c_can.c 31 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153
  1. /*
  2. * CAN bus driver for Bosch C_CAN controller
  3. *
  4. * Copyright (C) 2010 ST Microelectronics
  5. * Bhupesh Sharma <bhupesh.sharma@st.com>
  6. *
  7. * Borrowed heavily from the C_CAN driver originally written by:
  8. * Copyright (C) 2007
  9. * - Sascha Hauer, Marc Kleine-Budde, Pengutronix <s.hauer@pengutronix.de>
  10. * - Simon Kallweit, intefo AG <simon.kallweit@intefo.ch>
  11. *
  12. * TX and RX NAPI implementation has been borrowed from at91 CAN driver
  13. * written by:
  14. * Copyright
  15. * (C) 2007 by Hans J. Koch <hjk@hansjkoch.de>
  16. * (C) 2008, 2009 by Marc Kleine-Budde <kernel@pengutronix.de>
  17. *
  18. * Bosch C_CAN controller is compliant to CAN protocol version 2.0 part A and B.
  19. * Bosch C_CAN user manual can be obtained from:
  20. * http://www.semiconductors.bosch.de/media/en/pdf/ipmodules_1/c_can/
  21. * users_manual_c_can.pdf
  22. *
  23. * This file is licensed under the terms of the GNU General Public
  24. * License version 2. This program is licensed "as is" without any
  25. * warranty of any kind, whether express or implied.
  26. */
  27. #include <linux/kernel.h>
  28. #include <linux/version.h>
  29. #include <linux/module.h>
  30. #include <linux/interrupt.h>
  31. #include <linux/delay.h>
  32. #include <linux/netdevice.h>
  33. #include <linux/if_arp.h>
  34. #include <linux/if_ether.h>
  35. #include <linux/list.h>
  36. #include <linux/delay.h>
  37. #include <linux/io.h>
  38. #include <linux/can.h>
  39. #include <linux/can/dev.h>
  40. #include <linux/can/error.h>
  41. #include "c_can.h"
  42. /* control register */
  43. #define CONTROL_TEST BIT(7)
  44. #define CONTROL_CCE BIT(6)
  45. #define CONTROL_DISABLE_AR BIT(5)
  46. #define CONTROL_ENABLE_AR (0 << 5)
  47. #define CONTROL_EIE BIT(3)
  48. #define CONTROL_SIE BIT(2)
  49. #define CONTROL_IE BIT(1)
  50. #define CONTROL_INIT BIT(0)
  51. /* test register */
  52. #define TEST_RX BIT(7)
  53. #define TEST_TX1 BIT(6)
  54. #define TEST_TX2 BIT(5)
  55. #define TEST_LBACK BIT(4)
  56. #define TEST_SILENT BIT(3)
  57. #define TEST_BASIC BIT(2)
  58. /* status register */
  59. #define STATUS_BOFF BIT(7)
  60. #define STATUS_EWARN BIT(6)
  61. #define STATUS_EPASS BIT(5)
  62. #define STATUS_RXOK BIT(4)
  63. #define STATUS_TXOK BIT(3)
  64. /* error counter register */
  65. #define ERR_CNT_TEC_MASK 0xff
  66. #define ERR_CNT_TEC_SHIFT 0
  67. #define ERR_CNT_REC_SHIFT 8
  68. #define ERR_CNT_REC_MASK (0x7f << ERR_CNT_REC_SHIFT)
  69. #define ERR_CNT_RP_SHIFT 15
  70. #define ERR_CNT_RP_MASK (0x1 << ERR_CNT_RP_SHIFT)
  71. /* bit-timing register */
  72. #define BTR_BRP_MASK 0x3f
  73. #define BTR_BRP_SHIFT 0
  74. #define BTR_SJW_SHIFT 6
  75. #define BTR_SJW_MASK (0x3 << BTR_SJW_SHIFT)
  76. #define BTR_TSEG1_SHIFT 8
  77. #define BTR_TSEG1_MASK (0xf << BTR_TSEG1_SHIFT)
  78. #define BTR_TSEG2_SHIFT 12
  79. #define BTR_TSEG2_MASK (0x7 << BTR_TSEG2_SHIFT)
  80. /* brp extension register */
  81. #define BRP_EXT_BRPE_MASK 0x0f
  82. #define BRP_EXT_BRPE_SHIFT 0
  83. /* IFx command request */
  84. #define IF_COMR_BUSY BIT(15)
  85. /* IFx command mask */
  86. #define IF_COMM_WR BIT(7)
  87. #define IF_COMM_MASK BIT(6)
  88. #define IF_COMM_ARB BIT(5)
  89. #define IF_COMM_CONTROL BIT(4)
  90. #define IF_COMM_CLR_INT_PND BIT(3)
  91. #define IF_COMM_TXRQST BIT(2)
  92. #define IF_COMM_DATAA BIT(1)
  93. #define IF_COMM_DATAB BIT(0)
  94. #define IF_COMM_ALL (IF_COMM_MASK | IF_COMM_ARB | \
  95. IF_COMM_CONTROL | IF_COMM_TXRQST | \
  96. IF_COMM_DATAA | IF_COMM_DATAB)
  97. /* IFx arbitration */
  98. #define IF_ARB_MSGVAL BIT(15)
  99. #define IF_ARB_MSGXTD BIT(14)
  100. #define IF_ARB_TRANSMIT BIT(13)
  101. /* IFx message control */
  102. #define IF_MCONT_NEWDAT BIT(15)
  103. #define IF_MCONT_MSGLST BIT(14)
  104. #define IF_MCONT_CLR_MSGLST (0 << 14)
  105. #define IF_MCONT_INTPND BIT(13)
  106. #define IF_MCONT_UMASK BIT(12)
  107. #define IF_MCONT_TXIE BIT(11)
  108. #define IF_MCONT_RXIE BIT(10)
