- (buffer_size + sizeof(kmem_bufctl_t));
- /*
- * This calculated number will be either the right
- * amount, or one greater than what we want.
- */
- if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
- > slab_size)
- nr_objs--;
- if (nr_objs > SLAB_LIMIT)
- nr_objs = SLAB_LIMIT;
- mgmt_size = slab_mgmt_size(nr_objs, align);
- }
- *num = nr_objs;
- *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
- }
- #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
- static void __slab_error(const char *function, struct kmem_cache *cachep,
- char *msg)
- {
- printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
- function, cachep->name, msg);
- dump_stack();
- }
- /*
- * By default on NUMA we use alien caches to stage the freeing of
- * objects allocated from other nodes. This causes massive memory
- * inefficiencies when using fake NUMA setup to split memory into a
- * large number of small nodes, so it can be disabled on the command
- * line
- */
- static int use_alien_caches __read_mostly = 1;
- static int __init noaliencache_setup(char *s)
- {
- use_alien_caches = 0;
- return 1;
- }
- __setup("noaliencache", noaliencache_setup);
- #ifdef CONFIG_NUMA
- /*
- * Special reaping functions for NUMA systems called from cache_reap().
- * These take care of doing round robin flushing of alien caches (containing
- * objects freed on different nodes from which they were allocated) and the
- * flushing of remote pcps by calling drain_node_pages.
- */
- static DEFINE_PER_CPU(unsigned long, slab_reap_node);
- static void init_reap_node(int cpu)
- {
- int node;
- node = next_node(cpu_to_mem(cpu), node_online_map);
- if (node == MAX_NUMNODES)
- node = first_node(node_online_map);
- per_cpu(slab_reap_node, cpu) = node;
- }
- static void next_reap_node(void)
- {
- int node = __this_cpu_read(slab_reap_node);
- node = next_node(node, node_online_map);
- if (unlikely(node >= MAX_NUMNODES))
- node = first_node(node_online_map);
- __this_cpu_write(slab_reap_node, node);
- }
- #else
- #define init_reap_node(cpu) do { } while (0)
- #define next_reap_node(void) do { } while (0)
- #endif
- /*
- * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
- * via the workqueue/eventd.
- * Add the CPU number into the expiration time to minimize the possibility of
- * the CPUs getting into lockstep and contending for the global cache chain
- * lock.
- */
- static void __cpuinit start_cpu_timer(int cpu)
- {
- struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
- /*
- * When this gets called from do_initcalls via cpucache_init(),
- * init_workqueues() has already run, so keventd will be setup
- * at that time.
- */
- if (keventd_up() && reap_work->work.func == NULL) {
- init_reap_node(cpu);
- INIT_DELAYED_WORK_DEFERRABLE(reap_work, cache_reap);
- schedule_delayed_work_on(cpu, reap_work,
- __round_jiffies_relative(HZ, cpu));
- }
- }
- static struct array_cache *alloc_arraycache(int node, int entries,
- int batchcount, gfp_t gfp)
- {
- int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
- struct array_cache *nc = NULL;
- nc = kmalloc_node(memsize, gfp, node);
- /*
- * The array_cache structures contain pointers to free object.
- * However, when such objects are allocated or transferred to another
- * cache the pointers are not cleared and they could be counted as
- * valid references during a kmemleak scan. Therefore, kmemleak must
- * not scan such objects.
- */
- kmemleak_no_scan(nc);
- if (nc) {
- nc->avail = 0;
- nc->limit = entries;
- nc->batchcount = batchcount;
- nc->touched = 0;
- spin_lock_init(&nc->lock);
- }
- return nc;
- }
- /*
- * Transfer objects in one arraycache to another.
- * Locking must be handled by the caller.
- *
- * Return the number of entries transferred.
- */
- static int transfer_objects(struct array_cache *to,
- struct array_cache *from, unsigned int max)
- {
- /* Figure out how many entries to transfer */
- int nr = min3(from->avail, max, to->limit - to->avail);
- if (!nr)
- return 0;
- memcpy(to->entry + to->avail, from->entry + from->avail -nr,
- sizeof(void *) *nr);
- from->avail -= nr;
- to->avail += nr;
- return nr;
- }
- #ifndef CONFIG_NUMA
- #define drain_alien_cache(cachep, alien) do { } while (0)
- #define reap_alien(cachep, l3) do { } while (0)
- static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
- {
- return (struct array_cache **)BAD_ALIEN_MAGIC;
- }
- static inline void free_alien_cache(struct array_cache **ac_ptr)
- {
- }
- static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
- {
- return 0;
- }
- static inline void *alternate_node_alloc(struct kmem_cache *cachep,
- gfp_t flags)
- {
- return NULL;
- }
- static inline void *____cache_alloc_node(struct kmem_cache *cachep,
- gfp_t flags, int nodeid)
- {
- return NULL;
- }
- #else /* CONFIG_NUMA */
- static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
- static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
- static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
- {
- struct array_cache **ac_ptr;
- int memsize = sizeof(void *) * nr_node_ids;
- int i;
- if (limit > 1)
- limit = 12;
- ac_ptr = kzalloc_node(memsize, gfp, node);
- if (ac_ptr) {
- for_each_node(i) {
- if (i == node || !node_online(i))
- continue;
- ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
- if (!ac_ptr[i]) {
- for (i--; i >= 0; i--)
- kfree(ac_ptr[i]);
- kfree(ac_ptr);
- return NULL;
- }
- }
- }
- return ac_ptr;
- }
- static void free_alien_cache(struct array_cache **ac_ptr)
- {
- int i;
- if (!ac_ptr)
- return;
- for_each_node(i)
- kfree(ac_ptr[i]);
- kfree(ac_ptr);
- }
- static void __drain_alien_cache(struct kmem_cache *cachep,
- struct array_cache *ac, int node)
- {
- struct kmem_list3 *rl3 = cachep->nodelists[node];
- if (ac->avail) {
- spin_lock(&rl3->list_lock);
- /*
- * Stuff objects into the remote nodes shared array first.
- * That way we could avoid the overhead of putting the objects
- * into the free lists and getting them back later.
- */
- if (rl3->shared)
- transfer_objects(rl3->shared, ac, ac->limit);
- free_block(cachep, ac->entry, ac->avail, node);
- ac->avail = 0;
- spin_unlock(&rl3->list_lock);
- }
- }
- /*
- * Called from cache_reap() to regularly drain alien caches round robin.
- */
- static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
- {
- int node = __this_cpu_read(slab_reap_node);
- if (l3->alien) {
- struct array_cache *ac = l3->alien[node];
- if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
- __drain_alien_cache(cachep, ac, node);
- spin_unlock_irq(&ac->lock);
- }
- }
- }
- static void drain_alien_cache(struct kmem_cache *cachep,
- struct array_cache **alien)
- {
- int i = 0;
- struct array_cache *ac;
- unsigned long flags;
- for_each_online_node(i) {
- ac = alien[i];
- if (ac) {
- spin_lock_irqsave(&ac->lock, flags);
- __drain_alien_cache(cachep, ac, i);
- spin_unlock_irqrestore(&ac->lock, flags);
- }
- }
- }
- static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
- {
- struct slab *slabp = virt_to_slab(objp);
- int nodeid = slabp->nodeid;
- struct kmem_list3 *l3;
- struct array_cache *alien = NULL;
- int node;
- node = numa_mem_id();
- /*
- * Make sure we are not freeing a object from another node to the array
- * cache on this cpu.
- */
- if (likely(slabp->nodeid == node))
- return 0;
- l3 = cachep->nodelists[node];
- STATS_INC_NODEFREES(cachep);
- if (l3->alien && l3->alien[nodeid]) {
- alien = l3->alien[nodeid];
- spin_lock(&alien->lock);
- if (unlikely(alien->avail == alien->limit)) {
- STATS_INC_ACOVERFLOW(cachep);
- __drain_alien_cache(cachep, alien, nodeid);
- }
- alien->entry[alien->avail++] = objp;
- spin_unlock(&alien->lock);
- } else {
- spin_lock(&(cachep->nodelists[nodeid])->list_lock);
- free_block(cachep, &objp, 1, nodeid);
- spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
- }
- return 1;
- }
- #endif
- /*
- * Allocates and initializes nodelists for a node on each slab cache, used for
- * either memory or cpu hotplug. If memory is being hot-added, the kmem_list3
- * will be allocated off-node since memory is not yet online for the new node.
- * When hotplugging memory or a cpu, existing nodelists are not replaced if
- * already in use.
- *
- * Must hold cache_chain_mutex.
- */
- static int init_cache_nodelists_node(int node)
- {
- struct kmem_cache *cachep;
- struct kmem_list3 *l3;
- const int memsize = sizeof(struct kmem_list3);
- list_for_each_entry(cachep, &cache_chain, next) {
- /*
- * Set up the size64 kmemlist for cpu before we can
- * begin anything. Make sure some other cpu on this
- * node has not already allocated this
- */
- if (!cachep->nodelists[node]) {
- l3 = kmalloc_node(memsize, GFP_KERNEL, node);
- if (!l3)
- return -ENOMEM;
- kmem_list3_init(l3);
- l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
- ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
- /*
- * The l3s don't come and go as CPUs come and
- * go. cache_chain_mutex is sufficient
- * protection here.
- */
- cachep->nodelists[node] = l3;
- }
- spin_lock_irq(&cachep->nodelists[node]->list_lock);
- cachep->nodelists[node]->free_limit =
- (1 + nr_cpus_node(node)) *
- cachep->batchcount + cachep->num;
- spin_unlock_irq(&cachep->nodelists[node]->list_lock);
- }
- return 0;
- }
- static void __cpuinit cpuup_canceled(long cpu)
- {
- struct kmem_cache *cachep;
- struct kmem_list3 *l3 = NULL;
- int node = cpu_to_mem(cpu);
- const struct cpumask *mask = cpumask_of_node(node);
- list_for_each_entry(cachep, &cache_chain, next) {
- struct array_cache *nc;
- struct array_cache *shared;
- struct array_cache **alien;
- /* cpu is dead; no one can alloc from it. */
- nc = cachep->array[cpu];
- cachep->array[cpu] = NULL;
- l3 = cachep->nodelists[node];
- if (!l3)
- goto free_array_cache;
- spin_lock_irq(&l3->list_lock);
- /* Free limit for this kmem_list3 */
- l3->free_limit -= cachep->batchcount;
- if (nc)
- free_block(cachep, nc->entry, nc->avail, node);
- if (!cpumask_empty(mask)) {
- spin_unlock_irq(&l3->list_lock);
- goto free_array_cache;
- }
- shared = l3->shared;
- if (shared) {
- free_block(cachep, shared->entry,
- shared->avail, node);
- l3->shared = NULL;
- }
- alien = l3->alien;
- l3->alien = NULL;
- spin_unlock_irq(&l3->list_lock);
- kfree(shared);
- if (alien) {
- drain_alien_cache(cachep, alien);
- free_alien_cache(alien);
- }
- free_array_cache:
- kfree(nc);
- }
- /*
- * In the previous loop, all the objects were freed to
- * the respective cache's slabs, now we can go ahead and
- * shrink each nodelist to its limit.
- */
- list_for_each_entry(cachep, &cache_chain, next) {
- l3 = cachep->nodelists[node];
- if (!l3)
- continue;
- drain_freelist(cachep, l3, l3->free_objects);
- }
- }
- static int __cpuinit cpuup_prepare(long cpu)
- {
- struct kmem_cache *cachep;
- struct kmem_list3 *l3 = NULL;
- int node = cpu_to_mem(cpu);
- int err;
- /*
- * We need to do this right in the beginning since
- * alloc_arraycache's are going to use this list.
- * kmalloc_node allows us to add the slab to the right
- * kmem_list3 and not this cpu's kmem_list3
- */
- err = init_cache_nodelists_node(node);
- if (err < 0)
- goto bad;
- /*
- * Now we can go ahead with allocating the shared arrays and
- * array caches
- */
- list_for_each_entry(cachep, &cache_chain, next) {
- struct array_cache *nc;
- struct array_cache *shared = NULL;
- struct array_cache **alien = NULL;
- nc = alloc_arraycache(node, cachep->limit,
- cachep->batchcount, GFP_KERNEL);
- if (!nc)
- goto bad;
- if (cachep->shared) {
- shared = alloc_arraycache(node,
- cachep->shared * cachep->batchcount,
- 0xbaadf00d, GFP_KERNEL);
- if (!shared) {
- kfree(nc);
- goto bad;
- }
- }
- if (use_alien_caches) {
- alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
- if (!alien) {
- kfree(shared);
- kfree(nc);
- goto bad;
- }
- }
- cachep->array[cpu] = nc;
- l3 = cachep->nodelists[node];
- BUG_ON(!l3);
- spin_lock_irq(&l3->list_lock);
- if (!l3->shared) {
- /*
- * We are serialised from CPU_DEAD or
- * CPU_UP_CANCELLED by the cpucontrol lock
- */
- l3->shared = shared;
- shared = NULL;
- }
- #ifdef CONFIG_NUMA
- if (!l3->alien) {
- l3->alien = alien;
- alien = NULL;
- }
- #endif
- spin_unlock_irq(&l3->list_lock);
- kfree(shared);
- free_alien_cache(alien);
- }
- init_node_lock_keys(node);
- return 0;
- bad:
- cpuup_canceled(cpu);
- return -ENOMEM;
- }
- static int __cpuinit cpuup_callback(struct notifier_block *nfb,
- unsigned long action, void *hcpu)
- {
- long cpu = (long)hcpu;
- int err = 0;
- switch (action) {
- case CPU_UP_PREPARE:
- case CPU_UP_PREPARE_FROZEN:
- mutex_lock(&cache_chain_mutex);
- err = cpuup_prepare(cpu);
- mutex_unlock(&cache_chain_mutex);
- break;
- case CPU_ONLINE:
- case CPU_ONLINE_FROZEN:
- start_cpu_timer(cpu);
- break;
- #ifdef CONFIG_HOTPLUG_CPU
- case CPU_DOWN_PREPARE:
- case CPU_DOWN_PREPARE_FROZEN:
- /*
- * Shutdown cache reaper. Note that the cache_chain_mutex is
- * held so that if cache_reap() is invoked it cannot do
- * anything expensive but will only modify reap_work
- * and reschedule the timer.
