page-io.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448
  1. /*
  2. * linux/fs/ext4/page-io.c
  3. *
  4. * This contains the new page_io functions for ext4
  5. *
  6. * Written by Theodore Ts'o, 2010.
  7. */
  8. #include <linux/module.h>
  9. #include <linux/fs.h>
  10. #include <linux/time.h>
  11. #include <linux/jbd2.h>
  12. #include <linux/highuid.h>
  13. #include <linux/pagemap.h>
  14. #include <linux/quotaops.h>
  15. #include <linux/string.h>
  16. #include <linux/buffer_head.h>
  17. #include <linux/writeback.h>
  18. #include <linux/pagevec.h>
  19. #include <linux/mpage.h>
  20. #include <linux/namei.h>
  21. #include <linux/uio.h>
  22. #include <linux/bio.h>
  23. #include <linux/workqueue.h>
  24. #include <linux/kernel.h>
  25. #include <linux/slab.h>
  26. #include "ext4_jbd2.h"
  27. #include "xattr.h"
  28. #include "acl.h"
  29. #include "ext4_extents.h"
  30. static struct kmem_cache *io_page_cachep, *io_end_cachep;
  31. int __init ext4_init_pageio(void)
  32. {
  33. io_page_cachep = KMEM_CACHE(ext4_io_page, SLAB_RECLAIM_ACCOUNT);
  34. if (io_page_cachep == NULL)
  35. return -ENOMEM;
  36. io_end_cachep = KMEM_CACHE(ext4_io_end, SLAB_RECLAIM_ACCOUNT);
  37. if (io_end_cachep == NULL) {
  38. kmem_cache_destroy(io_page_cachep);
  39. return -ENOMEM;
  40. }
  41. return 0;
  42. }
  43. void ext4_exit_pageio(void)
  44. {
  45. kmem_cache_destroy(io_end_cachep);
  46. kmem_cache_destroy(io_page_cachep);
  47. }
  48. void ext4_ioend_wait(struct inode *inode)
  49. {
  50. wait_queue_head_t *wq = ext4_ioend_wq(inode);
  51. wait_event(*wq, (atomic_read(&EXT4_I(inode)->i_ioend_count) == 0));
  52. }
  53. static void put_io_page(struct ext4_io_page *io_page)
  54. {
  55. if (atomic_dec_and_test(&io_page->p_count)) {
  56. end_page_writeback(io_page->p_page);
  57. put_page(io_page->p_page);
  58. kmem_cache_free(io_page_cachep, io_page);
  59. }
  60. }
  61. void ext4_free_io_end(ext4_io_end_t *io)
  62. {
  63. int i;
  64. wait_queue_head_t *wq;
  65. BUG_ON(!io);
  66. if (io->page)
  67. put_page(io->page);
  68. for (i = 0; i < io->num_io_pages; i++)
  69. put_io_page(io->pages[i]);
  70. io->num_io_pages = 0;
  71. wq = ext4_ioend_wq(io->inode);
  72. if (atomic_dec_and_test(&EXT4_I(io->inode)->i_ioend_count) &&
  73. waitqueue_active(wq))
  74. wake_up_all(wq);
  75. kmem_cache_free(io_end_cachep, io);
  76. }
  77. /*
  78. * check a range of space and convert unwritten extents to written.