  109. #define IF_MCONT_RMTEN BIT(9)
  110. #define IF_MCONT_TXRQST BIT(8)
  111. #define IF_MCONT_EOB BIT(7)
  112. #define IF_MCONT_DLC_MASK 0xf
  113. /*
  114. * IFx register masks:
  115. * allow easy operation on 16-bit registers when the
  116. * argument is 32-bit instead
  117. */
  118. #define IFX_WRITE_LOW_16BIT(x) ((x) & 0xFFFF)
  119. #define IFX_WRITE_HIGH_16BIT(x) (((x) & 0xFFFF0000) >> 16)
  120. /* message object split */
  121. #define C_CAN_NO_OF_OBJECTS 32
  122. #define C_CAN_MSG_OBJ_RX_NUM 16
  123. #define C_CAN_MSG_OBJ_TX_NUM 16
  124. #define C_CAN_MSG_OBJ_RX_FIRST 1
  125. #define C_CAN_MSG_OBJ_RX_LAST (C_CAN_MSG_OBJ_RX_FIRST + \
  126. C_CAN_MSG_OBJ_RX_NUM - 1)
  127. #define C_CAN_MSG_OBJ_TX_FIRST (C_CAN_MSG_OBJ_RX_LAST + 1)
  128. #define C_CAN_MSG_OBJ_TX_LAST (C_CAN_MSG_OBJ_TX_FIRST + \
  129. C_CAN_MSG_OBJ_TX_NUM - 1)
  130. #define C_CAN_MSG_OBJ_RX_SPLIT 9
  131. #define C_CAN_MSG_RX_LOW_LAST (C_CAN_MSG_OBJ_RX_SPLIT - 1)
  132. #define C_CAN_NEXT_MSG_OBJ_MASK (C_CAN_MSG_OBJ_TX_NUM - 1)
  133. #define RECEIVE_OBJECT_BITS 0x0000ffff
  134. /* status interrupt */
  135. #define STATUS_INTERRUPT 0x8000
  136. /* global interrupt masks */
  137. #define ENABLE_ALL_INTERRUPTS 1
  138. #define DISABLE_ALL_INTERRUPTS 0
  139. /* minimum timeout for checking BUSY status */
  140. #define MIN_TIMEOUT_VALUE 6
  141. /* napi related */
  142. #define C_CAN_NAPI_WEIGHT C_CAN_MSG_OBJ_RX_NUM
  143. /* c_can lec values */
  144. enum c_can_lec_type {
  145. LEC_NO_ERROR = 0,
  146. LEC_STUFF_ERROR,
  147. LEC_FORM_ERROR,
  148. LEC_ACK_ERROR,
  149. LEC_BIT1_ERROR,
  150. LEC_BIT0_ERROR,
  151. LEC_CRC_ERROR,
  152. LEC_UNUSED,
  153. };
  154. /*
  155. * c_can error types:
  156. * Bus errors (BUS_OFF, ERROR_WARNING, ERROR_PASSIVE) are supported
  157. */
  158. enum c_can_bus_error_types {
  159. C_CAN_NO_ERROR = 0,
  160. C_CAN_BUS_OFF,
  161. C_CAN_ERROR_WARNING,
  162. C_CAN_ERROR_PASSIVE,
  163. };
  164. static struct can_bittiming_const c_can_bittiming_const = {
  165. .name = KBUILD_MODNAME,
  166. .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */
  167. .tseg1_max = 16,
  168. .tseg2_min = 1, /* Time segment 2 = phase_seg2 */
  169. .tseg2_max = 8,
  170. .sjw_max = 4,
  171. .brp_min = 1,
  172. .brp_max = 1024, /* 6-bit BRP field + 4-bit BRPE field*/
  173. .brp_inc = 1,
  174. };
  175. static inline int get_tx_next_msg_obj(const struct c_can_priv *priv)
  176. {
  177. return (priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) +
  178. C_CAN_MSG_OBJ_TX_FIRST;
  179. }
  180. static inline int get_tx_echo_msg_obj(const struct c_can_priv *priv)
  181. {
  182. return (priv->tx_echo & C_CAN_NEXT_MSG_OBJ_MASK) +
  183. C_CAN_MSG_OBJ_TX_FIRST;
  184. }
  185. static u32 c_can_read_reg32(struct c_can_priv *priv, void *reg)
  186. {
  187. u32 val = priv->read_reg(priv, reg);
  188. val |= ((u32) priv->read_reg(priv, reg + 2)) << 16;
  189. return val;
  190. }
  191. static void c_can_enable_all_interrupts(struct c_can_priv *priv,
  192. int enable)
  193. {
  194. unsigned int cntrl_save = priv->read_reg(priv,
  195. &priv->regs->control);
  196. if (enable)
  197. cntrl_save |= (CONTROL_SIE | CONTROL_EIE | CONTROL_IE);
  198. else
  199. cntrl_save &= ~(CONTROL_EIE | CONTROL_IE | CONTROL_SIE);
  200. priv->write_reg(priv, &priv->regs->control, cntrl_save);
  201. }
  202. static inline int c_can_msg_obj_is_busy(struct c_can_priv *priv, int iface)
  203. {
  204. int count = MIN_TIMEOUT_VALUE;
  205. while (count && priv->read_reg(priv,
  206. &priv->regs->ifregs[iface].com_req) &
  207. IF_COMR_BUSY) {
  208. count--;
  209. udelay(1);
  210. }
  211. if (!count)
  212. return 1;
  213. return 0;
  214. }
  215. static inline void c_can_object_get(struct net_device *dev,
  216. int iface, int objno, int mask)
  217. {
  218. struct c_can_priv *priv = netdev_priv(dev);
  219. /*
  220. * As per specs, after writting the message object number in the
  221. * IF command request register the transfer b/w interface
  222. * register and message RAM must be complete in 6 CAN-CLK
  223. * period.