- */
- cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
- /* Now the cache_reaper is guaranteed to be not running. */
- per_cpu(slab_reap_work, cpu).work.func = NULL;
- break;
- case CPU_DOWN_FAILED:
- case CPU_DOWN_FAILED_FROZEN:
- start_cpu_timer(cpu);
- break;
- case CPU_DEAD:
- case CPU_DEAD_FROZEN:
- /*
- * Even if all the cpus of a node are down, we don't free the
- * kmem_list3 of any cache. This to avoid a race between
- * cpu_down, and a kmalloc allocation from another cpu for
- * memory from the node of the cpu going down. The list3
- * structure is usually allocated from kmem_cache_create() and
- * gets destroyed at kmem_cache_destroy().
- */
- /* fall through */
- #endif
- case CPU_UP_CANCELED:
- case CPU_UP_CANCELED_FROZEN:
- mutex_lock(&cache_chain_mutex);
- cpuup_canceled(cpu);
- mutex_unlock(&cache_chain_mutex);
- break;
- }
- return notifier_from_errno(err);
- }
- static struct notifier_block __cpuinitdata cpucache_notifier = {
- &cpuup_callback, NULL, 0
- };
- #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
- /*
- * Drains freelist for a node on each slab cache, used for memory hot-remove.
- * Returns -EBUSY if all objects cannot be drained so that the node is not
- * removed.
- *
- * Must hold cache_chain_mutex.
- */
- static int __meminit drain_cache_nodelists_node(int node)
- {
- struct kmem_cache *cachep;
- int ret = 0;
- list_for_each_entry(cachep, &cache_chain, next) {
- struct kmem_list3 *l3;
- l3 = cachep->nodelists[node];
- if (!l3)
- continue;
- drain_freelist(cachep, l3, l3->free_objects);
- if (!list_empty(&l3->slabs_full) ||
- !list_empty(&l3->slabs_partial)) {
- ret = -EBUSY;
- break;
- }
- }
- return ret;
- }
- static int __meminit slab_memory_callback(struct notifier_block *self,
- unsigned long action, void *arg)
- {
- struct memory_notify *mnb = arg;
- int ret = 0;
- int nid;
- nid = mnb->status_change_nid;
- if (nid < 0)
- goto out;
- switch (action) {
- case MEM_GOING_ONLINE:
- mutex_lock(&cache_chain_mutex);
- ret = init_cache_nodelists_node(nid);
- mutex_unlock(&cache_chain_mutex);
- break;
- case MEM_GOING_OFFLINE:
- mutex_lock(&cache_chain_mutex);
- ret = drain_cache_nodelists_node(nid);
- mutex_unlock(&cache_chain_mutex);
- break;
- case MEM_ONLINE:
- case MEM_OFFLINE:
- case MEM_CANCEL_ONLINE:
- case MEM_CANCEL_OFFLINE:
- break;
- }
- out:
- return notifier_from_errno(ret);
- }
- #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
- /*
- * swap the static kmem_list3 with kmalloced memory
- */
- static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
- int nodeid)
- {
- struct kmem_list3 *ptr;
- ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
- BUG_ON(!ptr);
- memcpy(ptr, list, sizeof(struct kmem_list3));
- /*
- * Do not assume that spinlocks can be initialized via memcpy:
- */
- spin_lock_init(&ptr->list_lock);
- MAKE_ALL_LISTS(cachep, ptr, nodeid);
- cachep->nodelists[nodeid] = ptr;
- }
- /*
- * For setting up all the kmem_list3s for cache whose buffer_size is same as
- * size of kmem_list3.
- */
- static void __init set_up_list3s(struct kmem_cache *cachep, int index)
- {
- int node;
- for_each_online_node(node) {
- cachep->nodelists[node] = &initkmem_list3[index + node];
- cachep->nodelists[node]->next_reap = jiffies +
- REAPTIMEOUT_LIST3 +
- ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
- }
- }
- /*
- * Initialisation. Called after the page allocator have been initialised and
- * before smp_init().
- */
- void __init kmem_cache_init(void)
- {
- size_t left_over;
- struct cache_sizes *sizes;
- struct cache_names *names;
- int i;
- int order;
- int node;
- if (num_possible_nodes() == 1)
- use_alien_caches = 0;
- for (i = 0; i < NUM_INIT_LISTS; i++) {
- kmem_list3_init(&initkmem_list3[i]);
- if (i < MAX_NUMNODES)
- cache_cache.nodelists[i] = NULL;
- }
- set_up_list3s(&cache_cache, CACHE_CACHE);
- /*
- * Fragmentation resistance on low memory - only use bigger
- * page orders on machines with more than 32MB of memory.
- */
- if (totalram_pages > (32 << 20) >> PAGE_SHIFT)
- slab_break_gfp_order = BREAK_GFP_ORDER_HI;
- /* Bootstrap is tricky, because several objects are allocated
- * from caches that do not exist yet:
- * 1) initialize the cache_cache cache: it contains the struct
- * kmem_cache structures of all caches, except cache_cache itself:
- * cache_cache is statically allocated.
- * Initially an __init data area is used for the head array and the
- * kmem_list3 structures, it's replaced with a kmalloc allocated
- * array at the end of the bootstrap.
- * 2) Create the first kmalloc cache.
- * The struct kmem_cache for the new cache is allocated normally.
- * An __init data area is used for the head array.
- * 3) Create the remaining kmalloc caches, with minimally sized
- * head arrays.
- * 4) Replace the __init data head arrays for cache_cache and the first
- * kmalloc cache with kmalloc allocated arrays.
- * 5) Replace the __init data for kmem_list3 for cache_cache and
- * the other cache's with kmalloc allocated memory.
- * 6) Resize the head arrays of the kmalloc caches to their final sizes.
- */
- node = numa_mem_id();
- /* 1) create the cache_cache */
- INIT_LIST_HEAD(&cache_chain);
- list_add(&cache_cache.next, &cache_chain);
- cache_cache.colour_off = cache_line_size();
- cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
- cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
- /*
- * struct kmem_cache size depends on nr_node_ids, which
- * can be less than MAX_NUMNODES.
- */
- cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
- nr_node_ids * sizeof(struct kmem_list3 *);
- #if DEBUG
- cache_cache.obj_size = cache_cache.buffer_size;
- #endif
- cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
- cache_line_size());
- cache_cache.reciprocal_buffer_size =
- reciprocal_value(cache_cache.buffer_size);
- for (order = 0; order < MAX_ORDER; order++) {
- cache_estimate(order, cache_cache.buffer_size,
- cache_line_size(), 0, &left_over, &cache_cache.num);
- if (cache_cache.num)
- break;
- }
- BUG_ON(!cache_cache.num);
- cache_cache.gfporder = order;
- cache_cache.colour = left_over / cache_cache.colour_off;
- cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
- sizeof(struct slab), cache_line_size());
- /* 2+3) create the kmalloc caches */
- sizes = malloc_sizes;
- names = cache_names;
- /*
- * Initialize the caches that provide memory for the array cache and the
- * kmem_list3 structures first. Without this, further allocations will
- * bug.
- */
- sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
- sizes[INDEX_AC].cs_size,
- ARCH_KMALLOC_MINALIGN,
- ARCH_KMALLOC_FLAGS|SLAB_PANIC,
- NULL);
- if (INDEX_AC != INDEX_L3) {
- sizes[INDEX_L3].cs_cachep =
- kmem_cache_create(names[INDEX_L3].name,
- sizes[INDEX_L3].cs_size,
- ARCH_KMALLOC_MINALIGN,
- ARCH_KMALLOC_FLAGS|SLAB_PANIC,
- NULL);
- }
- slab_early_init = 0;
- while (sizes->cs_size != ULONG_MAX) {
- /*
- * For performance, all the general caches are L1 aligned.
- * This should be particularly beneficial on SMP boxes, as it
- * eliminates "false sharing".
- * Note for systems short on memory removing the alignment will
- * allow tighter packing of the smaller caches.
- */
- if (!sizes->cs_cachep) {
- sizes->cs_cachep = kmem_cache_create(names->name,
- sizes->cs_size,
- ARCH_KMALLOC_MINALIGN,
- ARCH_KMALLOC_FLAGS|SLAB_PANIC,
- NULL);
- }
- #ifdef CONFIG_ZONE_DMA
- sizes->cs_dmacachep = kmem_cache_create(
- names->name_dma,
- sizes->cs_size,
- ARCH_KMALLOC_MINALIGN,
- ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
- SLAB_PANIC,
- NULL);
- #endif
- sizes++;
- names++;
- }
- /* 4) Replace the bootstrap head arrays */
- {
- struct array_cache *ptr;
- ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
- BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
- memcpy(ptr, cpu_cache_get(&cache_cache),
- sizeof(struct arraycache_init));
- /*
- * Do not assume that spinlocks can be initialized via memcpy:
- */
- spin_lock_init(&ptr->lock);
- cache_cache.array[smp_processor_id()] = ptr;
- ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
- BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
- != &initarray_generic.cache);
- memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
- sizeof(struct arraycache_init));
- /*
- * Do not assume that spinlocks can be initialized via memcpy:
- */
- spin_lock_init(&ptr->lock);
- malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
- ptr;
- }
- /* 5) Replace the bootstrap kmem_list3's */
- {
- int nid;
- for_each_online_node(nid) {
- init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
- init_list(malloc_sizes[INDEX_AC].cs_cachep,
- &initkmem_list3[SIZE_AC + nid], nid);
- if (INDEX_AC != INDEX_L3) {
- init_list(malloc_sizes[INDEX_L3].cs_cachep,
- &initkmem_list3[SIZE_L3 + nid], nid);
- }
- }
- }
- g_cpucache_up = EARLY;
- }
- void __init kmem_cache_init_late(void)
- {
- struct kmem_cache *cachep;
- /* 6) resize the head arrays to their final sizes */
- mutex_lock(&cache_chain_mutex);
- list_for_each_entry(cachep, &cache_chain, next)
- if (enable_cpucache(cachep, GFP_NOWAIT))
- BUG();
- mutex_unlock(&cache_chain_mutex);
- /* Done! */
- g_cpucache_up = FULL;
- /* Annotate slab for lockdep -- annotate the malloc caches */
- init_lock_keys();
- /*
- * Register a cpu startup notifier callback that initializes
- * cpu_cache_get for all new cpus
- */
- register_cpu_notifier(&cpucache_notifier);
- #ifdef CONFIG_NUMA
- /*
- * Register a memory hotplug callback that initializes and frees
- * nodelists.
- */
- hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
- #endif
- /*
- * The reap timers are started later, with a module init call: That part
- * of the kernel is not yet operational.
- */
- }
- static int __init cpucache_init(void)
- {
- int cpu;
- /*
- * Register the timers that return unneeded pages to the page allocator
- */
- for_each_online_cpu(cpu)
- start_cpu_timer(cpu);
- return 0;
- }
- __initcall(cpucache_init);
- /*
- * Interface to system's page allocator. No need to hold the cache-lock.
- *
- * If we requested dmaable memory, we will get it. Even if we
- * did not request dmaable memory, we might get it, but that
- * would be relatively rare and ignorable.
- */
- static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
- {
- struct page *page;
- int nr_pages;
- int i;
- #ifndef CONFIG_MMU
- /*
- * Nommu uses slab's for process anonymous memory allocations, and thus
- * requires __GFP_COMP to properly refcount higher order allocations
- */
- flags |= __GFP_COMP;
- #endif
- flags |= cachep->gfpflags;
- if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
- flags |= __GFP_RECLAIMABLE;
- page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
- if (!page)
- return NULL;
- nr_pages = (1 << cachep->gfporder);
- if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
- add_zone_page_state(page_zone(page),
- NR_SLAB_RECLAIMABLE, nr_pages);
- else
- add_zone_page_state(page_zone(page),
- NR_SLAB_UNRECLAIMABLE, nr_pages);
- for (i = 0; i < nr_pages; i++)
- __SetPageSlab(page + i);
- if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
- kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
- if (cachep->ctor)
- kmemcheck_mark_uninitialized_pages(page, nr_pages);
- else
- kmemcheck_mark_unallocated_pages(page, nr_pages);
- }
- return page_address(page);
- }
- /*
- * Interface to system's page release.
