samsung.c 29 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159
  1. /*
  2. * Samsung S3C64XX/S5PC1XX OneNAND driver
  3. *
  4. * Copyright © 2008-2010 Samsung Electronics
  5. * Kyungmin Park <kyungmin.park@samsung.com>
  6. * Marek Szyprowski <m.szyprowski@samsung.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. *
  12. * Implementation:
  13. * S3C64XX and S5PC100: emulate the pseudo BufferRAM
  14. * S5PC110: use DMA
  15. */
  16. #include <linux/module.h>
  17. #include <linux/platform_device.h>
  18. #include <linux/sched.h>
  19. #include <linux/slab.h>
  20. #include <linux/mtd/mtd.h>
  21. #include <linux/mtd/onenand.h>
  22. #include <linux/mtd/partitions.h>
  23. #include <linux/dma-mapping.h>
  24. #include <linux/interrupt.h>
  25. #include <asm/mach/flash.h>
  26. #include <plat/regs-onenand.h>
  27. #include <linux/io.h>
  28. enum soc_type {
  29. TYPE_S3C6400,
  30. TYPE_S3C6410,
  31. TYPE_S5PC100,
  32. TYPE_S5PC110,
  33. };
  34. #define ONENAND_ERASE_STATUS 0x00
  35. #define ONENAND_MULTI_ERASE_SET 0x01
  36. #define ONENAND_ERASE_START 0x03
  37. #define ONENAND_UNLOCK_START 0x08
  38. #define ONENAND_UNLOCK_END 0x09
  39. #define ONENAND_LOCK_START 0x0A
  40. #define ONENAND_LOCK_END 0x0B
  41. #define ONENAND_LOCK_TIGHT_START 0x0C
  42. #define ONENAND_LOCK_TIGHT_END 0x0D
  43. #define ONENAND_UNLOCK_ALL 0x0E
  44. #define ONENAND_OTP_ACCESS 0x12
  45. #define ONENAND_SPARE_ACCESS_ONLY 0x13
  46. #define ONENAND_MAIN_ACCESS_ONLY 0x14
  47. #define ONENAND_ERASE_VERIFY 0x15
  48. #define ONENAND_MAIN_SPARE_ACCESS 0x16
  49. #define ONENAND_PIPELINE_READ 0x4000
  50. #define MAP_00 (0x0)
  51. #define MAP_01 (0x1)
  52. #define MAP_10 (0x2)
  53. #define MAP_11 (0x3)
  54. #define S3C64XX_CMD_MAP_SHIFT 24
  55. #define S5PC100_CMD_MAP_SHIFT 26
  56. #define S3C6400_FBA_SHIFT 10
  57. #define S3C6400_FPA_SHIFT 4
  58. #define S3C6400_FSA_SHIFT 2
  59. #define S3C6410_FBA_SHIFT 12
  60. #define S3C6410_FPA_SHIFT 6
  61. #define S3C6410_FSA_SHIFT 4
  62. #define S5PC100_FBA_SHIFT 13
  63. #define S5PC100_FPA_SHIFT 7
  64. #define S5PC100_FSA_SHIFT 5
  65. /* S5PC110 specific definitions */
  66. #define S5PC110_DMA_SRC_ADDR 0x400
  67. #define S5PC110_DMA_SRC_CFG 0x404
  68. #define S5PC110_DMA_DST_ADDR 0x408
  69. #define S5PC110_DMA_DST_CFG 0x40C
  70. #define S5PC110_DMA_TRANS_SIZE 0x414
  71. #define S5PC110_DMA_TRANS_CMD 0x418
  72. #define S5PC110_DMA_TRANS_STATUS 0x41C
  73. #define S5PC110_DMA_TRANS_DIR 0x420
  74. #define S5PC110_INTC_DMA_CLR 0x1004
  75. #define S5PC110_INTC_ONENAND_CLR 0x1008
  76. #define S5PC110_INTC_DMA_MASK 0x1024
  77. #define S5PC110_INTC_ONENAND_MASK 0x1028
  78. #define S5PC110_INTC_DMA_PEND 0x1044
  79. #define S5PC110_INTC_ONENAND_PEND 0x1048
  80. #define S5PC110_INTC_DMA_STATUS 0x1064
  81. #define S5PC110_INTC_ONENAND_STATUS 0x1068
  82. #define S5PC110_INTC_DMA_TD (1 << 24)
  83. #define S5PC110_INTC_DMA_TE (1 << 16)
  84. #define S5PC110_DMA_CFG_SINGLE (0x0 << 16)
  85. #define S5PC110_DMA_CFG_4BURST (0x2 << 16)
  86. #define S5PC110_DMA_CFG_8BURST (0x3 << 16)
  87. #define S5PC110_DMA_CFG_16BURST (0x4 << 16)
  88. #define S5PC110_DMA_CFG_INC (0x0 << 8)
  89. #define S5PC110_DMA_CFG_CNT (0x1 << 8)
  90. #define S5PC110_DMA_CFG_8BIT (0x0 << 0)
  91. #define S5PC110_DMA_CFG_16BIT (0x1 << 0)
  92. #define S5PC110_DMA_CFG_32BIT (0x2 << 0)
  93. #define S5PC110_DMA_SRC_CFG_READ (S5PC110_DMA_CFG_16BURST | \
  94. S5PC110_DMA_CFG_INC | \
  95. S5PC110_DMA_CFG_16BIT)