  79. */
  80. int ext4_end_io_nolock(ext4_io_end_t *io)
  81. {
  82. struct inode *inode = io->inode;
  83. loff_t offset = io->offset;
  84. ssize_t size = io->size;
  85. wait_queue_head_t *wq;
  86. int ret = 0;
  87. ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p,"
  88. "list->prev 0x%p\n",
  89. io, inode->i_ino, io->list.next, io->list.prev);
  90. if (list_empty(&io->list))
  91. return ret;
  92. if (!(io->flag & EXT4_IO_END_UNWRITTEN))
  93. return ret;
  94. ret = ext4_convert_unwritten_extents(inode, offset, size);
  95. if (ret < 0) {
  96. printk(KERN_EMERG "%s: failed to convert unwritten "
  97. "extents to written extents, error is %d "
  98. "io is still on inode %lu aio dio list\n",
  99. __func__, ret, inode->i_ino);
  100. return ret;
  101. }
  102. if (io->iocb)
  103. aio_complete(io->iocb, io->result, 0);
  104. /* clear the DIO AIO unwritten flag */
  105. if (io->flag & EXT4_IO_END_UNWRITTEN) {
  106. io->flag &= ~EXT4_IO_END_UNWRITTEN;
  107. /* Wake up anyone waiting on unwritten extent conversion */
  108. wq = ext4_ioend_wq(io->inode);
  109. if (atomic_dec_and_test(&EXT4_I(inode)->i_aiodio_unwritten) &&
  110. waitqueue_active(wq)) {
  111. wake_up_all(wq);
  112. }
  113. }
  114. return ret;
  115. }
  116. /*
  117. * work on completed aio dio IO, to convert unwritten extents to extents
  118. */
  119. static void ext4_end_io_work(struct work_struct *work)
  120. {
  121. ext4_io_end_t *io = container_of(work, ext4_io_end_t, work);
  122. struct inode *inode = io->inode;
  123. struct ext4_inode_info *ei = EXT4_I(inode);
  124. unsigned long flags;
  125. int ret;
  126. if (!mutex_trylock(&inode->i_mutex)) {
  127. /*
  128. * Requeue the work instead of waiting so that the work
  129. * items queued after this can be processed.
  130. */
  131. queue_work(EXT4_SB(inode->i_sb)->dio_unwritten_wq, &io->work);
  132. /*
  133. * To prevent the ext4-dio-unwritten thread from keeping
  134. * requeueing end_io requests and occupying cpu for too long,
  135. * yield the cpu if it sees an end_io request that has already
  136. * been requeued.
  137. */
  138. if (io->flag & EXT4_IO_END_QUEUED)
  139. yield();
  140. io->flag |= EXT4_IO_END_QUEUED;
  141. return;
  142. }
  143. ret = ext4_end_io_nolock(io);
  144. if (ret < 0) {
  145. mutex_unlock(&inode->i_mutex);
  146. return;
  147. }
  148. spin_lock_irqsave(&ei->i_completed_io_lock, flags);
  149. if (!list_empty(&io->list))
  150. list_del_init(&io->list);
  151. spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
  152. mutex_unlock(&inode->i_mutex);
  153. ext4_free_io_end(io);
  154. }
  155. ext4_io_end_t *ext4_init_io_end(struct inode *inode, gfp_t flags)
  156. {
  157. ext4_io_end_t *io = kmem_cache_zalloc(io_end_cachep, flags);
  158. if (io) {
  159. atomic_inc(&EXT4_I(inode)->i_ioend_count);
  160. io->inode = inode;
  161. INIT_WORK(&io->work, ext4_end_io_work);
  162. INIT_LIST_HEAD(&io->list);
  163. }
  164. return io;
  165. }
  166. /*
  167. * Print an buffer I/O error compatible with the fs/buffer.c. This
  168. * provides compatibility with dmesg scrapers that look for a specific
  169. * buffer I/O error message. We really need a unified error reporting
  170. * structure to userspace ala Digital Unix's uerf system, but it's
  171. * probably not going to happen in my lifetime, due to LKML politics...