- */
- static void kmem_freepages(struct kmem_cache *cachep, void *addr)
- {
- unsigned long i = (1 << cachep->gfporder);
- struct page *page = virt_to_page(addr);
- const unsigned long nr_freed = i;
- kmemcheck_free_shadow(page, cachep->gfporder);
- if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
- sub_zone_page_state(page_zone(page),
- NR_SLAB_RECLAIMABLE, nr_freed);
- else
- sub_zone_page_state(page_zone(page),
- NR_SLAB_UNRECLAIMABLE, nr_freed);
- while (i--) {
- BUG_ON(!PageSlab(page));
- __ClearPageSlab(page);
- page++;
- }
- if (current->reclaim_state)
- current->reclaim_state->reclaimed_slab += nr_freed;
- free_pages((unsigned long)addr, cachep->gfporder);
- }
- static void kmem_rcu_free(struct rcu_head *head)
- {
- struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
- struct kmem_cache *cachep = slab_rcu->cachep;
- kmem_freepages(cachep, slab_rcu->addr);
- if (OFF_SLAB(cachep))
- kmem_cache_free(cachep->slabp_cache, slab_rcu);
- }
- #if DEBUG
- #ifdef CONFIG_DEBUG_PAGEALLOC
- static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
- unsigned long caller)
- {
- int size = obj_size(cachep);
- addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
- if (size < 5 * sizeof(unsigned long))
- return;
- *addr++ = 0x12345678;
- *addr++ = caller;
- *addr++ = smp_processor_id();
- size -= 3 * sizeof(unsigned long);
- {
- unsigned long *sptr = &caller;
- unsigned long svalue;
- while (!kstack_end(sptr)) {
- svalue = *sptr++;
- if (kernel_text_address(svalue)) {
- *addr++ = svalue;
- size -= sizeof(unsigned long);
- if (size <= sizeof(unsigned long))
- break;
- }
- }
- }
- *addr++ = 0x87654321;
- }
- #endif
- static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
- {
- int size = obj_size(cachep);
- addr = &((char *)addr)[obj_offset(cachep)];
- memset(addr, val, size);
- *(unsigned char *)(addr + size - 1) = POISON_END;
- }
- static void dump_line(char *data, int offset, int limit)
- {
- int i;
- unsigned char error = 0;
- int bad_count = 0;
- printk(KERN_ERR "%03x:", offset);
- for (i = 0; i < limit; i++) {
- if (data[offset + i] != POISON_FREE) {
- error = data[offset + i];
- bad_count++;
- }
- printk(" %02x", (unsigned char)data[offset + i]);
- }
- printk("\n");
- if (bad_count == 1) {
- error ^= POISON_FREE;
- if (!(error & (error - 1))) {
- printk(KERN_ERR "Single bit error detected. Probably "
- "bad RAM.\n");
- #ifdef CONFIG_X86
- printk(KERN_ERR "Run memtest86+ or a similar memory "
- "test tool.\n");
- #else
- printk(KERN_ERR "Run a memory test tool.\n");
- #endif
- }
- }
- }
- #endif
- #if DEBUG
- static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
- {
- int i, size;
- char *realobj;
- if (cachep->flags & SLAB_RED_ZONE) {
- printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
- *dbg_redzone1(cachep, objp),
- *dbg_redzone2(cachep, objp));
- }
- if (cachep->flags & SLAB_STORE_USER) {
- printk(KERN_ERR "Last user: [<%p>]",
- *dbg_userword(cachep, objp));
- print_symbol("(%s)",
- (unsigned long)*dbg_userword(cachep, objp));
- printk("\n");
- }
- realobj = (char *)objp + obj_offset(cachep);
- size = obj_size(cachep);
- for (i = 0; i < size && lines; i += 16, lines--) {
- int limit;
- limit = 16;
- if (i + limit > size)
- limit = size - i;
- dump_line(realobj, i, limit);
- }
- }
- static void check_poison_obj(struct kmem_cache *cachep, void *objp)
- {
- char *realobj;
- int size, i;
- int lines = 0;
- realobj = (char *)objp + obj_offset(cachep);
- size = obj_size(cachep);
- for (i = 0; i < size; i++) {
- char exp = POISON_FREE;
- if (i == size - 1)
- exp = POISON_END;
- if (realobj[i] != exp) {
- int limit;
- /* Mismatch ! */
- /* Print header */
- if (lines == 0) {
- printk(KERN_ERR
- "Slab corruption: %s start=%p, len=%d\n",
- cachep->name, realobj, size);
- print_objinfo(cachep, objp, 0);
- }
- /* Hexdump the affected line */
- i = (i / 16) * 16;
- limit = 16;
- if (i + limit > size)
- limit = size - i;
- dump_line(realobj, i, limit);
- i += 16;
- lines++;
- /* Limit to 5 lines */
- if (lines > 5)
- break;
- }
- }
- if (lines != 0) {
- /* Print some data about the neighboring objects, if they
- * exist:
- */
- struct slab *slabp = virt_to_slab(objp);
- unsigned int objnr;
- objnr = obj_to_index(cachep, slabp, objp);
- if (objnr) {
- objp = index_to_obj(cachep, slabp, objnr - 1);
- realobj = (char *)objp + obj_offset(cachep);
- printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
- realobj, size);
- print_objinfo(cachep, objp, 2);
- }
- if (objnr + 1 < cachep->num) {
- objp = index_to_obj(cachep, slabp, objnr + 1);
- realobj = (char *)objp + obj_offset(cachep);
- printk(KERN_ERR "Next obj: start=%p, len=%d\n",
- realobj, size);
- print_objinfo(cachep, objp, 2);
- }
- }
- }
- #endif
- #if DEBUG
- static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
- {
- int i;
- for (i = 0; i < cachep->num; i++) {
- void *objp = index_to_obj(cachep, slabp, i);
- if (cachep->flags & SLAB_POISON) {
- #ifdef CONFIG_DEBUG_PAGEALLOC
- if (cachep->buffer_size % PAGE_SIZE == 0 &&
- OFF_SLAB(cachep))
- kernel_map_pages(virt_to_page(objp),
- cachep->buffer_size / PAGE_SIZE, 1);
- else
- check_poison_obj(cachep, objp);
- #else
- check_poison_obj(cachep, objp);
- #endif
- }
- if (cachep->flags & SLAB_RED_ZONE) {
- if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
- slab_error(cachep, "start of a freed object "
- "was overwritten");
- if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
- slab_error(cachep, "end of a freed object "
- "was overwritten");
- }
- }
- }
- #else
- static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
- {
- }
- #endif
- /**
- * slab_destroy - destroy and release all objects in a slab
- * @cachep: cache pointer being destroyed
- * @slabp: slab pointer being destroyed
- *
- * Destroy all the objs in a slab, and release the mem back to the system.
- * Before calling the slab must have been unlinked from the cache. The
- * cache-lock is not held/needed.
- */
- static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
- {
- void *addr = slabp->s_mem - slabp->colouroff;
- slab_destroy_debugcheck(cachep, slabp);
- if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
- struct slab_rcu *slab_rcu;
- slab_rcu = (struct slab_rcu *)slabp;
- slab_rcu->cachep = cachep;
- slab_rcu->addr = addr;
- call_rcu(&slab_rcu->head, kmem_rcu_free);
- } else {
- kmem_freepages(cachep, addr);
- if (OFF_SLAB(cachep))
- kmem_cache_free(cachep->slabp_cache, slabp);
- }
- }
- static void __kmem_cache_destroy(struct kmem_cache *cachep)
- {
- int i;
- struct kmem_list3 *l3;
- for_each_online_cpu(i)
- kfree(cachep->array[i]);
- /* NUMA: free the list3 structures */
- for_each_online_node(i) {
- l3 = cachep->nodelists[i];
- if (l3) {
- kfree(l3->shared);
- free_alien_cache(l3->alien);
- kfree(l3);
- }
- }
- kmem_cache_free(&cache_cache, cachep);
- }
- /**
- * calculate_slab_order - calculate size (page order) of slabs
- * @cachep: pointer to the cache that is being created
- * @size: size of objects to be created in this cache.
- * @align: required alignment for the objects.
- * @flags: slab allocation flags
- *
- * Also calculates the number of objects per slab.
- *
- * This could be made much more intelligent. For now, try to avoid using
- * high order pages for slabs. When the gfp() functions are more friendly
- * towards high-order requests, this should be changed.
- */
- static size_t calculate_slab_order(struct kmem_cache *cachep,
- size_t size, size_t align, unsigned long flags)
- {
- unsigned long offslab_limit;
- size_t left_over = 0;
- int gfporder;
- for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
- unsigned int num;
- size_t remainder;
- cache_estimate(gfporder, size, align, flags, &remainder, &num);
- if (!num)
- continue;
- if (flags & CFLGS_OFF_SLAB) {
- /*
- * Max number of objs-per-slab for caches which
- * use off-slab slabs. Needed to avoid a possible
- * looping condition in cache_grow().
- */
- offslab_limit = size - sizeof(struct slab);
- offslab_limit /= sizeof(kmem_bufctl_t);
- if (num > offslab_limit)
- break;
- }
- /* Found something acceptable - save it away */
- cachep->num = num;
- cachep->gfporder = gfporder;
- left_over = remainder;
- /*
- * A VFS-reclaimable slab tends to have most allocations
- * as GFP_NOFS and we really don't want to have to be allocating
- * higher-order pages when we are unable to shrink dcache.
- */
- if (flags & SLAB_RECLAIM_ACCOUNT)
- break;
- /*
- * Large number of objects is good, but very large slabs are
- * currently bad for the gfp()s.
- */
- if (gfporder >= slab_break_gfp_order)
- break;
- /*
- * Acceptable internal fragmentation?
- */
- if (left_over * 8 <= (PAGE_SIZE << gfporder))
- break;
- }
- return left_over;
- }
- static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
- {
- if (g_cpucache_up == FULL)
- return enable_cpucache(cachep, gfp);
- if (g_cpucache_up == NONE) {
- /*
- * Note: the first kmem_cache_create must create the cache
- * that's used by kmalloc(24), otherwise the creation of
- * further caches will BUG().
- */
- cachep->array[smp_processor_id()] = &initarray_generic.cache;
- /*
- * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
- * the first cache, then we need to set up all its list3s,
- * otherwise the creation of further caches will BUG().
- */
- set_up_list3s(cachep, SIZE_AC);
- if (INDEX_AC == INDEX_L3)
- g_cpucache_up = PARTIAL_L3;
- else
- g_cpucache_up = PARTIAL_AC;
- } else {
- cachep->array[smp_processor_id()] =
- kmalloc(sizeof(struct arraycache_init), gfp);
- if (g_cpucache_up == PARTIAL_AC) {
- set_up_list3s(cachep, SIZE_L3);
- g_cpucache_up = PARTIAL_L3;
- } else {
- int node;
- for_each_online_node(node) {
- cachep->nodelists[node] =
- kmalloc_node(sizeof(struct kmem_list3),
- gfp, node);
- BUG_ON(!cachep->nodelists[node]);
- kmem_list3_init(cachep->nodelists[node]);
- }
- }
- }
- cachep->nodelists[numa_mem_id()]->next_reap =
- jiffies + REAPTIMEOUT_LIST3 +
- ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
- cpu_cache_get(cachep)->avail = 0;
- cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
- cpu_cache_get(cachep)->batchcount = 1;
- cpu_cache_get(cachep)->touched = 0;
- cachep->batchcount = 1;
- cachep->limit = BOOT_CPUCACHE_ENTRIES;
- return 0;
- }
- /**
- * kmem_cache_create - Create a cache.
- * @name: A string which is used in /proc/slabinfo to identify this cache.
- * @size: The size of objects to be created in this cache.
- * @align: The required alignment for the objects.
- * @flags: SLAB flags
- * @ctor: A constructor for the objects.
- *
- * Returns a ptr to the cache on success, NULL on failure.
- * Cannot be called within a int, but can be interrupted.
- * The @ctor is run when new pages are allocated by the cache.
- *
- * @name must be valid until the cache is destroyed. This implies that
- * the module calling this has to destroy the cache before getting unloaded.
- *
- * The flags are
- *
- * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
- * to catch references to uninitialised memory.
- *
- * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
- * for buffer overruns.
- *
- * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
- * cacheline. This can be beneficial if you're counting cycles as closely
- * as davem.