  224. */
  225. priv->write_reg(priv, &priv->regs->ifregs[iface].com_mask,
  226. IFX_WRITE_LOW_16BIT(mask));
  227. priv->write_reg(priv, &priv->regs->ifregs[iface].com_req,
  228. IFX_WRITE_LOW_16BIT(objno));
  229. if (c_can_msg_obj_is_busy(priv, iface))
  230. netdev_err(dev, "timed out in object get\n");
  231. }
  232. static inline void c_can_object_put(struct net_device *dev,
  233. int iface, int objno, int mask)
  234. {
  235. struct c_can_priv *priv = netdev_priv(dev);
  236. /*
  237. * As per specs, after writting the message object number in the
  238. * IF command request register the transfer b/w interface
  239. * register and message RAM must be complete in 6 CAN-CLK
  240. * period.
  241. */
  242. priv->write_reg(priv, &priv->regs->ifregs[iface].com_mask,
  243. (IF_COMM_WR | IFX_WRITE_LOW_16BIT(mask)));
  244. priv->write_reg(priv, &priv->regs->ifregs[iface].com_req,
  245. IFX_WRITE_LOW_16BIT(objno));
  246. if (c_can_msg_obj_is_busy(priv, iface))
  247. netdev_err(dev, "timed out in object put\n");
  248. }
  249. static void c_can_write_msg_object(struct net_device *dev,
  250. int iface, struct can_frame *frame, int objno)
  251. {
  252. int i;
  253. u16 flags = 0;
  254. unsigned int id;
  255. struct c_can_priv *priv = netdev_priv(dev);
  256. if (!(frame->can_id & CAN_RTR_FLAG))
  257. flags |= IF_ARB_TRANSMIT;
  258. if (frame->can_id & CAN_EFF_FLAG) {
  259. id = frame->can_id & CAN_EFF_MASK;
  260. flags |= IF_ARB_MSGXTD;
  261. } else
  262. id = ((frame->can_id & CAN_SFF_MASK) << 18);
  263. flags |= IF_ARB_MSGVAL;
  264. priv->write_reg(priv, &priv->regs->ifregs[iface].arb1,
  265. IFX_WRITE_LOW_16BIT(id));
  266. priv->write_reg(priv, &priv->regs->ifregs[iface].arb2, flags |
  267. IFX_WRITE_HIGH_16BIT(id));
  268. for (i = 0; i < frame->can_dlc; i += 2) {
  269. priv->write_reg(priv, &priv->regs->ifregs[iface].data[i / 2],
  270. frame->data[i] | (frame->data[i + 1] << 8));
  271. }
  272. /* enable interrupt for this message object */
  273. priv->write_reg(priv, &priv->regs->ifregs[iface].msg_cntrl,
  274. IF_MCONT_TXIE | IF_MCONT_TXRQST | IF_MCONT_EOB |
  275. frame->can_dlc);
  276. c_can_object_put(dev, iface, objno, IF_COMM_ALL);
  277. }
  278. static inline void c_can_mark_rx_msg_obj(struct net_device *dev,
  279. int iface, int ctrl_mask,
  280. int obj)
  281. {
  282. struct c_can_priv *priv = netdev_priv(dev);
  283. priv->write_reg(priv, &priv->regs->ifregs[iface].msg_cntrl,
  284. ctrl_mask & ~(IF_MCONT_MSGLST | IF_MCONT_INTPND));
  285. c_can_object_put(dev, iface, obj, IF_COMM_CONTROL);
  286. }
  287. static inline void c_can_activate_all_lower_rx_msg_obj(struct net_device *dev,
  288. int iface,
  289. int ctrl_mask)
  290. {
  291. int i;
  292. struct c_can_priv *priv = netdev_priv(dev);
  293. for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_MSG_RX_LOW_LAST; i++) {
  294. priv->write_reg(priv, &priv->regs->ifregs[iface].msg_cntrl,
  295. ctrl_mask & ~(IF_MCONT_MSGLST |
  296. IF_MCONT_INTPND | IF_MCONT_NEWDAT));
  297. c_can_object_put(dev, iface, i, IF_COMM_CONTROL);
  298. }
  299. }
  300. static inline void c_can_activate_rx_msg_obj(struct net_device *dev,
  301. int iface, int ctrl_mask,
  302. int obj)
  303. {
  304. struct c_can_priv *priv = netdev_priv(dev);
  305. priv->write_reg(priv, &priv->regs->ifregs[iface].msg_cntrl,
  306. ctrl_mask & ~(IF_MCONT_MSGLST |
  307. IF_MCONT_INTPND | IF_MCONT_NEWDAT));
  308. c_can_object_put(dev, iface, obj, IF_COMM_CONTROL);
  309. }
  310. static void c_can_handle_lost_msg_obj(struct net_device *dev,
  311. int iface, int objno)
  312. {
  313. struct c_can_priv *priv = netdev_priv(dev);
  314. struct net_device_stats *stats = &dev->stats;
  315. struct sk_buff *skb;
  316. struct can_frame *frame;
  317. netdev_err(dev, "msg lost in buffer %d\n", objno);
  318. c_can_object_get(dev, iface, objno, IF_COMM_ALL & ~IF_COMM_TXRQST);
  319. priv->write_reg(priv, &priv->regs->ifregs[iface].msg_cntrl,
  320. IF_MCONT_CLR_MSGLST);
  321. c_can_object_put(dev, 0, objno, IF_COMM_CONTROL);
  322. /* create an error msg */
  323. skb = alloc_can_err_skb(dev, &frame);
  324. if (unlikely(!skb))
  325. return;
  326. frame->can_id |= CAN_ERR_CRTL;
  327. frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
  328. stats->rx_errors++;
  329. stats->rx_over_errors++;
  330. netif_receive_skb(skb);
  331. }
  332. static int c_can_read_msg_object(struct net_device *dev, int iface, int ctrl)
  333. {
  334. u16 flags, data;
  335. int i;
  336. unsigned int val;
  337. struct c_can_priv *priv = netdev_priv(dev);
  338. struct net_device_stats *stats = &dev->stats;
  339. struct sk_buff *skb;
  340. struct can_frame *frame;
  341. skb = alloc_can_skb(dev, &frame);
  342. if (!skb) {
  343. stats->rx_dropped++;
  344. return -ENOMEM;
  345. }
  346. frame->can_dlc = get_can_dlc(ctrl & 0x0F);
  347. flags = priv->read_reg(priv, &priv->regs->ifregs[iface].arb2);
  348. val = priv->read_reg(priv, &priv->regs->ifregs[iface].arb1) |
