build.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393
  1. /*
  2. * JFFS2 -- Journalling Flash File System, Version 2.
  3. *
  4. * Copyright © 2001-2007 Red Hat, Inc.
  5. * Copyright © 2004-2010 David Woodhouse <dwmw2@infradead.org>
  6. *
  7. * Created by David Woodhouse <dwmw2@infradead.org>
  8. *
  9. * For licensing information, see the file 'LICENCE' in this directory.
  10. *
  11. */
  12. #include <linux/kernel.h>
  13. #include <linux/sched.h>
  14. #include <linux/slab.h>
  15. #include <linux/vmalloc.h>
  16. #include <linux/mtd/mtd.h>
  17. #include "nodelist.h"
  18. static void jffs2_build_remove_unlinked_inode(struct jffs2_sb_info *,
  19. struct jffs2_inode_cache *, struct jffs2_full_dirent **);
  20. static inline struct jffs2_inode_cache *
  21. first_inode_chain(int *i, struct jffs2_sb_info *c)
  22. {
  23. for (; *i < c->inocache_hashsize; (*i)++) {
  24. if (c->inocache_list[*i])
  25. return c->inocache_list[*i];
  26. }
  27. return NULL;
  28. }
  29. static inline struct jffs2_inode_cache *
  30. next_inode(int *i, struct jffs2_inode_cache *ic, struct jffs2_sb_info *c)
  31. {
  32. /* More in this chain? */
  33. if (ic->next)
  34. return ic->next;
  35. (*i)++;
  36. return first_inode_chain(i, c);
  37. }
  38. #define for_each_inode(i, c, ic) \
  39. for (i = 0, ic = first_inode_chain(&i, (c)); \
  40. ic; \
  41. ic = next_inode(&i, ic, (c)))
  42. static void jffs2_build_inode_pass1(struct jffs2_sb_info *c,
  43. struct jffs2_inode_cache *ic)
  44. {
  45. struct jffs2_full_dirent *fd;
  46. dbg_fsbuild("building directory inode #%u\n", ic->ino);
  47. /* For each child, increase nlink */
  48. for(fd = ic->scan_dents; fd; fd = fd->next) {
  49. struct jffs2_inode_cache *child_ic;
  50. if (!fd->ino)
  51. continue;
  52. /* we can get high latency here with huge directories */
  53. child_ic = jffs2_get_ino_cache(c, fd->ino);
  54. if (!child_ic) {
  55. dbg_fsbuild("child \"%s\" (ino #%u) of dir ino #%u doesn't exist!\n",
  56. fd->name, fd->ino, ic->ino);
  57. jffs2_mark_node_obsolete(c, fd->raw);
  58. continue;
  59. }
  60. if (fd->type == DT_DIR) {
  61. if (child_ic->pino_nlink) {
  62. JFFS2_ERROR("child dir \"%s\" (ino #%u) of dir ino #%u appears to be a hard link\n",
  63. fd->name, fd->ino, ic->ino);
  64. /* TODO: What do we do about it? */
  65. } else {
  66. child_ic->pino_nlink = ic->ino;
  67. }
  68. } else
  69. child_ic->pino_nlink++;
  70. dbg_fsbuild("increased nlink for child \"%s\" (ino #%u)\n", fd->name, fd->ino);
  71. /* Can't free scan_dents so far. We might need them in pass 2 */
  72. }
  73. }
  74. /* Scan plan:
  75. - Scan physical nodes. Build map of inodes/dirents. Allocate inocaches as we go
  76. - Scan directory tree from top down, setting nlink in inocaches
  77. - Scan inocaches for inodes with nlink==0
  78. */
  79. static int jffs2_build_filesystem(struct jffs2_sb_info *c)
  80. {
  81. int ret;
  82. int i;
  83. struct jffs2_inode_cache *ic;
  84. struct jffs2_full_dirent *fd;
  85. struct jffs2_full_dirent *dead_fds = NULL;
  86. dbg_fsbuild("build FS data structures\n");
  87. /* First, scan the medium and build all the inode caches with