- */
- struct kmem_cache *
- kmem_cache_create (const char *name, size_t size, size_t align,
- unsigned long flags, void (*ctor)(void *))
- {
- size_t left_over, slab_size, ralign;
- struct kmem_cache *cachep = NULL, *pc;
- gfp_t gfp;
- /*
- * Sanity checks... these are all serious usage bugs.
- */
- if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
- size > KMALLOC_MAX_SIZE) {
- printk(KERN_ERR "%s: Early error in slab %s\n", __func__,
- name);
- BUG();
- }
- /*
- * We use cache_chain_mutex to ensure a consistent view of
- * cpu_online_mask as well. Please see cpuup_callback
- */
- if (slab_is_available()) {
- get_online_cpus();
- mutex_lock(&cache_chain_mutex);
- }
- list_for_each_entry(pc, &cache_chain, next) {
- char tmp;
- int res;
- /*
- * This happens when the module gets unloaded and doesn't
- * destroy its slab cache and no-one else reuses the vmalloc
- * area of the module. Print a warning.
- */
- res = probe_kernel_address(pc->name, tmp);
- if (res) {
- printk(KERN_ERR
- "SLAB: cache with size %d has lost its name\n",
- pc->buffer_size);
- continue;
- }
- if (!strcmp(pc->name, name)) {
- printk(KERN_ERR
- "kmem_cache_create: duplicate cache %s\n", name);
- dump_stack();
- goto oops;
- }
- }
- #if DEBUG
- WARN_ON(strchr(name, ' ')); /* It confuses parsers */
- #if FORCED_DEBUG
- /*
- * Enable redzoning and last user accounting, except for caches with
- * large objects, if the increased size would increase the object size
- * above the next power of two: caches with object sizes just above a
- * power of two have a significant amount of internal fragmentation.
- */
- if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
- 2 * sizeof(unsigned long long)))
- flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
- if (!(flags & SLAB_DESTROY_BY_RCU))
- flags |= SLAB_POISON;
- #endif
- if (flags & SLAB_DESTROY_BY_RCU)
- BUG_ON(flags & SLAB_POISON);
- #endif
- /*
- * Always checks flags, a caller might be expecting debug support which
- * isn't available.
- */
- BUG_ON(flags & ~CREATE_MASK);
- /*
- * Check that size is in terms of words. This is needed to avoid
- * unaligned accesses for some archs when redzoning is used, and makes
- * sure any on-slab bufctl's are also correctly aligned.
- */
- if (size & (BYTES_PER_WORD - 1)) {
- size += (BYTES_PER_WORD - 1);
- size &= ~(BYTES_PER_WORD - 1);
- }
- /* calculate the final buffer alignment: */
- /* 1) arch recommendation: can be overridden for debug */
- if (flags & SLAB_HWCACHE_ALIGN) {
- /*
- * Default alignment: as specified by the arch code. Except if
- * an object is really small, then squeeze multiple objects into
- * one cacheline.
- */
- ralign = cache_line_size();
- while (size <= ralign / 2)
- ralign /= 2;
- } else {
- ralign = BYTES_PER_WORD;
- }
- /*
- * Redzoning and user store require word alignment or possibly larger.
- * Note this will be overridden by architecture or caller mandated
- * alignment if either is greater than BYTES_PER_WORD.
- */
- if (flags & SLAB_STORE_USER)
- ralign = BYTES_PER_WORD;
- if (flags & SLAB_RED_ZONE) {
- ralign = REDZONE_ALIGN;
- /* If redzoning, ensure that the second redzone is suitably
- * aligned, by adjusting the object size accordingly. */
- size += REDZONE_ALIGN - 1;
- size &= ~(REDZONE_ALIGN - 1);
- }
- /* 2) arch mandated alignment */
- if (ralign < ARCH_SLAB_MINALIGN) {
- ralign = ARCH_SLAB_MINALIGN;
- }
- /* 3) caller mandated alignment */
- if (ralign < align) {
- ralign = align;
- }
- /* disable debug if necessary */
- if (ralign > __alignof__(unsigned long long))
- flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
- /*
- * 4) Store it.
- */
- align = ralign;
- if (slab_is_available())
- gfp = GFP_KERNEL;
- else
- gfp = GFP_NOWAIT;
- /* Get cache's description obj. */
- cachep = kmem_cache_zalloc(&cache_cache, gfp);
- if (!cachep)
- goto oops;
- #if DEBUG
- cachep->obj_size = size;
- /*
- * Both debugging options require word-alignment which is calculated
- * into align above.
- */
- if (flags & SLAB_RED_ZONE) {
- /* add space for red zone words */
- cachep->obj_offset += sizeof(unsigned long long);
- size += 2 * sizeof(unsigned long long);
- }
- if (flags & SLAB_STORE_USER) {
- /* user store requires one word storage behind the end of
- * the real object. But if the second red zone needs to be
- * aligned to 64 bits, we must allow that much space.
- */
- if (flags & SLAB_RED_ZONE)
- size += REDZONE_ALIGN;
- else
- size += BYTES_PER_WORD;
- }
- #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
- if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
- && cachep->obj_size > cache_line_size() && ALIGN(size, align) < PAGE_SIZE) {
- cachep->obj_offset += PAGE_SIZE - ALIGN(size, align);
- size = PAGE_SIZE;
- }
- #endif
- #endif
- /*
- * Determine if the slab management is 'on' or 'off' slab.
- * (bootstrapping cannot cope with offslab caches so don't do
- * it too early on. Always use on-slab management when
- * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
- */
- if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
- !(flags & SLAB_NOLEAKTRACE))
- /*
- * Size is large, assume best to place the slab management obj
- * off-slab (should allow better packing of objs).
- */
- flags |= CFLGS_OFF_SLAB;
- size = ALIGN(size, align);
- left_over = calculate_slab_order(cachep, size, align, flags);
- if (!cachep->num) {
- printk(KERN_ERR
- "kmem_cache_create: couldn't create cache %s.\n", name);
- kmem_cache_free(&cache_cache, cachep);
- cachep = NULL;
- goto oops;
- }
- slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
- + sizeof(struct slab), align);
- /*
- * If the slab has been placed off-slab, and we have enough space then
- * move it on-slab. This is at the expense of any extra colouring.
- */
- if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
- flags &= ~CFLGS_OFF_SLAB;
- left_over -= slab_size;
- }
- if (flags & CFLGS_OFF_SLAB) {
- /* really off slab. No need for manual alignment */
- slab_size =
- cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
- #ifdef CONFIG_PAGE_POISONING
- /* If we're going to use the generic kernel_map_pages()
- * poisoning, then it's going to smash the contents of
- * the redzone and userword anyhow, so switch them off.
- */
- if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
- flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
- #endif
- }
- cachep->colour_off = cache_line_size();
- /* Offset must be a multiple of the alignment. */
- if (cachep->colour_off < align)
- cachep->colour_off = align;
- cachep->colour = left_over / cachep->colour_off;
- cachep->slab_size = slab_size;
- cachep->flags = flags;
- cachep->gfpflags = 0;
- if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
- cachep->gfpflags |= GFP_DMA;
- cachep->buffer_size = size;
- cachep->reciprocal_buffer_size = reciprocal_value(size);
- if (flags & CFLGS_OFF_SLAB) {
- cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
- /*
- * This is a possibility for one of the malloc_sizes caches.
- * But since we go off slab only for object size greater than
- * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
- * this should not happen at all.
- * But leave a BUG_ON for some lucky dude.
- */
- BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
- }
- cachep->ctor = ctor;
- cachep->name = name;
- if (setup_cpu_cache(cachep, gfp)) {
- __kmem_cache_destroy(cachep);
- cachep = NULL;
- goto oops;
- }
- /* cache setup completed, link it into the list */
- list_add(&cachep->next, &cache_chain);
- oops:
- if (!cachep && (flags & SLAB_PANIC))
- panic("kmem_cache_create(): failed to create slab `%s'\n",
- name);
- if (slab_is_available()) {
- mutex_unlock(&cache_chain_mutex);
- put_online_cpus();
- }
- return cachep;
- }
- EXPORT_SYMBOL(kmem_cache_create);
- #if DEBUG
- static void check_irq_off(void)
- {
- BUG_ON(!irqs_disabled());
- }
- static void check_irq_on(void)
- {
- BUG_ON(irqs_disabled());
- }
- static void check_spinlock_acquired(struct kmem_cache *cachep)
- {
- #ifdef CONFIG_SMP
- check_irq_off();
- assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock);
- #endif
- }
- static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
- {
- #ifdef CONFIG_SMP
- check_irq_off();
- assert_spin_locked(&cachep->nodelists[node]->list_lock);
- #endif
- }
- #else
- #define check_irq_off() do { } while(0)
- #define check_irq_on() do { } while(0)
- #define check_spinlock_acquired(x) do { } while(0)
- #define check_spinlock_acquired_node(x, y) do { } while(0)
- #endif
- static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
- struct array_cache *ac,
- int force, int node);
- static void do_drain(void *arg)
- {
- struct kmem_cache *cachep = arg;
- struct array_cache *ac;
- int node = numa_mem_id();
- check_irq_off();
- ac = cpu_cache_get(cachep);
- spin_lock(&cachep->nodelists[node]->list_lock);
- free_block(cachep, ac->entry, ac->avail, node);
- spin_unlock(&cachep->nodelists[node]->list_lock);
- ac->avail = 0;
- }
- static void drain_cpu_caches(struct kmem_cache *cachep)
- {
- struct kmem_list3 *l3;
- int node;
- on_each_cpu(do_drain, cachep, 1);
- check_irq_on();
- for_each_online_node(node) {
- l3 = cachep->nodelists[node];
- if (l3 && l3->alien)
- drain_alien_cache(cachep, l3->alien);
- }
- for_each_online_node(node) {
- l3 = cachep->nodelists[node];
- if (l3)
- drain_array(cachep, l3, l3->shared, 1, node);
- }
- }
- /*
- * Remove slabs from the list of free slabs.
- * Specify the number of slabs to drain in tofree.
- *
- * Returns the actual number of slabs released.
- */
- static int drain_freelist(struct kmem_cache *cache,
- struct kmem_list3 *l3, int tofree)
- {
- struct list_head *p;
- int nr_freed;
- struct slab *slabp;
- nr_freed = 0;
- while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
- spin_lock_irq(&l3->list_lock);
- p = l3->slabs_free.prev;
- if (p == &l3->slabs_free) {
- spin_unlock_irq(&l3->list_lock);
- goto out;
- }
- slabp = list_entry(p, struct slab, list);
- #if DEBUG
- BUG_ON(slabp->inuse);
- #endif
- list_del(&slabp->list);
- /*
- * Safe to drop the lock. The slab is no longer linked
- * to the cache.
- */
- l3->free_objects -= cache->num;
- spin_unlock_irq(&l3->list_lock);
- slab_destroy(cache, slabp);
- nr_freed++;
- }
- out:
- return nr_freed;
- }
- /* Called with cache_chain_mutex held to protect against cpu hotplug */
- static int __cache_shrink(struct kmem_cache *cachep)
- {
- int ret = 0, i = 0;
- struct kmem_list3 *l3;
- drain_cpu_caches(cachep);
- check_irq_on();
- for_each_online_node(i) {
- l3 = cachep->nodelists[i];
- if (!l3)
- continue;
- drain_freelist(cachep, l3, l3->free_objects);
- ret += !list_empty(&l3->slabs_full) ||
- !list_empty(&l3->slabs_partial);
- }
- return (ret ? 1 : 0);
- }
- /**
- * kmem_cache_shrink - Shrink a cache.
- * @cachep: The cache to shrink.
- *
- * Releases as many slabs as possible for a cache.
- * To help debugging, a zero exit status indicates all slabs were released.
- */
- int kmem_cache_shrink(struct kmem_cache *cachep)
- {
- int ret;
- BUG_ON(!cachep || in_interrupt());
- get_online_cpus();
- mutex_lock(&cache_chain_mutex);
- ret = __cache_shrink(cachep);
- mutex_unlock(&cache_chain_mutex);
- put_online_cpus();
- return ret;
- }
- EXPORT_SYMBOL(kmem_cache_shrink);
- /**
- * kmem_cache_destroy - delete a cache
- * @cachep: the cache to destroy
- *
- * Remove a &struct kmem_cache object from the slab cache.
- *
- * It is expected this function will be called by a module when it is
- * unloaded. This will remove the cache completely, and avoid a duplicate
- * cache being allocated each time a module is loaded and unloaded, if the
- * module doesn't have persistent in-kernel storage across loads and unloads.
- *
- * The cache must be empty before calling this function.
- *
- * The caller must guarantee that no one will allocate memory from the cache
- * during the kmem_cache_destroy().