  349. (flags << 16);
  350. if (flags & IF_ARB_MSGXTD)
  351. frame->can_id = (val & CAN_EFF_MASK) | CAN_EFF_FLAG;
  352. else
  353. frame->can_id = (val >> 18) & CAN_SFF_MASK;
  354. if (flags & IF_ARB_TRANSMIT)
  355. frame->can_id |= CAN_RTR_FLAG;
  356. else {
  357. for (i = 0; i < frame->can_dlc; i += 2) {
  358. data = priv->read_reg(priv,
  359. &priv->regs->ifregs[iface].data[i / 2]);
  360. frame->data[i] = data;
  361. frame->data[i + 1] = data >> 8;
  362. }
  363. }
  364. netif_receive_skb(skb);
  365. stats->rx_packets++;
  366. stats->rx_bytes += frame->can_dlc;
  367. return 0;
  368. }
  369. static void c_can_setup_receive_object(struct net_device *dev, int iface,
  370. int objno, unsigned int mask,
  371. unsigned int id, unsigned int mcont)
  372. {
  373. struct c_can_priv *priv = netdev_priv(dev);
  374. priv->write_reg(priv, &priv->regs->ifregs[iface].mask1,
  375. IFX_WRITE_LOW_16BIT(mask));
  376. priv->write_reg(priv, &priv->regs->ifregs[iface].mask2,
  377. IFX_WRITE_HIGH_16BIT(mask));
  378. priv->write_reg(priv, &priv->regs->ifregs[iface].arb1,
  379. IFX_WRITE_LOW_16BIT(id));
  380. priv->write_reg(priv, &priv->regs->ifregs[iface].arb2,
  381. (IF_ARB_MSGVAL | IFX_WRITE_HIGH_16BIT(id)));
  382. priv->write_reg(priv, &priv->regs->ifregs[iface].msg_cntrl, mcont);
  383. c_can_object_put(dev, iface, objno, IF_COMM_ALL & ~IF_COMM_TXRQST);
  384. netdev_dbg(dev, "obj no:%d, msgval:0x%08x\n", objno,
  385. c_can_read_reg32(priv, &priv->regs->msgval1));
  386. }
  387. static void c_can_inval_msg_object(struct net_device *dev, int iface, int objno)
  388. {
  389. struct c_can_priv *priv = netdev_priv(dev);
  390. priv->write_reg(priv, &priv->regs->ifregs[iface].arb1, 0);
  391. priv->write_reg(priv, &priv->regs->ifregs[iface].arb2, 0);
  392. priv->write_reg(priv, &priv->regs->ifregs[iface].msg_cntrl, 0);
  393. c_can_object_put(dev, iface, objno, IF_COMM_ARB | IF_COMM_CONTROL);
  394. netdev_dbg(dev, "obj no:%d, msgval:0x%08x\n", objno,
  395. c_can_read_reg32(priv, &priv->regs->msgval1));
  396. }
  397. static inline int c_can_is_next_tx_obj_busy(struct c_can_priv *priv, int objno)
  398. {
  399. int val = c_can_read_reg32(priv, &priv->regs->txrqst1);
  400. /*
  401. * as transmission request register's bit n-1 corresponds to
  402. * message object n, we need to handle the same properly.
  403. */
  404. if (val & (1 << (objno - 1)))
  405. return 1;
  406. return 0;
  407. }
  408. static netdev_tx_t c_can_start_xmit(struct sk_buff *skb,
  409. struct net_device *dev)
  410. {
  411. u32 msg_obj_no;
  412. struct c_can_priv *priv = netdev_priv(dev);
  413. struct can_frame *frame = (struct can_frame *)skb->data;
  414. if (can_dropped_invalid_skb(dev, skb))
  415. return NETDEV_TX_OK;
  416. msg_obj_no = get_tx_next_msg_obj(priv);
  417. /* prepare message object for transmission */
  418. c_can_write_msg_object(dev, 0, frame, msg_obj_no);
  419. can_put_echo_skb(skb, dev, msg_obj_no - C_CAN_MSG_OBJ_TX_FIRST);
  420. /*
  421. * we have to stop the queue in case of a wrap around or
  422. * if the next TX message object is still in use
  423. */
  424. priv->tx_next++;
  425. if (c_can_is_next_tx_obj_busy(priv, get_tx_next_msg_obj(priv)) ||
  426. (priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) == 0)
  427. netif_stop_queue(dev);
  428. return NETDEV_TX_OK;
  429. }
  430. static int c_can_set_bittiming(struct net_device *dev)
  431. {
  432. unsigned int reg_btr, reg_brpe, ctrl_save;
  433. u8 brp, brpe, sjw, tseg1, tseg2;
  434. u32 ten_bit_brp;
  435. struct c_can_priv *priv = netdev_priv(dev);
  436. const struct can_bittiming *bt = &priv->can.bittiming;
  437. /* c_can provides a 6-bit brp and 4-bit brpe fields */
  438. ten_bit_brp = bt->brp - 1;
  439. brp = ten_bit_brp & BTR_BRP_MASK;
  440. brpe = ten_bit_brp >> 6;
  441. sjw = bt->sjw - 1;
  442. tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
  443. tseg2 = bt->phase_seg2 - 1;
  444. reg_btr = brp | (sjw << BTR_SJW_SHIFT) | (tseg1 << BTR_TSEG1_SHIFT) |
  445. (tseg2 << BTR_TSEG2_SHIFT);
  446. reg_brpe = brpe & BRP_EXT_BRPE_MASK;
  447. netdev_info(dev,
  448. "setting BTR=%04x BRPE=%04x\n", reg_btr, reg_brpe);
  449. ctrl_save = priv->read_reg(priv, &priv->regs->control);
  450. priv->write_reg(priv, &priv->regs->control,
  451. ctrl_save | CONTROL_CCE | CONTROL_INIT);
  452. priv->write_reg(priv, &priv->regs->btr, reg_btr);
  453. priv->write_reg(priv, &priv->regs->brp_ext, reg_brpe);
  454. priv->write_reg(priv, &priv->regs->control, ctrl_save);
  455. return 0;
  456. }
  457. /*
  458. * Configure C_CAN message objects for Tx and Rx purposes:
  459. * C_CAN provides a total of 32 message objects that can be configured
  460. * either for Tx or Rx purposes. Here the first 16 message objects are used as
  461. * a reception FIFO. The end of reception FIFO is signified by the EoB bit
  462. * being SET. The remaining 16 message objects are kept aside for Tx purposes.