  88. lists of physical nodes */
  89. c->flags |= JFFS2_SB_FLAG_SCANNING;
  90. ret = jffs2_scan_medium(c);
  91. c->flags &= ~JFFS2_SB_FLAG_SCANNING;
  92. if (ret)
  93. goto exit;
  94. dbg_fsbuild("scanned flash completely\n");
  95. jffs2_dbg_dump_block_lists_nolock(c);
  96. dbg_fsbuild("pass 1 starting\n");
  97. c->flags |= JFFS2_SB_FLAG_BUILDING;
  98. /* Now scan the directory tree, increasing nlink according to every dirent found. */
  99. for_each_inode(i, c, ic) {
  100. if (ic->scan_dents) {
  101. jffs2_build_inode_pass1(c, ic);
  102. cond_resched();
  103. }
  104. }
  105. dbg_fsbuild("pass 1 complete\n");
  106. /* Next, scan for inodes with nlink == 0 and remove them. If
  107. they were directories, then decrement the nlink of their
  108. children too, and repeat the scan. As that's going to be
  109. a fairly uncommon occurrence, it's not so evil to do it this
  110. way. Recursion bad. */
  111. dbg_fsbuild("pass 2 starting\n");
  112. for_each_inode(i, c, ic) {
  113. if (ic->pino_nlink)
  114. continue;
  115. jffs2_build_remove_unlinked_inode(c, ic, &dead_fds);
  116. cond_resched();
  117. }
  118. dbg_fsbuild("pass 2a starting\n");
  119. while (dead_fds) {
  120. fd = dead_fds;
  121. dead_fds = fd->next;
  122. ic = jffs2_get_ino_cache(c, fd->ino);
  123. if (ic)
  124. jffs2_build_remove_unlinked_inode(c, ic, &dead_fds);
  125. jffs2_free_full_dirent(fd);
  126. }
  127. dbg_fsbuild("pass 2a complete\n");
  128. dbg_fsbuild("freeing temporary data structures\n");
  129. /* Finally, we can scan again and free the dirent structs */
  130. for_each_inode(i, c, ic) {
  131. while(ic->scan_dents) {
  132. fd = ic->scan_dents;
  133. ic->scan_dents = fd->next;
  134. jffs2_free_full_dirent(fd);
  135. }
  136. ic->scan_dents = NULL;
  137. cond_resched();
  138. }
  139. jffs2_build_xattr_subsystem(c);
  140. c->flags &= ~JFFS2_SB_FLAG_BUILDING;
  141. dbg_fsbuild("FS build complete\n");
  142. /* Rotate the lists by some number to ensure wear levelling */
  143. jffs2_rotate_lists(c);
  144. ret = 0;
  145. exit:
  146. if (ret) {
  147. for_each_inode(i, c, ic) {
  148. while(ic->scan_dents) {
  149. fd = ic->scan_dents;
  150. ic->scan_dents = fd->next;
  151. jffs2_free_full_dirent(fd);
  152. }
  153. }
  154. jffs2_clear_xattr_subsystem(c);
  155. }
  156. return ret;
  157. }
  158. static void jffs2_build_remove_unlinked_inode(struct jffs2_sb_info *c,
  159. struct jffs2_inode_cache *ic,
  160. struct jffs2_full_dirent **dead_fds)
  161. {
  162. struct jffs2_raw_node_ref *raw;
  163. struct jffs2_full_dirent *fd;
  164. dbg_fsbuild("removing ino #%u with nlink == zero.\n", ic->ino);
  165. raw = ic->nodes;
  166. while (raw != (void *)ic) {
  167. struct jffs2_raw_node_ref *next = raw->next_in_ino;
  168. dbg_fsbuild("obsoleting node at 0x%08x\n", ref_offset(raw));
  169. jffs2_mark_node_obsolete(c, raw);
  170. raw = next;
  171. }
  172. if (ic->scan_dents) {
  173. int whinged = 0;
  174. dbg_fsbuild("inode #%u was a directory which may have children...\n", ic->ino);
  175. while(ic->scan_dents) {
  176. struct jffs2_inode_cache *child_ic;