- */
- void kmem_cache_destroy(struct kmem_cache *cachep)
- {
- BUG_ON(!cachep || in_interrupt());
- /* Find the cache in the chain of caches. */
- get_online_cpus();
- mutex_lock(&cache_chain_mutex);
- /*
- * the chain is never empty, cache_cache is never destroyed
- */
- list_del(&cachep->next);
- if (__cache_shrink(cachep)) {
- slab_error(cachep, "Can't free all objects");
- list_add(&cachep->next, &cache_chain);
- mutex_unlock(&cache_chain_mutex);
- put_online_cpus();
- return;
- }
- if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
- rcu_barrier();
- __kmem_cache_destroy(cachep);
- mutex_unlock(&cache_chain_mutex);
- put_online_cpus();
- }
- EXPORT_SYMBOL(kmem_cache_destroy);
- /*
- * Get the memory for a slab management obj.
- * For a slab cache when the slab descriptor is off-slab, slab descriptors
- * always come from malloc_sizes caches. The slab descriptor cannot
- * come from the same cache which is getting created because,
- * when we are searching for an appropriate cache for these
- * descriptors in kmem_cache_create, we search through the malloc_sizes array.
- * If we are creating a malloc_sizes cache here it would not be visible to
- * kmem_find_general_cachep till the initialization is complete.
- * Hence we cannot have slabp_cache same as the original cache.
- */
- static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
- int colour_off, gfp_t local_flags,
- int nodeid)
- {
- struct slab *slabp;
- if (OFF_SLAB(cachep)) {
- /* Slab management obj is off-slab. */
- slabp = kmem_cache_alloc_node(cachep->slabp_cache,
- local_flags, nodeid);
- /*
- * If the first object in the slab is leaked (it's allocated
- * but no one has a reference to it), we want to make sure
- * kmemleak does not treat the ->s_mem pointer as a reference
- * to the object. Otherwise we will not report the leak.
- */
- kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
- local_flags);
- if (!slabp)
- return NULL;
- } else {
- slabp = objp + colour_off;
- colour_off += cachep->slab_size;
- }
- slabp->inuse = 0;
- slabp->colouroff = colour_off;
- slabp->s_mem = objp + colour_off;
- slabp->nodeid = nodeid;
- slabp->free = 0;
- return slabp;
- }
- static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
- {
- return (kmem_bufctl_t *) (slabp + 1);
- }
- static void cache_init_objs(struct kmem_cache *cachep,
- struct slab *slabp)
- {
- int i;
- for (i = 0; i < cachep->num; i++) {
- void *objp = index_to_obj(cachep, slabp, i);
- #if DEBUG
- /* need to poison the objs? */
- if (cachep->flags & SLAB_POISON)
- poison_obj(cachep, objp, POISON_FREE);
- if (cachep->flags & SLAB_STORE_USER)
- *dbg_userword(cachep, objp) = NULL;
- if (cachep->flags & SLAB_RED_ZONE) {
- *dbg_redzone1(cachep, objp) = RED_INACTIVE;
- *dbg_redzone2(cachep, objp) = RED_INACTIVE;
- }
- /*
- * Constructors are not allowed to allocate memory from the same
- * cache which they are a constructor for. Otherwise, deadlock.
- * They must also be threaded.
- */
- if (cachep->ctor && !(cachep->flags & SLAB_POISON))
- cachep->ctor(objp + obj_offset(cachep));
- if (cachep->flags & SLAB_RED_ZONE) {
- if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
- slab_error(cachep, "constructor overwrote the"
- " end of an object");
- if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
- slab_error(cachep, "constructor overwrote the"
- " start of an object");
- }
- if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
- OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
- kernel_map_pages(virt_to_page(objp),
- cachep->buffer_size / PAGE_SIZE, 0);
- #else
- if (cachep->ctor)
- cachep->ctor(objp);
- #endif
- slab_bufctl(slabp)[i] = i + 1;
- }
- slab_bufctl(slabp)[i - 1] = BUFCTL_END;
- }
- static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
- {
- if (CONFIG_ZONE_DMA_FLAG) {
- if (flags & GFP_DMA)
- BUG_ON(!(cachep->gfpflags & GFP_DMA));
- else
- BUG_ON(cachep->gfpflags & GFP_DMA);
- }
- }
- static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
- int nodeid)
- {
- void *objp = index_to_obj(cachep, slabp, slabp->free);
- kmem_bufctl_t next;
- slabp->inuse++;
- next = slab_bufctl(slabp)[slabp->free];
- #if DEBUG
- slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
- WARN_ON(slabp->nodeid != nodeid);
- #endif
- slabp->free = next;
- return objp;
- }
- static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
- void *objp, int nodeid)
- {
- unsigned int objnr = obj_to_index(cachep, slabp, objp);
- #if DEBUG
- /* Verify that the slab belongs to the intended node */
- WARN_ON(slabp->nodeid != nodeid);
- if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
- printk(KERN_ERR "slab: double free detected in cache "
- "'%s', objp %p\n", cachep->name, objp);
- BUG();
- }
- #endif
- slab_bufctl(slabp)[objnr] = slabp->free;
- slabp->free = objnr;
- slabp->inuse--;
- }
- /*
- * Map pages beginning at addr to the given cache and slab. This is required
- * for the slab allocator to be able to lookup the cache and slab of a
- * virtual address for kfree, ksize, and slab debugging.
- */
- static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
- void *addr)
- {
- int nr_pages;
- struct page *page;
- page = virt_to_page(addr);
- nr_pages = 1;
- if (likely(!PageCompound(page)))
- nr_pages <<= cache->gfporder;
- do {
- page_set_cache(page, cache);
- page_set_slab(page, slab);
- page++;
- } while (--nr_pages);
- }
- /*
- * Grow (by 1) the number of slabs within a cache. This is called by
- * kmem_cache_alloc() when there are no active objs left in a cache.
- */
- static int cache_grow(struct kmem_cache *cachep,
- gfp_t flags, int nodeid, void *objp)
- {
- struct slab *slabp;
- size_t offset;
- gfp_t local_flags;
- struct kmem_list3 *l3;
- /*
- * Be lazy and only check for valid flags here, keeping it out of the
- * critical path in kmem_cache_alloc().
- */
- BUG_ON(flags & GFP_SLAB_BUG_MASK);
- local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
- /* Take the l3 list lock to change the colour_next on this node */
- check_irq_off();
- l3 = cachep->nodelists[nodeid];
- spin_lock(&l3->list_lock);
- /* Get colour for the slab, and cal the next value. */
- offset = l3->colour_next;
- l3->colour_next++;
- if (l3->colour_next >= cachep->colour)
- l3->colour_next = 0;
- spin_unlock(&l3->list_lock);
- offset *= cachep->colour_off;
- if (local_flags & __GFP_WAIT)
- local_irq_enable();
- /*
- * The test for missing atomic flag is performed here, rather than
- * the more obvious place, simply to reduce the critical path length
- * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
- * will eventually be caught here (where it matters).
- */
- kmem_flagcheck(cachep, flags);
- /*
- * Get mem for the objs. Attempt to allocate a physical page from
- * 'nodeid'.
- */
- if (!objp)
- objp = kmem_getpages(cachep, local_flags, nodeid);
- if (!objp)
- goto failed;
- /* Get slab management. */
- slabp = alloc_slabmgmt(cachep, objp, offset,
- local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
- if (!slabp)
- goto opps1;
- slab_map_pages(cachep, slabp, objp);
- cache_init_objs(cachep, slabp);
- if (local_flags & __GFP_WAIT)
- local_irq_disable();
- check_irq_off();
- spin_lock(&l3->list_lock);
- /* Make slab active. */
- list_add_tail(&slabp->list, &(l3->slabs_free));
- STATS_INC_GROWN(cachep);
- l3->free_objects += cachep->num;
- spin_unlock(&l3->list_lock);
- return 1;
- opps1:
- kmem_freepages(cachep, objp);
- failed:
- if (local_flags & __GFP_WAIT)
- local_irq_disable();
- return 0;
- }
- #if DEBUG
- /*
- * Perform extra freeing checks:
- * - detect bad pointers.
- * - POISON/RED_ZONE checking
- */
- static void kfree_debugcheck(const void *objp)
- {
- if (!virt_addr_valid(objp)) {
- printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
- (unsigned long)objp);
- BUG();
- }
- }
- static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
- {
- unsigned long long redzone1, redzone2;
- redzone1 = *dbg_redzone1(cache, obj);
- redzone2 = *dbg_redzone2(cache, obj);
- /*
- * Redzone is ok.
- */
- if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
- return;
- if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
- slab_error(cache, "double free detected");
- else
- slab_error(cache, "memory outside object was overwritten");
- printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
- obj, redzone1, redzone2);
- }
- static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
- void *caller)
- {
- struct page *page;
- unsigned int objnr;
- struct slab *slabp;
- BUG_ON(virt_to_cache(objp) != cachep);
- objp -= obj_offset(cachep);
- kfree_debugcheck(objp);
- page = virt_to_head_page(objp);
- slabp = page_get_slab(page);
- if (cachep->flags & SLAB_RED_ZONE) {
- verify_redzone_free(cachep, objp);
- *dbg_redzone1(cachep, objp) = RED_INACTIVE;
- *dbg_redzone2(cachep, objp) = RED_INACTIVE;
- }
- if (cachep->flags & SLAB_STORE_USER)
- *dbg_userword(cachep, objp) = caller;
- objnr = obj_to_index(cachep, slabp, objp);
- BUG_ON(objnr >= cachep->num);
- BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
- #ifdef CONFIG_DEBUG_SLAB_LEAK
- slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
- #endif
- if (cachep->flags & SLAB_POISON) {
- #ifdef CONFIG_DEBUG_PAGEALLOC
- if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
- store_stackinfo(cachep, objp, (unsigned long)caller);
- kernel_map_pages(virt_to_page(objp),
- cachep->buffer_size / PAGE_SIZE, 0);
- } else {
- poison_obj(cachep, objp, POISON_FREE);
- }
- #else
- poison_obj(cachep, objp, POISON_FREE);
- #endif
- }
- return objp;
- }
- static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
- {
- kmem_bufctl_t i;
- int entries = 0;
- /* Check slab's freelist to see if this obj is there. */
- for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
- entries++;
- if (entries > cachep->num || i >= cachep->num)
- goto bad;
- }
- if (entries != cachep->num - slabp->inuse) {
- bad:
- printk(KERN_ERR "slab: Internal list corruption detected in "
- "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
- cachep->name, cachep->num, slabp, slabp->inuse);
- for (i = 0;
- i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
- i++) {
- if (i % 16 == 0)
- printk("\n%03x:", i);
- printk(" %02x", ((unsigned char *)slabp)[i]);
- }
- printk("\n");
- BUG();
- }
- }
- #else
- #define kfree_debugcheck(x) do { } while(0)
- #define cache_free_debugcheck(x,objp,z) (objp)
- #define check_slabp(x,y) do { } while(0)
- #endif
- static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
- {
- int batchcount;
- struct kmem_list3 *l3;
- struct array_cache *ac;
- int node;
- retry:
- check_irq_off();
- node = numa_mem_id();
- ac = cpu_cache_get(cachep);
- batchcount = ac->batchcount;
- if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
- /*
- * If there was little recent activity on this cache, then
- * perform only a partial refill. Otherwise we could generate
- * refill bouncing.
- */
- batchcount = BATCHREFILL_LIMIT;
- }
- l3 = cachep->nodelists[node];
- BUG_ON(ac->avail > 0 || !l3);
- spin_lock(&l3->list_lock);
- /* See if we can refill from the shared array */
- if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
- l3->shared->touched = 1;
- goto alloc_done;
- }
- while (batchcount > 0) {
- struct list_head *entry;
- struct slab *slabp;
- /* Get slab alloc is to come from. */
- entry = l3->slabs_partial.next;
- if (entry == &l3->slabs_partial) {
- l3->free_touched = 1;
- entry = l3->slabs_free.next;
- if (entry == &l3->slabs_free)
- goto must_grow;
- }
- slabp = list_entry(entry, struct slab, list);
- check_slabp(cachep, slabp);
- check_spinlock_acquired(cachep);
- /*
- * The slab was either on partial or free list so
- * there must be at least one object available for
- * allocation.