  463. * See user guide document for further details on configuring message
  464. * objects.
  465. */
  466. static void c_can_configure_msg_objects(struct net_device *dev)
  467. {
  468. int i;
  469. /* first invalidate all message objects */
  470. for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_NO_OF_OBJECTS; i++)
  471. c_can_inval_msg_object(dev, 0, i);
  472. /* setup receive message objects */
  473. for (i = C_CAN_MSG_OBJ_RX_FIRST; i < C_CAN_MSG_OBJ_RX_LAST; i++)
  474. c_can_setup_receive_object(dev, 0, i, 0, 0,
  475. (IF_MCONT_RXIE | IF_MCONT_UMASK) & ~IF_MCONT_EOB);
  476. c_can_setup_receive_object(dev, 0, C_CAN_MSG_OBJ_RX_LAST, 0, 0,
  477. IF_MCONT_EOB | IF_MCONT_RXIE | IF_MCONT_UMASK);
  478. }
  479. /*
  480. * Configure C_CAN chip:
  481. * - enable/disable auto-retransmission
  482. * - set operating mode
  483. * - configure message objects
  484. */
  485. static void c_can_chip_config(struct net_device *dev)
  486. {
  487. struct c_can_priv *priv = netdev_priv(dev);
  488. /* enable automatic retransmission */
  489. priv->write_reg(priv, &priv->regs->control,
  490. CONTROL_ENABLE_AR);
  491. if (priv->can.ctrlmode & (CAN_CTRLMODE_LISTENONLY &
  492. CAN_CTRLMODE_LOOPBACK)) {
  493. /* loopback + silent mode : useful for hot self-test */
  494. priv->write_reg(priv, &priv->regs->control, CONTROL_EIE |
  495. CONTROL_SIE | CONTROL_IE | CONTROL_TEST);
  496. priv->write_reg(priv, &priv->regs->test,
  497. TEST_LBACK | TEST_SILENT);
  498. } else if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
  499. /* loopback mode : useful for self-test function */
  500. priv->write_reg(priv, &priv->regs->control, CONTROL_EIE |
  501. CONTROL_SIE | CONTROL_IE | CONTROL_TEST);
  502. priv->write_reg(priv, &priv->regs->test, TEST_LBACK);
  503. } else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
  504. /* silent mode : bus-monitoring mode */
  505. priv->write_reg(priv, &priv->regs->control, CONTROL_EIE |
  506. CONTROL_SIE | CONTROL_IE | CONTROL_TEST);
  507. priv->write_reg(priv, &priv->regs->test, TEST_SILENT);
  508. } else
  509. /* normal mode*/
  510. priv->write_reg(priv, &priv->regs->control,
  511. CONTROL_EIE | CONTROL_SIE | CONTROL_IE);
  512. /* configure message objects */
  513. c_can_configure_msg_objects(dev);
  514. /* set a `lec` value so that we can check for updates later */
  515. priv->write_reg(priv, &priv->regs->status, LEC_UNUSED);
  516. /* set bittiming params */
  517. c_can_set_bittiming(dev);
  518. }
  519. static void c_can_start(struct net_device *dev)
  520. {
  521. struct c_can_priv *priv = netdev_priv(dev);
  522. /* basic c_can configuration */
  523. c_can_chip_config(dev);
  524. priv->can.state = CAN_STATE_ERROR_ACTIVE;
  525. /* reset tx helper pointers */
  526. priv->tx_next = priv->tx_echo = 0;
  527. /* enable status change, error and module interrupts */
  528. c_can_enable_all_interrupts(priv, ENABLE_ALL_INTERRUPTS);
  529. }
  530. static void c_can_stop(struct net_device *dev)
  531. {
  532. struct c_can_priv *priv = netdev_priv(dev);
  533. /* disable all interrupts */
  534. c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);
  535. /* set the state as STOPPED */
  536. priv->can.state = CAN_STATE_STOPPED;
  537. }
  538. static int c_can_set_mode(struct net_device *dev, enum can_mode mode)
  539. {
  540. switch (mode) {
  541. case CAN_MODE_START:
  542. c_can_start(dev);
  543. netif_wake_queue(dev);
  544. break;
  545. default:
  546. return -EOPNOTSUPP;
  547. }
  548. return 0;
  549. }
  550. static int c_can_get_berr_counter(const struct net_device *dev,
  551. struct can_berr_counter *bec)
  552. {
  553. unsigned int reg_err_counter;
  554. struct c_can_priv *priv = netdev_priv(dev);
  555. reg_err_counter = priv->read_reg(priv, &priv->regs->err_cnt);
  556. bec->rxerr = (reg_err_counter & ERR_CNT_REC_MASK) >>
  557. ERR_CNT_REC_SHIFT;
  558. bec->txerr = reg_err_counter & ERR_CNT_TEC_MASK;
  559. return 0;
  560. }
  561. /*
  562. * theory of operation:
  563. *
  564. * priv->tx_echo holds the number of the oldest can_frame put for
  565. * transmission into the hardware, but not yet ACKed by the CAN tx
  566. * complete IRQ.
  567. *
  568. * We iterate from priv->tx_echo to priv->tx_next and check if the
  569. * packet has been transmitted, echo it back to the CAN framework.
  570. * If we discover a not yet transmitted package, stop looking for more.