  177. fd = ic->scan_dents;
  178. ic->scan_dents = fd->next;
  179. if (!fd->ino) {
  180. /* It's a deletion dirent. Ignore it */
  181. dbg_fsbuild("child \"%s\" is a deletion dirent, skipping...\n", fd->name);
  182. jffs2_free_full_dirent(fd);
  183. continue;
  184. }
  185. if (!whinged)
  186. whinged = 1;
  187. dbg_fsbuild("removing child \"%s\", ino #%u\n", fd->name, fd->ino);
  188. child_ic = jffs2_get_ino_cache(c, fd->ino);
  189. if (!child_ic) {
  190. dbg_fsbuild("cannot remove child \"%s\", ino #%u, because it doesn't exist\n",
  191. fd->name, fd->ino);
  192. jffs2_free_full_dirent(fd);
  193. continue;
  194. }
  195. /* Reduce nlink of the child. If it's now zero, stick it on the
  196. dead_fds list to be cleaned up later. Else just free the fd */
  197. if (fd->type == DT_DIR)
  198. child_ic->pino_nlink = 0;
  199. else
  200. child_ic->pino_nlink--;
  201. if (!child_ic->pino_nlink) {
  202. dbg_fsbuild("inode #%u (\"%s\") now has no links; adding to dead_fds list.\n",
  203. fd->ino, fd->name);
  204. fd->next = *dead_fds;
  205. *dead_fds = fd;
  206. } else {
  207. dbg_fsbuild("inode #%u (\"%s\") has now got nlink %d. Ignoring.\n",
  208. fd->ino, fd->name, child_ic->pino_nlink);
  209. jffs2_free_full_dirent(fd);
  210. }
  211. }
  212. }
  213. /*
  214. We don't delete the inocache from the hash list and free it yet.
  215. The erase code will do that, when all the nodes are completely gone.
  216. */
  217. }
  218. static void jffs2_calc_trigger_levels(struct jffs2_sb_info *c)
  219. {
  220. uint32_t size;
  221. /* Deletion should almost _always_ be allowed. We're fairly
  222. buggered once we stop allowing people to delete stuff
  223. because there's not enough free space... */
  224. c->resv_blocks_deletion = 2;
  225. /* Be conservative about how much space we need before we allow writes.
  226. On top of that which is required for deletia, require an extra 2%
  227. of the medium to be available, for overhead caused by nodes being
  228. split across blocks, etc. */
  229. size = c->flash_size / 50; /* 2% of flash size */
  230. size += c->nr_blocks * 100; /* And 100 bytes per eraseblock */
  231. size += c->sector_size - 1; /* ... and round up */
  232. c->resv_blocks_write = c->resv_blocks_deletion + (size / c->sector_size);
  233. /* When do we let the GC thread run in the background */
  234. c->resv_blocks_gctrigger = c->resv_blocks_write + 1;
  235. /* When do we allow garbage collection to merge nodes to make
  236. long-term progress at the expense of short-term space exhaustion? */
  237. c->resv_blocks_gcmerge = c->resv_blocks_deletion + 1;
  238. /* When do we allow garbage collection to eat from bad blocks rather
  239. than actually making progress? */
  240. c->resv_blocks_gcbad = 0;//c->resv_blocks_deletion + 2;
  241. /* What number of 'very dirty' eraseblocks do we allow before we
  242. trigger the GC thread even if we don't _need_ the space. When we
  243. can't mark nodes obsolete on the medium, the old dirty nodes cause
  244. performance problems because we have to inspect and discard them. */
  245. c->vdirty_blocks_gctrigger = c->resv_blocks_gctrigger;