- */
- BUG_ON(slabp->inuse >= cachep->num);
- while (slabp->inuse < cachep->num && batchcount--) {
- STATS_INC_ALLOCED(cachep);
- STATS_INC_ACTIVE(cachep);
- STATS_SET_HIGH(cachep);
- ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
- node);
- }
- check_slabp(cachep, slabp);
- /* move slabp to correct slabp list: */
- list_del(&slabp->list);
- if (slabp->free == BUFCTL_END)
- list_add(&slabp->list, &l3->slabs_full);
- else
- list_add(&slabp->list, &l3->slabs_partial);
- }
- must_grow:
- l3->free_objects -= ac->avail;
- alloc_done:
- spin_unlock(&l3->list_lock);
- if (unlikely(!ac->avail)) {
- int x;
- x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
- /* cache_grow can reenable interrupts, then ac could change. */
- ac = cpu_cache_get(cachep);
- if (!x && ac->avail == 0) /* no objects in sight? abort */
- return NULL;
- if (!ac->avail) /* objects refilled by interrupt? */
- goto retry;
- }
- ac->touched = 1;
- return ac->entry[--ac->avail];
- }
- static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
- gfp_t flags)
- {
- might_sleep_if(flags & __GFP_WAIT);
- #if DEBUG
- kmem_flagcheck(cachep, flags);
- #endif
- }
- #if DEBUG
- static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
- gfp_t flags, void *objp, void *caller)
- {
- if (!objp)
- return objp;
- if (cachep->flags & SLAB_POISON) {
- #ifdef CONFIG_DEBUG_PAGEALLOC
- if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
- kernel_map_pages(virt_to_page(objp),
- cachep->buffer_size / PAGE_SIZE, 1);
- else
- check_poison_obj(cachep, objp);
- #else
- check_poison_obj(cachep, objp);
- #endif
- poison_obj(cachep, objp, POISON_INUSE);
- }
- if (cachep->flags & SLAB_STORE_USER)
- *dbg_userword(cachep, objp) = caller;
- if (cachep->flags & SLAB_RED_ZONE) {
- if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
- *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
- slab_error(cachep, "double free, or memory outside"
- " object was overwritten");
- printk(KERN_ERR
- "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
- objp, *dbg_redzone1(cachep, objp),
- *dbg_redzone2(cachep, objp));
- }
- *dbg_redzone1(cachep, objp) = RED_ACTIVE;
- *dbg_redzone2(cachep, objp) = RED_ACTIVE;
- }
- #ifdef CONFIG_DEBUG_SLAB_LEAK
- {
- struct slab *slabp;
- unsigned objnr;
- slabp = page_get_slab(virt_to_head_page(objp));
- objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
- slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
- }
- #endif
- objp += obj_offset(cachep);
- if (cachep->ctor && cachep->flags & SLAB_POISON)
- cachep->ctor(objp);
- #if ARCH_SLAB_MINALIGN
- if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
- printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
- objp, ARCH_SLAB_MINALIGN);
- }
- #endif
- return objp;
- }
- #else
- #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
- #endif
- static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
- {
- if (cachep == &cache_cache)
- return false;
- return should_failslab(obj_size(cachep), flags, cachep->flags);
- }
- static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
- {
- void *objp;
- struct array_cache *ac;
- check_irq_off();
- ac = cpu_cache_get(cachep);
- if (likely(ac->avail)) {
- STATS_INC_ALLOCHIT(cachep);
- ac->touched = 1;
- objp = ac->entry[--ac->avail];
- } else {
- STATS_INC_ALLOCMISS(cachep);
- objp = cache_alloc_refill(cachep, flags);
- /*
- * the 'ac' may be updated by cache_alloc_refill(),
- * and kmemleak_erase() requires its correct value.
- */
- ac = cpu_cache_get(cachep);
- }
- /*
- * To avoid a false negative, if an object that is in one of the
- * per-CPU caches is leaked, we need to make sure kmemleak doesn't
- * treat the array pointers as a reference to the object.
- */
- if (objp)
- kmemleak_erase(&ac->entry[ac->avail]);
- return objp;
- }
- #ifdef CONFIG_NUMA
- /*
- * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
- *
- * If we are in_interrupt, then process context, including cpusets and
- * mempolicy, may not apply and should not be used for allocation policy.
- */
- static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
- {
- int nid_alloc, nid_here;
- if (in_interrupt() || (flags & __GFP_THISNODE))
- return NULL;
- nid_alloc = nid_here = numa_mem_id();
- get_mems_allowed();
- if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
- nid_alloc = cpuset_slab_spread_node();
- else if (current->mempolicy)
- nid_alloc = slab_node(current->mempolicy);
- put_mems_allowed();
- if (nid_alloc != nid_here)
- return ____cache_alloc_node(cachep, flags, nid_alloc);
- return NULL;
- }
- /*
- * Fallback function if there was no memory available and no objects on a
- * certain node and fall back is permitted. First we scan all the
- * available nodelists for available objects. If that fails then we
- * perform an allocation without specifying a node. This allows the page
- * allocator to do its reclaim / fallback magic. We then insert the
- * slab into the proper nodelist and then allocate from it.
- */
- static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
- {
- struct zonelist *zonelist;
- gfp_t local_flags;
- struct zoneref *z;
- struct zone *zone;
- enum zone_type high_zoneidx = gfp_zone(flags);
- void *obj = NULL;
- int nid;
- if (flags & __GFP_THISNODE)
- return NULL;
- get_mems_allowed();
- zonelist = node_zonelist(slab_node(current->mempolicy), flags);
- local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
- retry:
- /*
- * Look through allowed nodes for objects available
- * from existing per node queues.
- */
- for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
- nid = zone_to_nid(zone);
- if (cpuset_zone_allowed_hardwall(zone, flags) &&
- cache->nodelists[nid] &&
- cache->nodelists[nid]->free_objects) {
- obj = ____cache_alloc_node(cache,
- flags | GFP_THISNODE, nid);
- if (obj)
- break;
- }
- }
- if (!obj) {
- /*
- * This allocation will be performed within the constraints
- * of the current cpuset / memory policy requirements.
- * We may trigger various forms of reclaim on the allowed
- * set and go into memory reserves if necessary.
- */
- if (local_flags & __GFP_WAIT)
- local_irq_enable();
- kmem_flagcheck(cache, flags);
- obj = kmem_getpages(cache, local_flags, numa_mem_id());
- if (local_flags & __GFP_WAIT)
- local_irq_disable();
- if (obj) {
- /*
- * Insert into the appropriate per node queues
- */
- nid = page_to_nid(virt_to_page(obj));
- if (cache_grow(cache, flags, nid, obj)) {
- obj = ____cache_alloc_node(cache,
- flags | GFP_THISNODE, nid);
- if (!obj)
- /*
- * Another processor may allocate the
- * objects in the slab since we are
- * not holding any locks.
- */
- goto retry;
- } else {
- /* cache_grow already freed obj */
- obj = NULL;
- }
- }
- }
- put_mems_allowed();
- return obj;
- }
- /*
- * A interface to enable slab creation on nodeid
- */
- static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
- int nodeid)
- {
- struct list_head *entry;
- struct slab *slabp;
- struct kmem_list3 *l3;
- void *obj;
- int x;
- l3 = cachep->nodelists[nodeid];
- BUG_ON(!l3);
- retry:
- check_irq_off();
- spin_lock(&l3->list_lock);
- entry = l3->slabs_partial.next;
- if (entry == &l3->slabs_partial) {
- l3->free_touched = 1;
- entry = l3->slabs_free.next;
- if (entry == &l3->slabs_free)
- goto must_grow;
- }
- slabp = list_entry(entry, struct slab, list);
- check_spinlock_acquired_node(cachep, nodeid);
- check_slabp(cachep, slabp);
- STATS_INC_NODEALLOCS(cachep);
- STATS_INC_ACTIVE(cachep);
- STATS_SET_HIGH(cachep);
- BUG_ON(slabp->inuse == cachep->num);
- obj = slab_get_obj(cachep, slabp, nodeid);
- check_slabp(cachep, slabp);
- l3->free_objects--;
- /* move slabp to correct slabp list: */
- list_del(&slabp->list);
- if (slabp->free == BUFCTL_END)
- list_add(&slabp->list, &l3->slabs_full);
- else
- list_add(&slabp->list, &l3->slabs_partial);
- spin_unlock(&l3->list_lock);
- goto done;
- must_grow:
- spin_unlock(&l3->list_lock);
- x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
- if (x)
- goto retry;
- return fallback_alloc(cachep, flags);
- done:
- return obj;
- }
- /**
- * kmem_cache_alloc_node - Allocate an object on the specified node
- * @cachep: The cache to allocate from.
- * @flags: See kmalloc().
- * @nodeid: node number of the target node.
- * @caller: return address of caller, used for debug information
- *
- * Identical to kmem_cache_alloc but it will allocate memory on the given
- * node, which can improve the performance for cpu bound structures.
- *
- * Fallback to other node is possible if __GFP_THISNODE is not set.
- */
- static __always_inline void *
- __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
- void *caller)
- {
- unsigned long save_flags;
- void *ptr;
- int slab_node = numa_mem_id();
- flags &= gfp_allowed_mask;
- lockdep_trace_alloc(flags);
- if (slab_should_failslab(cachep, flags))
- return NULL;
- cache_alloc_debugcheck_before(cachep, flags);
- local_irq_save(save_flags);
- if (nodeid == -1)
- nodeid = slab_node;
- if (unlikely(!cachep->nodelists[nodeid])) {
- /* Node not bootstrapped yet */
- ptr = fallback_alloc(cachep, flags);
- goto out;
- }
- if (nodeid == slab_node) {
- /*
- * Use the locally cached objects if possible.
- * However ____cache_alloc does not allow fallback
- * to other nodes. It may fail while we still have
- * objects on other nodes available.
- */
- ptr = ____cache_alloc(cachep, flags);
- if (ptr)
- goto out;
- }
- /* ___cache_alloc_node can fall back to other nodes */
- ptr = ____cache_alloc_node(cachep, flags, nodeid);
- out:
- local_irq_restore(save_flags);
- ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
- kmemleak_alloc_recursive(ptr, obj_size(cachep), 1, cachep->flags,
- flags);
- if (likely(ptr))
- kmemcheck_slab_alloc(cachep, flags, ptr, obj_size(cachep));
- if (unlikely((flags & __GFP_ZERO) && ptr))
- memset(ptr, 0, obj_size(cachep));
- return ptr;
- }
- static __always_inline void *
- __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
- {
- void *objp;
- if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
- objp = alternate_node_alloc(cache, flags);
- if (objp)
- goto out;
- }
- objp = ____cache_alloc(cache, flags);
- /*
- * We may just have run out of memory on the local node.
- * ____cache_alloc_node() knows how to locate memory on other nodes
- */
- if (!objp)
- objp = ____cache_alloc_node(cache, flags, numa_mem_id());
- out:
- return objp;
- }
- #else
- static __always_inline void *
- __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
- {
- return ____cache_alloc(cachep, flags);
- }
- #endif /* CONFIG_NUMA */
- static __always_inline void *
- __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
- {
- unsigned long save_flags;
- void *objp;
- flags &= gfp_allowed_mask;
- lockdep_trace_alloc(flags);
- if (slab_should_failslab(cachep, flags))
- return NULL;
- cache_alloc_debugcheck_before(cachep, flags);
- local_irq_save(save_flags);
- objp = __do_cache_alloc(cachep, flags);
- local_irq_restore(save_flags);
- objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
- kmemleak_alloc_recursive(objp, obj_size(cachep), 1, cachep->flags,
- flags);
- prefetchw(objp);
- if (likely(objp))
- kmemcheck_slab_alloc(cachep, flags, objp, obj_size(cachep));
- if (unlikely((flags & __GFP_ZERO) && objp))
- memset(objp, 0, obj_size(cachep));
- return objp;
- }
- /*
- * Caller needs to acquire correct kmem_list's list_lock
- */
- static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
- int node)
- {
- int i;
- struct kmem_list3 *l3;
- for (i = 0; i < nr_objects; i++) {
- void *objp = objpp[i];
- struct slab *slabp;
- slabp = virt_to_slab(objp);
- l3 = cachep->nodelists[node];
- list_del(&slabp->list);
- check_spinlock_acquired_node(cachep, node);
- check_slabp(cachep, slabp);
- slab_put_obj(cachep, slabp, objp, node);
- STATS_DEC_ACTIVE(cachep);
- l3->free_objects++;
- check_slabp(cachep, slabp);
- /* fixup slab chains */
- if (slabp->inuse == 0) {
- if (l3->free_objects > l3->free_limit) {
- l3->free_objects -= cachep->num;
- /* No need to drop any previously held
- * lock here, even if we have a off-slab slab
- * descriptor it is guaranteed to come from
- * a different cache, refer to comments before
- * alloc_slabmgmt.
- */
- slab_destroy(cachep, slabp);
- } else {
- list_add(&slabp->list, &l3->slabs_free);
- }
- } else {
- /* Unconditionally move a slab to the end of the
- * partial list on free - maximum time for the
- * other objects to be freed, too.
- */
- list_add_tail(&slabp->list, &l3->slabs_partial);
- }
- }
- }
- static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
- {
- int batchcount;
- struct kmem_list3 *l3;
- int node = numa_mem_id();
- batchcount = ac->batchcount;
- #if DEBUG
- BUG_ON(!batchcount || batchcount > ac->avail);
- #endif
- check_irq_off();
- l3 = cachep->nodelists[node];
- spin_lock(&l3->list_lock);
- if (l3->shared) {
- struct array_cache *shared_array = l3->shared;
- int max = shared_array->limit - shared_array->avail;
- if (max) {
- if (batchcount > max)
- batchcount = max;
- memcpy(&(shared_array->entry[shared_array->avail]),
- ac->entry, sizeof(void *) * batchcount);
- shared_array->avail += batchcount;
- goto free_done;
- }
- }
- free_block(cachep, ac->entry, batchcount, node);
- free_done:
- #if STATS
- {
- int i = 0;
- struct list_head *p;
- p = l3->slabs_free.next;
- while (p != &(l3->slabs_free)) {
- struct slab *slabp;
- slabp = list_entry(p, struct slab, list);
- BUG_ON(slabp->inuse);
- i++;
- p = p->next;
- }
- STATS_SET_FREEABLE(cachep, i);
- }
- #endif
- spin_unlock(&l3->list_lock);
- ac->avail -= batchcount;
- memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
- }
- /*
- * Release an obj back to its cache. If the obj has a constructed state, it must
- * be in this state _before_ it is released. Called with disabled ints.