  571. */
  572. static void c_can_do_tx(struct net_device *dev)
  573. {
  574. u32 val;
  575. u32 msg_obj_no;
  576. struct c_can_priv *priv = netdev_priv(dev);
  577. struct net_device_stats *stats = &dev->stats;
  578. for (/* nix */; (priv->tx_next - priv->tx_echo) > 0; priv->tx_echo++) {
  579. msg_obj_no = get_tx_echo_msg_obj(priv);
  580. val = c_can_read_reg32(priv, &priv->regs->txrqst1);
  581. if (!(val & (1 << msg_obj_no))) {
  582. can_get_echo_skb(dev,
  583. msg_obj_no - C_CAN_MSG_OBJ_TX_FIRST);
  584. stats->tx_bytes += priv->read_reg(priv,
  585. &priv->regs->ifregs[0].msg_cntrl)
  586. & IF_MCONT_DLC_MASK;
  587. stats->tx_packets++;
  588. c_can_inval_msg_object(dev, 0, msg_obj_no);
  589. }
  590. }
  591. /* restart queue if wrap-up or if queue stalled on last pkt */
  592. if (((priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) != 0) ||
  593. ((priv->tx_echo & C_CAN_NEXT_MSG_OBJ_MASK) == 0))
  594. netif_wake_queue(dev);
  595. }
  596. /*
  597. * theory of operation:
  598. *
  599. * c_can core saves a received CAN message into the first free message
  600. * object it finds free (starting with the lowest). Bits NEWDAT and
  601. * INTPND are set for this message object indicating that a new message
  602. * has arrived. To work-around this issue, we keep two groups of message
  603. * objects whose partitioning is defined by C_CAN_MSG_OBJ_RX_SPLIT.
  604. *
  605. * To ensure in-order frame reception we use the following
  606. * approach while re-activating a message object to receive further
  607. * frames:
  608. * - if the current message object number is lower than
  609. * C_CAN_MSG_RX_LOW_LAST, do not clear the NEWDAT bit while clearing
  610. * the INTPND bit.
  611. * - if the current message object number is equal to
  612. * C_CAN_MSG_RX_LOW_LAST then clear the NEWDAT bit of all lower
  613. * receive message objects.
  614. * - if the current message object number is greater than
  615. * C_CAN_MSG_RX_LOW_LAST then clear the NEWDAT bit of
  616. * only this message object.
  617. */
  618. static int c_can_do_rx_poll(struct net_device *dev, int quota)
  619. {
  620. u32 num_rx_pkts = 0;
  621. unsigned int msg_obj, msg_ctrl_save;
  622. struct c_can_priv *priv = netdev_priv(dev);
  623. u32 val = c_can_read_reg32(priv, &priv->regs->intpnd1);
  624. for (msg_obj = C_CAN_MSG_OBJ_RX_FIRST;
  625. msg_obj <= C_CAN_MSG_OBJ_RX_LAST && quota > 0;
  626. val = c_can_read_reg32(priv, &priv->regs->intpnd1),
  627. msg_obj++) {
  628. /*
  629. * as interrupt pending register's bit n-1 corresponds to
  630. * message object n, we need to handle the same properly.
  631. */
  632. if (val & (1 << (msg_obj - 1))) {
  633. c_can_object_get(dev, 0, msg_obj, IF_COMM_ALL &
  634. ~IF_COMM_TXRQST);
  635. msg_ctrl_save = priv->read_reg(priv,
  636. &priv->regs->ifregs[0].msg_cntrl);
  637. if (msg_ctrl_save & IF_MCONT_EOB)
  638. return num_rx_pkts;
  639. if (msg_ctrl_save & IF_MCONT_MSGLST) {
  640. c_can_handle_lost_msg_obj(dev, 0, msg_obj);
  641. num_rx_pkts++;
  642. quota--;
  643. continue;
  644. }
  645. if (!(msg_ctrl_save & IF_MCONT_NEWDAT))
  646. continue;
  647. /* read the data from the message object */
  648. c_can_read_msg_object(dev, 0, msg_ctrl_save);
  649. if (msg_obj < C_CAN_MSG_RX_LOW_LAST)
  650. c_can_mark_rx_msg_obj(dev, 0,
  651. msg_ctrl_save, msg_obj);
  652. else if (msg_obj > C_CAN_MSG_RX_LOW_LAST)
  653. /* activate this msg obj */
  654. c_can_activate_rx_msg_obj(dev, 0,
  655. msg_ctrl_save, msg_obj);
  656. else if (msg_obj == C_CAN_MSG_RX_LOW_LAST)
  657. /* activate all lower message objects */
  658. c_can_activate_all_lower_rx_msg_obj(dev,
  659. 0, msg_ctrl_save);
  660. num_rx_pkts++;
  661. quota--;
  662. }
  663. }
  664. return num_rx_pkts;
  665. }
  666. static inline int c_can_has_and_handle_berr(struct c_can_priv *priv)
  667. {
  668. return (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
  669. (priv->current_status & LEC_UNUSED);
  670. }
  671. static int c_can_handle_state_change(struct net_device *dev,
  672. enum c_can_bus_error_types error_type)
  673. {
  674. unsigned int reg_err_counter;
  675. unsigned int rx_err_passive;
  676. struct c_can_priv *priv = netdev_priv(dev);
  677. struct net_device_stats *stats = &dev->stats;
  678. struct can_frame *cf;
  679. struct sk_buff *skb;
  680. struct can_berr_counter bec;
  681. /* propagate the error condition to the CAN stack */
  682. skb = alloc_can_err_skb(dev, &cf);
  683. if (unlikely(!skb))
  684. return 0;
  685. c_can_get_berr_counter(dev, &bec);
  686. reg_err_counter = priv->read_reg(priv, &priv->regs->err_cnt);
  687. rx_err_passive = (reg_err_counter & ERR_CNT_RP_MASK) >>
  688. ERR_CNT_RP_SHIFT;
  689. switch (error_type) {
  690. case C_CAN_ERROR_WARNING:
  691. /* error warning state */
  692. priv->can.can_stats.error_warning++;
  693. priv->can.state = CAN_STATE_ERROR_WARNING;
  694. cf->can_id |= CAN_ERR_CRTL;
  695. cf->data[1] = (bec.txerr > bec.rxerr) ?