  96. #define S5PC110_DMA_DST_CFG_READ (S5PC110_DMA_CFG_16BURST | \
  97. S5PC110_DMA_CFG_INC | \
  98. S5PC110_DMA_CFG_32BIT)
  99. #define S5PC110_DMA_SRC_CFG_WRITE (S5PC110_DMA_CFG_16BURST | \
  100. S5PC110_DMA_CFG_INC | \
  101. S5PC110_DMA_CFG_32BIT)
  102. #define S5PC110_DMA_DST_CFG_WRITE (S5PC110_DMA_CFG_16BURST | \
  103. S5PC110_DMA_CFG_INC | \
  104. S5PC110_DMA_CFG_16BIT)
  105. #define S5PC110_DMA_TRANS_CMD_TDC (0x1 << 18)
  106. #define S5PC110_DMA_TRANS_CMD_TEC (0x1 << 16)
  107. #define S5PC110_DMA_TRANS_CMD_TR (0x1 << 0)
  108. #define S5PC110_DMA_TRANS_STATUS_TD (0x1 << 18)
  109. #define S5PC110_DMA_TRANS_STATUS_TB (0x1 << 17)
  110. #define S5PC110_DMA_TRANS_STATUS_TE (0x1 << 16)
  111. #define S5PC110_DMA_DIR_READ 0x0
  112. #define S5PC110_DMA_DIR_WRITE 0x1
  113. struct s3c_onenand {
  114. struct mtd_info *mtd;
  115. struct platform_device *pdev;
  116. enum soc_type type;
  117. void __iomem *base;
  118. struct resource *base_res;
  119. void __iomem *ahb_addr;
  120. struct resource *ahb_res;
  121. int bootram_command;
  122. void __iomem *page_buf;
  123. void __iomem *oob_buf;
  124. unsigned int (*mem_addr)(int fba, int fpa, int fsa);
  125. unsigned int (*cmd_map)(unsigned int type, unsigned int val);
  126. void __iomem *dma_addr;
  127. struct resource *dma_res;
  128. unsigned long phys_base;
  129. struct completion complete;
  130. struct mtd_partition *parts;
  131. };
  132. #define CMD_MAP_00(dev, addr) (dev->cmd_map(MAP_00, ((addr) << 1)))
  133. #define CMD_MAP_01(dev, mem_addr) (dev->cmd_map(MAP_01, (mem_addr)))
  134. #define CMD_MAP_10(dev, mem_addr) (dev->cmd_map(MAP_10, (mem_addr)))
  135. #define CMD_MAP_11(dev, addr) (dev->cmd_map(MAP_11, ((addr) << 2)))
  136. static struct s3c_onenand *onenand;
  137. static const char *part_probes[] = { "cmdlinepart", NULL, };
  138. static inline int s3c_read_reg(int offset)
  139. {
  140. return readl(onenand->base + offset);
  141. }
  142. static inline void s3c_write_reg(int value, int offset)
  143. {
  144. writel(value, onenand->base + offset);
  145. }
  146. static inline int s3c_read_cmd(unsigned int cmd)
  147. {
  148. return readl(onenand->ahb_addr + cmd);
  149. }
  150. static inline void s3c_write_cmd(int value, unsigned int cmd)
  151. {
  152. writel(value, onenand->ahb_addr + cmd);
  153. }
  154. #ifdef SAMSUNG_DEBUG
  155. static void s3c_dump_reg(void)
  156. {
  157. int i;
  158. for (i = 0; i < 0x400; i += 0x40) {
  159. printk(KERN_INFO "0x%08X: 0x%08x 0x%08x 0x%08x 0x%08x\n",
  160. (unsigned int) onenand->base + i,
  161. s3c_read_reg(i), s3c_read_reg(i + 0x10),
  162. s3c_read_reg(i + 0x20), s3c_read_reg(i + 0x30));
  163. }
  164. }
  165. #endif
  166. static unsigned int s3c64xx_cmd_map(unsigned type, unsigned val)
  167. {
  168. return (type << S3C64XX_CMD_MAP_SHIFT) | val;
  169. }
  170. static unsigned int s5pc1xx_cmd_map(unsigned type, unsigned val)
  171. {
  172. return (type << S5PC100_CMD_MAP_SHIFT) | val;
  173. }
  174. static unsigned int s3c6400_mem_addr(int fba, int fpa, int fsa)
  175. {
  176. return (fba << S3C6400_FBA_SHIFT) | (fpa << S3C6400_FPA_SHIFT) |
  177. (fsa << S3C6400_FSA_SHIFT);
  178. }
  179. static unsigned int s3c6410_mem_addr(int fba, int fpa, int fsa)
  180. {
  181. return (fba << S3C6410_FBA_SHIFT) | (fpa << S3C6410_FPA_SHIFT) |
  182. (fsa << S3C6410_FSA_SHIFT);
  183. }
  184. static unsigned int s5pc100_mem_addr(int fba, int fpa, int fsa)
  185. {
  186. return (fba << S5PC100_FBA_SHIFT) | (fpa << S5PC100_FPA_SHIFT) |