- */
- static inline void __cache_free(struct kmem_cache *cachep, void *objp,
- void *caller)
- {
- struct array_cache *ac = cpu_cache_get(cachep);
- check_irq_off();
- kmemleak_free_recursive(objp, cachep->flags);
- objp = cache_free_debugcheck(cachep, objp, caller);
- kmemcheck_slab_free(cachep, objp, obj_size(cachep));
- /*
- * Skip calling cache_free_alien() when the platform is not numa.
- * This will avoid cache misses that happen while accessing slabp (which
- * is per page memory reference) to get nodeid. Instead use a global
- * variable to skip the call, which is mostly likely to be present in
- * the cache.
- */
- if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
- return;
- if (likely(ac->avail < ac->limit)) {
- STATS_INC_FREEHIT(cachep);
- ac->entry[ac->avail++] = objp;
- return;
- } else {
- STATS_INC_FREEMISS(cachep);
- cache_flusharray(cachep, ac);
- ac->entry[ac->avail++] = objp;
- }
- }
- /**
- * kmem_cache_alloc - Allocate an object
- * @cachep: The cache to allocate from.
- * @flags: See kmalloc().
- *
- * Allocate an object from this cache. The flags are only relevant
- * if the cache has no available objects.
- */
- void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
- {
- void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
- trace_kmem_cache_alloc(_RET_IP_, ret,
- obj_size(cachep), cachep->buffer_size, flags);
- return ret;
- }
- EXPORT_SYMBOL(kmem_cache_alloc);
- #ifdef CONFIG_TRACING
- void *
- kmem_cache_alloc_trace(size_t size, struct kmem_cache *cachep, gfp_t flags)
- {
- void *ret;
- ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
- trace_kmalloc(_RET_IP_, ret,
- size, slab_buffer_size(cachep), flags);
- return ret;
- }
- EXPORT_SYMBOL(kmem_cache_alloc_trace);
- #endif
- #ifdef CONFIG_NUMA
- void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
- {
- void *ret = __cache_alloc_node(cachep, flags, nodeid,
- __builtin_return_address(0));
- trace_kmem_cache_alloc_node(_RET_IP_, ret,
- obj_size(cachep), cachep->buffer_size,
- flags, nodeid);
- return ret;
- }
- EXPORT_SYMBOL(kmem_cache_alloc_node);
- #ifdef CONFIG_TRACING
- void *kmem_cache_alloc_node_trace(size_t size,
- struct kmem_cache *cachep,
- gfp_t flags,
- int nodeid)
- {
- void *ret;
- ret = __cache_alloc_node(cachep, flags, nodeid,
- __builtin_return_address(0));
- trace_kmalloc_node(_RET_IP_, ret,
- size, slab_buffer_size(cachep),
- flags, nodeid);
- return ret;
- }
- EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
- #endif
- static __always_inline void *
- __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
- {
- struct kmem_cache *cachep;
- cachep = kmem_find_general_cachep(size, flags);
- if (unlikely(ZERO_OR_NULL_PTR(cachep)))
- return cachep;
- return kmem_cache_alloc_node_trace(size, cachep, flags, node);
- }
- #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
- void *__kmalloc_node(size_t size, gfp_t flags, int node)
- {
- return __do_kmalloc_node(size, flags, node,
- __builtin_return_address(0));
- }
- EXPORT_SYMBOL(__kmalloc_node);
- void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
- int node, unsigned long caller)
- {
- return __do_kmalloc_node(size, flags, node, (void *)caller);
- }
- EXPORT_SYMBOL(__kmalloc_node_track_caller);
- #else
- void *__kmalloc_node(size_t size, gfp_t flags, int node)
- {
- return __do_kmalloc_node(size, flags, node, NULL);
- }
- EXPORT_SYMBOL(__kmalloc_node);
- #endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
- #endif /* CONFIG_NUMA */
- /**
- * __do_kmalloc - allocate memory
- * @size: how many bytes of memory are required.
- * @flags: the type of memory to allocate (see kmalloc).
- * @caller: function caller for debug tracking of the caller
- */
- static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
- void *caller)
- {
- struct kmem_cache *cachep;
- void *ret;
- /* If you want to save a few bytes .text space: replace
- * __ with kmem_.
- * Then kmalloc uses the uninlined functions instead of the inline
- * functions.
- */
- cachep = __find_general_cachep(size, flags);
- if (unlikely(ZERO_OR_NULL_PTR(cachep)))
- return cachep;
- ret = __cache_alloc(cachep, flags, caller);
- trace_kmalloc((unsigned long) caller, ret,
- size, cachep->buffer_size, flags);
- return ret;
- }
- #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
- void *__kmalloc(size_t size, gfp_t flags)
- {
- return __do_kmalloc(size, flags, __builtin_return_address(0));
- }
- EXPORT_SYMBOL(__kmalloc);
- void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
- {
- return __do_kmalloc(size, flags, (void *)caller);
- }
- EXPORT_SYMBOL(__kmalloc_track_caller);
- #else
- void *__kmalloc(size_t size, gfp_t flags)
- {
- return __do_kmalloc(size, flags, NULL);
- }
- EXPORT_SYMBOL(__kmalloc);
- #endif
- /**
- * kmem_cache_free - Deallocate an object
- * @cachep: The cache the allocation was from.
- * @objp: The previously allocated object.
- *
- * Free an object which was previously allocated from this
- * cache.
- */
- void kmem_cache_free(struct kmem_cache *cachep, void *objp)
- {
- unsigned long flags;
- local_irq_save(flags);
- debug_check_no_locks_freed(objp, obj_size(cachep));
- if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
- debug_check_no_obj_freed(objp, obj_size(cachep));
- __cache_free(cachep, objp, __builtin_return_address(0));
- local_irq_restore(flags);
- trace_kmem_cache_free(_RET_IP_, objp);
- }
- EXPORT_SYMBOL(kmem_cache_free);
- /**
- * kfree - free previously allocated memory
- * @objp: pointer returned by kmalloc.
- *
- * If @objp is NULL, no operation is performed.
- *
- * Don't free memory not originally allocated by kmalloc()
- * or you will run into trouble.
- */
- void kfree(const void *objp)
- {
- struct kmem_cache *c;
- unsigned long flags;
- trace_kfree(_RET_IP_, objp);
- if (unlikely(ZERO_OR_NULL_PTR(objp)))
- return;
- local_irq_save(flags);
- kfree_debugcheck(objp);
- c = virt_to_cache(objp);
- debug_check_no_locks_freed(objp, obj_size(c));
- debug_check_no_obj_freed(objp, obj_size(c));
- __cache_free(c, (void *)objp, __builtin_return_address(0));
- local_irq_restore(flags);
- }
- EXPORT_SYMBOL(kfree);
- unsigned int kmem_cache_size(struct kmem_cache *cachep)
- {
- return obj_size(cachep);
- }
- EXPORT_SYMBOL(kmem_cache_size);
- /*
- * This initializes kmem_list3 or resizes various caches for all nodes.
- */
- static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
- {
- int node;
- struct kmem_list3 *l3;
- struct array_cache *new_shared;
- struct array_cache **new_alien = NULL;
- for_each_online_node(node) {
- if (use_alien_caches) {
- new_alien = alloc_alien_cache(node, cachep->limit, gfp);
- if (!new_alien)
- goto fail;
- }
- new_shared = NULL;
- if (cachep->shared) {
- new_shared = alloc_arraycache(node,
- cachep->shared*cachep->batchcount,
- 0xbaadf00d, gfp);
- if (!new_shared) {
- free_alien_cache(new_alien);
- goto fail;
- }
- }
- l3 = cachep->nodelists[node];
- if (l3) {
- struct array_cache *shared = l3->shared;
- spin_lock_irq(&l3->list_lock);
- if (shared)
- free_block(cachep, shared->entry,
- shared->avail, node);
- l3->shared = new_shared;
- if (!l3->alien) {
- l3->alien = new_alien;
- new_alien = NULL;
- }
- l3->free_limit = (1 + nr_cpus_node(node)) *
- cachep->batchcount + cachep->num;
- spin_unlock_irq(&l3->list_lock);
- kfree(shared);
- free_alien_cache(new_alien);
- continue;
- }
- l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
- if (!l3) {
- free_alien_cache(new_alien);
- kfree(new_shared);
- goto fail;
- }
- kmem_list3_init(l3);
- l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
- ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
- l3->shared = new_shared;
- l3->alien = new_alien;
- l3->free_limit = (1 + nr_cpus_node(node)) *
- cachep->batchcount + cachep->num;
- cachep->nodelists[node] = l3;
- }
- return 0;
- fail:
- if (!cachep->next.next) {
- /* Cache is not active yet. Roll back what we did */
- node--;
- while (node >= 0) {
- if (cachep->nodelists[node]) {
- l3 = cachep->nodelists[node];
- kfree(l3->shared);
- free_alien_cache(l3->alien);
- kfree(l3);
- cachep->nodelists[node] = NULL;
- }
- node--;
- }
- }
- return -ENOMEM;
- }
- struct ccupdate_struct {
- struct kmem_cache *cachep;
- struct array_cache *new[NR_CPUS];
- };
- static void do_ccupdate_local(void *info)
- {
- struct ccupdate_struct *new = info;
- struct array_cache *old;
- check_irq_off();
- old = cpu_cache_get(new->cachep);
- new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
- new->new[smp_processor_id()] = old;
- }
- /* Always called with the cache_chain_mutex held */
- static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
- int batchcount, int shared, gfp_t gfp)
- {
- struct ccupdate_struct *new;
- int i;
- new = kzalloc(sizeof(*new), gfp);
- if (!new)
- return -ENOMEM;
- for_each_online_cpu(i) {
- new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
- batchcount, gfp);
- if (!new->new[i]) {
- for (i--; i >= 0; i--)
- kfree(new->new[i]);
- kfree(new);
- return -ENOMEM;
- }
- }
- new->cachep = cachep;
- on_each_cpu(do_ccupdate_local, (void *)new, 1);
- check_irq_on();
- cachep->batchcount = batchcount;
- cachep->limit = limit;
- cachep->shared = shared;
- for_each_online_cpu(i) {
- struct array_cache *ccold = new->new[i];
- if (!ccold)
- continue;
- spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
- free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
- spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
- kfree(ccold);
- }
- kfree(new);
- return alloc_kmemlist(cachep, gfp);
- }
- /* Called with cache_chain_mutex held always */
- static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
- {
- int err;
- int limit, shared;
- /*
- * The head array serves three purposes:
- * - create a LIFO ordering, i.e. return objects that are cache-warm
- * - reduce the number of spinlock operations.
- * - reduce the number of linked list operations on the slab and
- * bufctl chains: array operations are cheaper.
- * The numbers are guessed, we should auto-tune as described by
- * Bonwick.
- */
- if (cachep->buffer_size > 131072)
- limit = 1;
- else if (cachep->buffer_size > PAGE_SIZE)
- limit = 8;
- else if (cachep->buffer_size > 1024)
- limit = 24;
- else if (cachep->buffer_size > 256)
- limit = 54;
- else
- limit = 120;
- /*
- * CPU bound tasks (e.g. network routing) can exhibit cpu bound
- * allocation behaviour: Most allocs on one cpu, most free operations
- * on another cpu. For these cases, an efficient object passing between
- * cpus is necessary. This is provided by a shared array. The array
- * replaces Bonwick's magazine layer.
- * On uniprocessor, it's functionally equivalent (but less efficient)
- * to a larger limit. Thus disabled by default.
- */
- shared = 0;
- if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
- shared = 8;
- #if DEBUG
- /*
- * With debugging enabled, large batchcount lead to excessively long
- * periods with disabled local interrupts. Limit the batchcount
- */
- if (limit > 32)
- limit = 32;
- #endif
- err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
- if (err)
- printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
- cachep->name, -err);
- return err;
- }
- /*
- * Drain an array if it contains any elements taking the l3 lock only if
- * necessary. Note that the l3 listlock also protects the array_cache
- * if drain_array() is used on the shared array.
- */
- static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
- struct array_cache *ac, int force, int node)
- {
- int tofree;
- if (!ac || !ac->avail)
- return;
- if (ac->touched && !force) {
- ac->touched = 0;
- } else {
- spin_lock_irq(&l3->list_lock);
- if (ac->avail) {
- tofree = force ? ac->avail : (ac->limit + 4) / 5;
- if (tofree > ac->avail)
- tofree = (ac->avail + 1) / 2;
- free_block(cachep, ac->entry, tofree, node);
- ac->avail -= tofree;
- memmove(ac->entry, &(ac->entry[tofree]),
- sizeof(void *) * ac->avail);
- }
- spin_unlock_irq(&l3->list_lock);
- }
- }
- /**
- * cache_reap - Reclaim memory from caches.