  696. CAN_ERR_CRTL_TX_WARNING :
  697. CAN_ERR_CRTL_RX_WARNING;
  698. cf->data[6] = bec.txerr;
  699. cf->data[7] = bec.rxerr;
  700. break;
  701. case C_CAN_ERROR_PASSIVE:
  702. /* error passive state */
  703. priv->can.can_stats.error_passive++;
  704. priv->can.state = CAN_STATE_ERROR_PASSIVE;
  705. cf->can_id |= CAN_ERR_CRTL;
  706. if (rx_err_passive)
  707. cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
  708. if (bec.txerr > 127)
  709. cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
  710. cf->data[6] = bec.txerr;
  711. cf->data[7] = bec.rxerr;
  712. break;
  713. case C_CAN_BUS_OFF:
  714. /* bus-off state */
  715. priv->can.state = CAN_STATE_BUS_OFF;
  716. cf->can_id |= CAN_ERR_BUSOFF;
  717. /*
  718. * disable all interrupts in bus-off mode to ensure that
  719. * the CPU is not hogged down
  720. */
  721. c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);
  722. can_bus_off(dev);
  723. break;
  724. default:
  725. break;
  726. }
  727. netif_receive_skb(skb);
  728. stats->rx_packets++;
  729. stats->rx_bytes += cf->can_dlc;
  730. return 1;
  731. }
  732. static int c_can_handle_bus_err(struct net_device *dev,
  733. enum c_can_lec_type lec_type)
  734. {
  735. struct c_can_priv *priv = netdev_priv(dev);
  736. struct net_device_stats *stats = &dev->stats;
  737. struct can_frame *cf;
  738. struct sk_buff *skb;
  739. /*
  740. * early exit if no lec update or no error.
  741. * no lec update means that no CAN bus event has been detected
  742. * since CPU wrote 0x7 value to status reg.
  743. */
  744. if (lec_type == LEC_UNUSED || lec_type == LEC_NO_ERROR)
  745. return 0;
  746. /* propagate the error condition to the CAN stack */
  747. skb = alloc_can_err_skb(dev, &cf);
  748. if (unlikely(!skb))
  749. return 0;
  750. /*
  751. * check for 'last error code' which tells us the
  752. * type of the last error to occur on the CAN bus
  753. */
  754. /* common for all type of bus errors */
  755. priv->can.can_stats.bus_error++;
  756. stats->rx_errors++;
  757. cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
  758. cf->data[2] |= CAN_ERR_PROT_UNSPEC;
  759. switch (lec_type) {
  760. case LEC_STUFF_ERROR:
  761. netdev_dbg(dev, "stuff error\n");
  762. cf->data[2] |= CAN_ERR_PROT_STUFF;
  763. break;
  764. case LEC_FORM_ERROR:
  765. netdev_dbg(dev, "form error\n");
  766. cf->data[2] |= CAN_ERR_PROT_FORM;
  767. break;
  768. case LEC_ACK_ERROR:
  769. netdev_dbg(dev, "ack error\n");
  770. cf->data[2] |= (CAN_ERR_PROT_LOC_ACK |
  771. CAN_ERR_PROT_LOC_ACK_DEL);
  772. break;
  773. case LEC_BIT1_ERROR:
  774. netdev_dbg(dev, "bit1 error\n");
  775. cf->data[2] |= CAN_ERR_PROT_BIT1;
  776. break;
  777. case LEC_BIT0_ERROR:
  778. netdev_dbg(dev, "bit0 error\n");
  779. cf->data[2] |= CAN_ERR_PROT_BIT0;
  780. break;
  781. case LEC_CRC_ERROR:
  782. netdev_dbg(dev, "CRC error\n");
  783. cf->data[2] |= (CAN_ERR_PROT_LOC_CRC_SEQ |
  784. CAN_ERR_PROT_LOC_CRC_DEL);
  785. break;
  786. default:
  787. break;
  788. }
  789. /* set a `lec` value so that we can check for updates later */
  790. priv->write_reg(priv, &priv->regs->status, LEC_UNUSED);
  791. netif_receive_skb(skb);
  792. stats->rx_packets++;
  793. stats->rx_bytes += cf->can_dlc;
  794. return 1;
  795. }
  796. static int c_can_poll(struct napi_struct *napi, int quota)
  797. {
  798. u16 irqstatus;
  799. int lec_type = 0;
  800. int work_done = 0;
  801. struct net_device *dev = napi->dev;
  802. struct c_can_priv *priv = netdev_priv(dev);
  803. irqstatus = priv->read_reg(priv, &priv->regs->interrupt);
  804. if (!irqstatus)
  805. goto end;
  806. /* status events have the highest priority */
  807. if (irqstatus == STATUS_INTERRUPT) {
  808. priv->current_status = priv->read_reg(priv,
  809. &priv->regs->status);
  810. /* handle Tx/Rx events */
  811. if (priv->current_status & STATUS_TXOK)
  812. priv->write_reg(priv, &priv->regs->status,
  813. priv->current_status & ~STATUS_TXOK);
  814. if (priv->current_status & STATUS_RXOK)
  815. priv->write_reg(priv, &priv->regs->status,
  816. priv->current_status & ~STATUS_RXOK);
  817. /* handle state changes */
  818. if ((priv->current_status & STATUS_EWARN) &&
  819. (!(priv->last_status & STATUS_EWARN))) {
  820. netdev_dbg(dev, "entered error warning state\n");
  821. work_done += c_can_handle_state_change(dev,
  822. C_CAN_ERROR_WARNING);
  823. }
  824. if ((priv->current_status & STATUS_EPASS) &&
  825. (!(priv->last_status & STATUS_EPASS))) {
  826. netdev_dbg(dev, "entered error passive state\n");
  827. work_done += c_can_handle_state_change(dev,
  828. C_CAN_ERROR_PASSIVE);
  829. }
  830. if ((priv->current_status & STATUS_BOFF) &&
  831. (!(priv->last_status & STATUS_BOFF))) {