  172. */
  173. static void buffer_io_error(struct buffer_head *bh)
  174. {
  175. char b[BDEVNAME_SIZE];
  176. printk(KERN_ERR "Buffer I/O error on device %s, logical block %llu\n",
  177. bdevname(bh->b_bdev, b),
  178. (unsigned long long)bh->b_blocknr);
  179. }
  180. static void ext4_end_bio(struct bio *bio, int error)
  181. {
  182. ext4_io_end_t *io_end = bio->bi_private;
  183. struct workqueue_struct *wq;
  184. struct inode *inode;
  185. unsigned long flags;
  186. int i;
  187. sector_t bi_sector = bio->bi_sector;
  188. BUG_ON(!io_end);
  189. bio->bi_private = NULL;
  190. bio->bi_end_io = NULL;
  191. if (test_bit(BIO_UPTODATE, &bio->bi_flags))
  192. error = 0;
  193. bio_put(bio);
  194. for (i = 0; i < io_end->num_io_pages; i++) {
  195. struct page *page = io_end->pages[i]->p_page;
  196. struct buffer_head *bh, *head;
  197. loff_t offset;
  198. loff_t io_end_offset;
  199. if (error) {
  200. SetPageError(page);
  201. set_bit(AS_EIO, &page->mapping->flags);
  202. head = page_buffers(page);
  203. BUG_ON(!head);
  204. io_end_offset = io_end->offset + io_end->size;
  205. offset = (sector_t) page->index << PAGE_CACHE_SHIFT;
  206. bh = head;
  207. do {
  208. if ((offset >= io_end->offset) &&
  209. (offset+bh->b_size <= io_end_offset))
  210. buffer_io_error(bh);
  211. offset += bh->b_size;
  212. bh = bh->b_this_page;
  213. } while (bh != head);
  214. }
  215. put_io_page(io_end->pages[i]);
  216. }
  217. io_end->num_io_pages = 0;
  218. inode = io_end->inode;
  219. if (error) {
  220. io_end->flag |= EXT4_IO_END_ERROR;
  221. ext4_warning(inode->i_sb, "I/O error writing to inode %lu "
  222. "(offset %llu size %ld starting block %llu)",
  223. inode->i_ino,
  224. (unsigned long long) io_end->offset,
  225. (long) io_end->size,
  226. (unsigned long long)
  227. bi_sector >> (inode->i_blkbits - 9));
  228. }
  229. if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
  230. ext4_free_io_end(io_end);
  231. return;
  232. }
  233. /* Add the io_end to per-inode completed io list*/
  234. spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
  235. list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
  236. spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
  237. wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
  238. /* queue the work to convert unwritten extents to written */
  239. queue_work(wq, &io_end->work);
  240. }
  241. void ext4_io_submit(struct ext4_io_submit *io)
  242. {
  243. struct bio *bio = io->io_bio;
  244. if (bio) {
  245. bio_get(io->io_bio);
  246. submit_bio(io->io_op, io->io_bio);
  247. BUG_ON(bio_flagged(io->io_bio, BIO_EOPNOTSUPP));
  248. bio_put(io->io_bio);
  249. }
  250. io->io_bio = NULL;
  251. io->io_op = 0;
  252. io->io_end = NULL;
  253. }
  254. static int io_submit_init(struct ext4_io_submit *io,
  255. struct inode *inode,
  256. struct writeback_control *wbc,
  257. struct buffer_head *bh)
  258. {
  259. ext4_io_end_t *io_end;
  260. struct page *page = bh->b_page;
  261. int nvecs = bio_get_nr_vecs(bh->b_bdev);
  262. struct bio *bio;
  263. io_end = ext4_init_io_end(inode, GFP_NOFS);
  264. if (!io_end)
  265. return -ENOMEM;
  266. do {
  267. bio = bio_alloc(GFP_NOIO, nvecs);
  268. nvecs >>= 1;
  269. } while (bio == NULL);
  270. bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
  271. bio->bi_bdev = bh->b_bdev;
  272. bio->bi_private = io->io_end = io_end;
  273. bio->bi_end_io = ext4_end_bio;
  274. io_end->offset = (page->index << PAGE_CACHE_SHIFT) + bh_offset(bh);
  275. io->io_bio = bio;
  276. io->io_op = (wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE);
  277. io->io_next_block = bh->b_blocknr;
  278. return 0;
  279. }
  280. static int io_submit_add_bh(struct ext4_io_submit *io,
  281. struct ext4_io_page *io_page,
  282. struct inode *inode,
  283. struct writeback_control *wbc,