  246. if (jffs2_can_mark_obsolete(c))
  247. c->vdirty_blocks_gctrigger *= 10;
  248. /* If there's less than this amount of dirty space, don't bother
  249. trying to GC to make more space. It'll be a fruitless task */
  250. c->nospc_dirty_size = c->sector_size + (c->flash_size / 100);
  251. dbg_fsbuild("JFFS2 trigger levels (size %d KiB, block size %d KiB, %d blocks)\n",
  252. c->flash_size / 1024, c->sector_size / 1024, c->nr_blocks);
  253. dbg_fsbuild("Blocks required to allow deletion: %d (%d KiB)\n",
  254. c->resv_blocks_deletion, c->resv_blocks_deletion*c->sector_size/1024);
  255. dbg_fsbuild("Blocks required to allow writes: %d (%d KiB)\n",
  256. c->resv_blocks_write, c->resv_blocks_write*c->sector_size/1024);
  257. dbg_fsbuild("Blocks required to quiesce GC thread: %d (%d KiB)\n",
  258. c->resv_blocks_gctrigger, c->resv_blocks_gctrigger*c->sector_size/1024);
  259. dbg_fsbuild("Blocks required to allow GC merges: %d (%d KiB)\n",
  260. c->resv_blocks_gcmerge, c->resv_blocks_gcmerge*c->sector_size/1024);
  261. dbg_fsbuild("Blocks required to GC bad blocks: %d (%d KiB)\n",
  262. c->resv_blocks_gcbad, c->resv_blocks_gcbad*c->sector_size/1024);
  263. dbg_fsbuild("Amount of dirty space required to GC: %d bytes\n",
  264. c->nospc_dirty_size);
  265. dbg_fsbuild("Very dirty blocks before GC triggered: %d\n",
  266. c->vdirty_blocks_gctrigger);
  267. }
  268. int jffs2_do_mount_fs(struct jffs2_sb_info *c)
  269. {
  270. int ret;
  271. int i;
  272. int size;
  273. c->free_size = c->flash_size;
  274. c->nr_blocks = c->flash_size / c->sector_size;
  275. size = sizeof(struct jffs2_eraseblock) * c->nr_blocks;
  276. #ifndef __ECOS
  277. if (jffs2_blocks_use_vmalloc(c))
  278. c->blocks = vzalloc(size);
  279. else
  280. #endif
  281. c->blocks = kzalloc(size, GFP_KERNEL);
  282. if (!c->blocks)
  283. return -ENOMEM;
  284. for (i=0; i<c->nr_blocks; i++) {
  285. INIT_LIST_HEAD(&c->blocks[i].list);
  286. c->blocks[i].offset = i * c->sector_size;
  287. c->blocks[i].free_size = c->sector_size;
  288. }
  289. INIT_LIST_HEAD(&c->clean_list);
  290. INIT_LIST_HEAD(&c->very_dirty_list);
  291. INIT_LIST_HEAD(&c->dirty_list);
  292. INIT_LIST_HEAD(&c->erasable_list);
  293. INIT_LIST_HEAD(&c->erasing_list);
  294. INIT_LIST_HEAD(&c->erase_checking_list);
  295. INIT_LIST_HEAD(&c->erase_pending_list);
  296. INIT_LIST_HEAD(&c->erasable_pending_wbuf_list);
  297. INIT_LIST_HEAD(&c->erase_complete_list);
  298. INIT_LIST_HEAD(&c->free_list);
  299. INIT_LIST_HEAD(&c->bad_list);
  300. INIT_LIST_HEAD(&c->bad_used_list);
  301. c->highest_ino = 1;
  302. c->summary = NULL;
  303. ret = jffs2_sum_init(c);
  304. if (ret)
  305. goto out_free;
  306. if (jffs2_build_filesystem(c)) {
  307. dbg_fsbuild("build_fs failed\n");
  308. jffs2_free_ino_caches(c);
  309. jffs2_free_raw_node_refs(c);
  310. ret = -EIO;
  311. goto out_free;
  312. }
  313. jffs2_calc_trigger_levels(c);
  314. return 0;
  315. out_free:
  316. #ifndef __ECOS
  317. if (jffs2_blocks_use_vmalloc(c))
  318. vfree(c->blocks);
  319. else
  320. #endif
  321. kfree(c->blocks);
  322. return ret;
  323. }