  832. netdev_dbg(dev, "entered bus off state\n");
  833. work_done += c_can_handle_state_change(dev,
  834. C_CAN_BUS_OFF);
  835. }
  836. /* handle bus recovery events */
  837. if ((!(priv->current_status & STATUS_BOFF)) &&
  838. (priv->last_status & STATUS_BOFF)) {
  839. netdev_dbg(dev, "left bus off state\n");
  840. priv->can.state = CAN_STATE_ERROR_ACTIVE;
  841. }
  842. if ((!(priv->current_status & STATUS_EPASS)) &&
  843. (priv->last_status & STATUS_EPASS)) {
  844. netdev_dbg(dev, "left error passive state\n");
  845. priv->can.state = CAN_STATE_ERROR_ACTIVE;
  846. }
  847. priv->last_status = priv->current_status;
  848. /* handle lec errors on the bus */
  849. lec_type = c_can_has_and_handle_berr(priv);
  850. if (lec_type)
  851. work_done += c_can_handle_bus_err(dev, lec_type);
  852. } else if ((irqstatus >= C_CAN_MSG_OBJ_RX_FIRST) &&
  853. (irqstatus <= C_CAN_MSG_OBJ_RX_LAST)) {
  854. /* handle events corresponding to receive message objects */
  855. work_done += c_can_do_rx_poll(dev, (quota - work_done));
  856. } else if ((irqstatus >= C_CAN_MSG_OBJ_TX_FIRST) &&
  857. (irqstatus <= C_CAN_MSG_OBJ_TX_LAST)) {
  858. /* handle events corresponding to transmit message objects */
  859. c_can_do_tx(dev);
  860. }
  861. end:
  862. if (work_done < quota) {
  863. napi_complete(napi);
  864. /* enable all IRQs */
  865. c_can_enable_all_interrupts(priv, ENABLE_ALL_INTERRUPTS);
  866. }
  867. return work_done;
  868. }
  869. static irqreturn_t c_can_isr(int irq, void *dev_id)
  870. {
  871. u16 irqstatus;
  872. struct net_device *dev = (struct net_device *)dev_id;
  873. struct c_can_priv *priv = netdev_priv(dev);
  874. irqstatus = priv->read_reg(priv, &priv->regs->interrupt);
  875. if (!irqstatus)
  876. return IRQ_NONE;
  877. /* disable all interrupts and schedule the NAPI */
  878. c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);
  879. napi_schedule(&priv->napi);
  880. return IRQ_HANDLED;
  881. }
  882. static int c_can_open(struct net_device *dev)
  883. {
  884. int err;
  885. struct c_can_priv *priv = netdev_priv(dev);
  886. /* open the can device */
  887. err = open_candev(dev);
  888. if (err) {
  889. netdev_err(dev, "failed to open can device\n");
  890. return err;
  891. }
  892. /* register interrupt handler */
  893. err = request_irq(dev->irq, &c_can_isr, IRQF_SHARED, dev->name,
  894. dev);
  895. if (err < 0) {
  896. netdev_err(dev, "failed to request interrupt\n");
  897. goto exit_irq_fail;
  898. }
  899. /* start the c_can controller */
  900. c_can_start(dev);
  901. napi_enable(&priv->napi);
  902. netif_start_queue(dev);
  903. return 0;
  904. exit_irq_fail:
  905. close_candev(dev);
  906. return err;
  907. }
  908. static int c_can_close(struct net_device *dev)
  909. {
  910. struct c_can_priv *priv = netdev_priv(dev);
  911. netif_stop_queue(dev);
  912. napi_disable(&priv->napi);
  913. c_can_stop(dev);
  914. free_irq(dev->irq, dev);
  915. close_candev(dev);
  916. return 0;
  917. }
  918. struct net_device *alloc_c_can_dev(void)
  919. {
  920. struct net_device *dev;
  921. struct c_can_priv *priv;
  922. dev = alloc_candev(sizeof(struct c_can_priv), C_CAN_MSG_OBJ_TX_NUM);
  923. if (!dev)
  924. return NULL;
  925. priv = netdev_priv(dev);
  926. netif_napi_add(dev, &priv->napi, c_can_poll, C_CAN_NAPI_WEIGHT);
  927. priv->dev = dev;
  928. priv->can.bittiming_const = &c_can_bittiming_const;
  929. priv->can.do_set_mode = c_can_set_mode;
  930. priv->can.do_get_berr_counter = c_can_get_berr_counter;
  931. priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
  932. CAN_CTRLMODE_LISTENONLY |
  933. CAN_CTRLMODE_BERR_REPORTING;
  934. return dev;
  935. }
  936. EXPORT_SYMBOL_GPL(alloc_c_can_dev);
  937. void free_c_can_dev(struct net_device *dev)
  938. {
  939. free_candev(dev);
  940. }
  941. EXPORT_SYMBOL_GPL(free_c_can_dev);
  942. static const struct net_device_ops c_can_netdev_ops = {
  943. .ndo_open = c_can_open,
  944. .ndo_stop = c_can_close,
  945. .ndo_start_xmit = c_can_start_xmit,
  946. };
  947. int register_c_can_dev(struct net_device *dev)
  948. {
  949. dev->flags |= IFF_ECHO; /* we support local echo */
  950. dev->netdev_ops = &c_can_netdev_ops;
  951. return register_candev(dev);
  952. }
  953. EXPORT_SYMBOL_GPL(register_c_can_dev);
  954. void unregister_c_can_dev(struct net_device *dev)
  955. {
  956. struct c_can_priv *priv = netdev_priv(dev);
  957. /* disable all interrupts */
  958. c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);
  959. unregister_candev(dev);
  960. }
  961. EXPORT_SYMBOL_GPL(unregister_c_can_dev);
  962. MODULE_AUTHOR("Bhupesh Sharma <bhupesh.sharma@st.com>");
  963. MODULE_LICENSE("GPL v2");
  964. MODULE_DESCRIPTION("CAN bus driver for Bosch C_CAN controller");