- * @w: work descriptor
- *
- * Called from workqueue/eventd every few seconds.
- * Purpose:
- * - clear the per-cpu caches for this CPU.
- * - return freeable pages to the main free memory pool.
- *
- * If we cannot acquire the cache chain mutex then just give up - we'll try
- * again on the next iteration.
- */
- static void cache_reap(struct work_struct *w)
- {
- struct kmem_cache *searchp;
- struct kmem_list3 *l3;
- int node = numa_mem_id();
- struct delayed_work *work = to_delayed_work(w);
- if (!mutex_trylock(&cache_chain_mutex))
- /* Give up. Setup the next iteration. */
- goto out;
- list_for_each_entry(searchp, &cache_chain, next) {
- check_irq_on();
- /*
- * We only take the l3 lock if absolutely necessary and we
- * have established with reasonable certainty that
- * we can do some work if the lock was obtained.
- */
- l3 = searchp->nodelists[node];
- reap_alien(searchp, l3);
- drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
- /*
- * These are racy checks but it does not matter
- * if we skip one check or scan twice.
- */
- if (time_after(l3->next_reap, jiffies))
- goto next;
- l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
- drain_array(searchp, l3, l3->shared, 0, node);
- if (l3->free_touched)
- l3->free_touched = 0;
- else {
- int freed;
- freed = drain_freelist(searchp, l3, (l3->free_limit +
- 5 * searchp->num - 1) / (5 * searchp->num));
- STATS_ADD_REAPED(searchp, freed);
- }
- next:
- cond_resched();
- }
- check_irq_on();
- mutex_unlock(&cache_chain_mutex);
- next_reap_node();
- out:
- /* Set up the next iteration */
- schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
- }
- #ifdef CONFIG_SLABINFO
- static void print_slabinfo_header(struct seq_file *m)
- {
- /*
- * Output format version, so at least we can change it
- * without _too_ many complaints.
- */
- #if STATS
- seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
- #else
- seq_puts(m, "slabinfo - version: 2.1\n");
- #endif
- seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
- "<objperslab> <pagesperslab>");
- seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
- seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
- #if STATS
- seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
- "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
- seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
- #endif
- seq_putc(m, '\n');
- }
- static void *s_start(struct seq_file *m, loff_t *pos)
- {
- loff_t n = *pos;
- mutex_lock(&cache_chain_mutex);
- if (!n)
- print_slabinfo_header(m);
- return seq_list_start(&cache_chain, *pos);
- }
- static void *s_next(struct seq_file *m, void *p, loff_t *pos)
- {
- return seq_list_next(p, &cache_chain, pos);
- }
- static void s_stop(struct seq_file *m, void *p)
- {
- mutex_unlock(&cache_chain_mutex);
- }
- static int s_show(struct seq_file *m, void *p)
- {
- struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
- struct slab *slabp;
- unsigned long active_objs;
- unsigned long num_objs;
- unsigned long active_slabs = 0;
- unsigned long num_slabs, free_objects = 0, shared_avail = 0;
- const char *name;
- char *error = NULL;
- int node;
- struct kmem_list3 *l3;
- active_objs = 0;
- num_slabs = 0;
- for_each_online_node(node) {
- l3 = cachep->nodelists[node];
- if (!l3)
- continue;
- check_irq_on();
- spin_lock_irq(&l3->list_lock);
- list_for_each_entry(slabp, &l3->slabs_full, list) {
- if (slabp->inuse != cachep->num && !error)
- error = "slabs_full accounting error";
- active_objs += cachep->num;
- active_slabs++;
- }
- list_for_each_entry(slabp, &l3->slabs_partial, list) {
- if (slabp->inuse == cachep->num && !error)
- error = "slabs_partial inuse accounting error";
- if (!slabp->inuse && !error)
- error = "slabs_partial/inuse accounting error";
- active_objs += slabp->inuse;
- active_slabs++;
- }
- list_for_each_entry(slabp, &l3->slabs_free, list) {
- if (slabp->inuse && !error)
- error = "slabs_free/inuse accounting error";
- num_slabs++;
- }
- free_objects += l3->free_objects;
- if (l3->shared)
- shared_avail += l3->shared->avail;
- spin_unlock_irq(&l3->list_lock);
- }
- num_slabs += active_slabs;
- num_objs = num_slabs * cachep->num;
- if (num_objs - active_objs != free_objects && !error)
- error = "free_objects accounting error";
- name = cachep->name;
- if (error)
- printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
- seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
- name, active_objs, num_objs, cachep->buffer_size,
- cachep->num, (1 << cachep->gfporder));
- seq_printf(m, " : tunables %4u %4u %4u",
- cachep->limit, cachep->batchcount, cachep->shared);
- seq_printf(m, " : slabdata %6lu %6lu %6lu",
- active_slabs, num_slabs, shared_avail);
- #if STATS
- { /* list3 stats */
- unsigned long high = cachep->high_mark;
- unsigned long allocs = cachep->num_allocations;
- unsigned long grown = cachep->grown;
- unsigned long reaped = cachep->reaped;
- unsigned long errors = cachep->errors;
- unsigned long max_freeable = cachep->max_freeable;
- unsigned long node_allocs = cachep->node_allocs;
- unsigned long node_frees = cachep->node_frees;
- unsigned long overflows = cachep->node_overflow;
- seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
- "%4lu %4lu %4lu %4lu %4lu",
- allocs, high, grown,
- reaped, errors, max_freeable, node_allocs,
- node_frees, overflows);
- }
- /* cpu stats */
- {
- unsigned long allochit = atomic_read(&cachep->allochit);
- unsigned long allocmiss = atomic_read(&cachep->allocmiss);
- unsigned long freehit = atomic_read(&cachep->freehit);
- unsigned long freemiss = atomic_read(&cachep->freemiss);
- seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
- allochit, allocmiss, freehit, freemiss);
- }
- #endif
- seq_putc(m, '\n');
- return 0;
- }
- /*
- * slabinfo_op - iterator that generates /proc/slabinfo
- *
- * Output layout:
- * cache-name
- * num-active-objs
- * total-objs
- * object size
- * num-active-slabs
- * total-slabs
- * num-pages-per-slab
- * + further values on SMP and with statistics enabled
- */
- static const struct seq_operations slabinfo_op = {
- .start = s_start,
- .next = s_next,
- .stop = s_stop,
- .show = s_show,
- };
- #define MAX_SLABINFO_WRITE 128
- /**
- * slabinfo_write - Tuning for the slab allocator
- * @file: unused
- * @buffer: user buffer
- * @count: data length
- * @ppos: unused
- */
- static ssize_t slabinfo_write(struct file *file, const char __user *buffer,
- size_t count, loff_t *ppos)
- {
- char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
- int limit, batchcount, shared, res;
- struct kmem_cache *cachep;
- if (count > MAX_SLABINFO_WRITE)
- return -EINVAL;
- if (copy_from_user(&kbuf, buffer, count))
- return -EFAULT;
- kbuf[MAX_SLABINFO_WRITE] = '\0';
- tmp = strchr(kbuf, ' ');
- if (!tmp)
- return -EINVAL;
- *tmp = '\0';
- tmp++;
- if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
- return -EINVAL;
- /* Find the cache in the chain of caches. */
- mutex_lock(&cache_chain_mutex);
- res = -EINVAL;
- list_for_each_entry(cachep, &cache_chain, next) {
- if (!strcmp(cachep->name, kbuf)) {
- if (limit < 1 || batchcount < 1 ||
- batchcount > limit || shared < 0) {
- res = 0;
- } else {
- res = do_tune_cpucache(cachep, limit,
- batchcount, shared,
- GFP_KERNEL);
- }
- break;
- }
- }
- mutex_unlock(&cache_chain_mutex);
- if (res >= 0)
- res = count;
- return res;
- }
- static int slabinfo_open(struct inode *inode, struct file *file)
- {
- return seq_open(file, &slabinfo_op);
- }
- static const struct file_operations proc_slabinfo_operations = {
- .open = slabinfo_open,
- .read = seq_read,
- .write = slabinfo_write,
- .llseek = seq_lseek,
- .release = seq_release,
- };
- #ifdef CONFIG_DEBUG_SLAB_LEAK
- static void *leaks_start(struct seq_file *m, loff_t *pos)
- {
- mutex_lock(&cache_chain_mutex);
- return seq_list_start(&cache_chain, *pos);
- }
- static inline int add_caller(unsigned long *n, unsigned long v)
- {
- unsigned long *p;
- int l;
- if (!v)
- return 1;
- l = n[1];
- p = n + 2;
- while (l) {
- int i = l/2;
- unsigned long *q = p + 2 * i;
- if (*q == v) {
- q[1]++;
- return 1;
- }
- if (*q > v) {
- l = i;
- } else {
- p = q + 2;
- l -= i + 1;
- }
- }
- if (++n[1] == n[0])
- return 0;
- memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
- p[0] = v;
- p[1] = 1;
- return 1;
- }
- static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
- {
- void *p;
- int i;
- if (n[0] == n[1])
- return;
- for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
- if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
- continue;
- if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
- return;
- }
- }
- static void show_symbol(struct seq_file *m, unsigned long address)
- {
- #ifdef CONFIG_KALLSYMS
- unsigned long offset, size;
- char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
- if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
- seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
- if (modname[0])
- seq_printf(m, " [%s]", modname);
- return;
- }
- #endif
- seq_printf(m, "%p", (void *)address);
- }
- static int leaks_show(struct seq_file *m, void *p)
- {
- struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
- struct slab *slabp;
- struct kmem_list3 *l3;
- const char *name;
- unsigned long *n = m->private;
- int node;
- int i;
- if (!(cachep->flags & SLAB_STORE_USER))
- return 0;
- if (!(cachep->flags & SLAB_RED_ZONE))
- return 0;
- /* OK, we can do it */
- n[1] = 0;
- for_each_online_node(node) {
- l3 = cachep->nodelists[node];
- if (!l3)
- continue;
- check_irq_on();
- spin_lock_irq(&l3->list_lock);
- list_for_each_entry(slabp, &l3->slabs_full, list)
- handle_slab(n, cachep, slabp);
- list_for_each_entry(slabp, &l3->slabs_partial, list)
- handle_slab(n, cachep, slabp);
- spin_unlock_irq(&l3->list_lock);
- }
- name = cachep->name;
- if (n[0] == n[1]) {
- /* Increase the buffer size */
- mutex_unlock(&cache_chain_mutex);
- m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
- if (!m->private) {
- /* Too bad, we are really out */
- m->private = n;
- mutex_lock(&cache_chain_mutex);
- return -ENOMEM;
- }
- *(unsigned long *)m->private = n[0] * 2;
- kfree(n);
- mutex_lock(&cache_chain_mutex);
- /* Now make sure this entry will be retried */
- m->count = m->size;
- return 0;
- }
- for (i = 0; i < n[1]; i++) {
- seq_printf(m, "%s: %lu ", name, n[2*i+3]);
- show_symbol(m, n[2*i+2]);
- seq_putc(m, '\n');
- }
- return 0;
- }
- static const struct seq_operations slabstats_op = {
- .start = leaks_start,
- .next = s_next,
- .stop = s_stop,
- .show = leaks_show,
- };
- static int slabstats_open(struct inode *inode, struct file *file)
- {
- unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
- int ret = -ENOMEM;
- if (n) {
- ret = seq_open(file, &slabstats_op);
- if (!ret) {
- struct seq_file *m = file->private_data;
- *n = PAGE_SIZE / (2 * sizeof(unsigned long));
- m->private = n;
- n = NULL;
- }
- kfree(n);
- }
- return ret;
- }
- static const struct file_operations proc_slabstats_operations = {
- .open = slabstats_open,
- .read = seq_read,
- .llseek = seq_lseek,
- .release = seq_release_private,
- };
- #endif
- static int __init slab_proc_init(void)
- {
- proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
- #ifdef CONFIG_DEBUG_SLAB_LEAK
- proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
- #endif
- return 0;
- }
- module_init(slab_proc_init);
- #endif
- /**
- * ksize - get the actual amount of memory allocated for a given object
- * @objp: Pointer to the object
- *
- * kmalloc may internally round up allocations and return more memory
- * than requested. ksize() can be used to determine the actual amount of
- * memory allocated. The caller may use this additional memory, even though
- * a smaller amount of memory was initially specified with the kmalloc call.
- * The caller must guarantee that objp points to a valid object previously
- * allocated with either kmalloc() or kmem_cache_alloc(). The object
- * must not be freed during the duration of the call.
- */
- size_t ksize(const void *objp)
- {
- BUG_ON(!objp);
- if (unlikely(objp == ZERO_SIZE_PTR))
- return 0;
- return obj_size(virt_to_cache(objp));
- }
- EXPORT_SYMBOL(ksize);
|