  284. struct buffer_head *bh)
  285. {
  286. ext4_io_end_t *io_end;
  287. int ret;
  288. if (buffer_new(bh)) {
  289. clear_buffer_new(bh);
  290. unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
  291. }
  292. if (!buffer_mapped(bh) || buffer_delay(bh)) {
  293. if (!buffer_mapped(bh))
  294. clear_buffer_dirty(bh);
  295. if (io->io_bio)
  296. ext4_io_submit(io);
  297. return 0;
  298. }
  299. if (io->io_bio && bh->b_blocknr != io->io_next_block) {
  300. submit_and_retry:
  301. ext4_io_submit(io);
  302. }
  303. if (io->io_bio == NULL) {
  304. ret = io_submit_init(io, inode, wbc, bh);
  305. if (ret)
  306. return ret;
  307. }
  308. io_end = io->io_end;
  309. if ((io_end->num_io_pages >= MAX_IO_PAGES) &&
  310. (io_end->pages[io_end->num_io_pages-1] != io_page))
  311. goto submit_and_retry;
  312. if (buffer_uninit(bh) && !(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
  313. io_end->flag |= EXT4_IO_END_UNWRITTEN;
  314. atomic_inc(&EXT4_I(inode)->i_aiodio_unwritten);
  315. }
  316. io->io_end->size += bh->b_size;
  317. io->io_next_block++;
  318. ret = bio_add_page(io->io_bio, bh->b_page, bh->b_size, bh_offset(bh));
  319. if (ret != bh->b_size)
  320. goto submit_and_retry;
  321. if ((io_end->num_io_pages == 0) ||
  322. (io_end->pages[io_end->num_io_pages-1] != io_page)) {
  323. io_end->pages[io_end->num_io_pages++] = io_page;
  324. atomic_inc(&io_page->p_count);
  325. }
  326. return 0;
  327. }
  328. int ext4_bio_write_page(struct ext4_io_submit *io,
  329. struct page *page,
  330. int len,
  331. struct writeback_control *wbc)
  332. {
  333. struct inode *inode = page->mapping->host;
  334. unsigned block_start, block_end, blocksize;
  335. struct ext4_io_page *io_page;
  336. struct buffer_head *bh, *head;
  337. int ret = 0;
  338. blocksize = 1 << inode->i_blkbits;
  339. BUG_ON(!PageLocked(page));
  340. BUG_ON(PageWriteback(page));
  341. io_page = kmem_cache_alloc(io_page_cachep, GFP_NOFS);
  342. if (!io_page) {
  343. set_page_dirty(page);
  344. unlock_page(page);
  345. return -ENOMEM;
  346. }
  347. io_page->p_page = page;
  348. atomic_set(&io_page->p_count, 1);
  349. get_page(page);
  350. set_page_writeback(page);
  351. ClearPageError(page);
  352. for (bh = head = page_buffers(page), block_start = 0;
  353. bh != head || !block_start;
  354. block_start = block_end, bh = bh->b_this_page) {
  355. block_end = block_start + blocksize;
  356. if (block_start >= len) {
  357. /*
  358. * Comments copied from block_write_full_page_endio:
  359. *
  360. * The page straddles i_size. It must be zeroed out on
  361. * each and every writepage invocation because it may
  362. * be mmapped. "A file is mapped in multiples of the
  363. * page size. For a file that is not a multiple of
  364. * the page size, the remaining memory is zeroed when
  365. * mapped, and writes to that region are not written
  366. * out to the file."
  367. */
  368. zero_user_segment(page, block_start, block_end);
  369. clear_buffer_dirty(bh);
  370. set_buffer_uptodate(bh);
  371. continue;
  372. }
  373. clear_buffer_dirty(bh);
  374. ret = io_submit_add_bh(io, io_page, inode, wbc, bh);
  375. if (ret) {
  376. /*
  377. * We only get here on ENOMEM. Not much else
  378. * we can do but mark the page as dirty, and
  379. * better luck next time.
  380. */
  381. set_page_dirty(page);
  382. break;
  383. }
  384. }
  385. unlock_page(page);
  386. /*
  387. * If the page was truncated before we could do the writeback,
  388. * or we had a memory allocation error while trying to write
  389. * the first buffer head, we won't have submitted any pages for
  390. * I/O. In that case we need to make sure we've cleared the
  391. * PageWriteback bit from the page to prevent the system from
  392. * wedging later on.
  393. */
  394. put_io_page(io_page);
  395. return ret;
  396. }