  187. (fsa << S5PC100_FSA_SHIFT);
  188. }
  189. static void s3c_onenand_reset(void)
  190. {
  191. unsigned long timeout = 0x10000;
  192. int stat;
  193. s3c_write_reg(ONENAND_MEM_RESET_COLD, MEM_RESET_OFFSET);
  194. while (1 && timeout--) {
  195. stat = s3c_read_reg(INT_ERR_STAT_OFFSET);
  196. if (stat & RST_CMP)
  197. break;
  198. }
  199. stat = s3c_read_reg(INT_ERR_STAT_OFFSET);
  200. s3c_write_reg(stat, INT_ERR_ACK_OFFSET);
  201. /* Clear interrupt */
  202. s3c_write_reg(0x0, INT_ERR_ACK_OFFSET);
  203. /* Clear the ECC status */
  204. s3c_write_reg(0x0, ECC_ERR_STAT_OFFSET);
  205. }
  206. static unsigned short s3c_onenand_readw(void __iomem *addr)
  207. {
  208. struct onenand_chip *this = onenand->mtd->priv;
  209. struct device *dev = &onenand->pdev->dev;
  210. int reg = addr - this->base;
  211. int word_addr = reg >> 1;
  212. int value;
  213. /* It's used for probing time */
  214. switch (reg) {
  215. case ONENAND_REG_MANUFACTURER_ID:
  216. return s3c_read_reg(MANUFACT_ID_OFFSET);
  217. case ONENAND_REG_DEVICE_ID:
  218. return s3c_read_reg(DEVICE_ID_OFFSET);
  219. case ONENAND_REG_VERSION_ID:
  220. return s3c_read_reg(FLASH_VER_ID_OFFSET);
  221. case ONENAND_REG_DATA_BUFFER_SIZE:
  222. return s3c_read_reg(DATA_BUF_SIZE_OFFSET);
  223. case ONENAND_REG_TECHNOLOGY:
  224. return s3c_read_reg(TECH_OFFSET);
  225. case ONENAND_REG_SYS_CFG1:
  226. return s3c_read_reg(MEM_CFG_OFFSET);
  227. /* Used at unlock all status */
  228. case ONENAND_REG_CTRL_STATUS:
  229. return 0;
  230. case ONENAND_REG_WP_STATUS:
  231. return ONENAND_WP_US;
  232. default:
  233. break;
  234. }
  235. /* BootRAM access control */
  236. if ((unsigned int) addr < ONENAND_DATARAM && onenand->bootram_command) {
  237. if (word_addr == 0)
  238. return s3c_read_reg(MANUFACT_ID_OFFSET);
  239. if (word_addr == 1)
  240. return s3c_read_reg(DEVICE_ID_OFFSET);
  241. if (word_addr == 2)
  242. return s3c_read_reg(FLASH_VER_ID_OFFSET);
  243. }
  244. value = s3c_read_cmd(CMD_MAP_11(onenand, word_addr)) & 0xffff;
  245. dev_info(dev, "%s: Illegal access at reg 0x%x, value 0x%x\n", __func__,
  246. word_addr, value);
  247. return value;
  248. }
  249. static void s3c_onenand_writew(unsigned short value, void __iomem *addr)
  250. {
  251. struct onenand_chip *this = onenand->mtd->priv;
  252. struct device *dev = &onenand->pdev->dev;
  253. unsigned int reg = addr - this->base;
  254. unsigned int word_addr = reg >> 1;
  255. /* It's used for probing time */
  256. switch (reg) {
  257. case ONENAND_REG_SYS_CFG1:
  258. s3c_write_reg(value, MEM_CFG_OFFSET);
  259. return;
  260. case ONENAND_REG_START_ADDRESS1:
  261. case ONENAND_REG_START_ADDRESS2:
  262. return;
  263. /* Lock/lock-tight/unlock/unlock_all */
  264. case ONENAND_REG_START_BLOCK_ADDRESS:
  265. return;
  266. default:
  267. break;
  268. }
  269. /* BootRAM access control */
  270. if ((unsigned int)addr < ONENAND_DATARAM) {
  271. if (value == ONENAND_CMD_READID) {
  272. onenand->bootram_command = 1;
  273. return;
  274. }
  275. if (value == ONENAND_CMD_RESET) {
  276. s3c_write_reg(ONENAND_MEM_RESET_COLD, MEM_RESET_OFFSET);
  277. onenand->bootram_command = 0;
  278. return;
  279. }
  280. }
  281. dev_info(dev, "%s: Illegal access at reg 0x%x, value 0x%x\n", __func__,
  282. word_addr, value);
  283. s3c_write_cmd(value, CMD_MAP_11(onenand, word_addr));
  284. }
  285. static int s3c_onenand_wait(struct mtd_info *mtd, int state)
  286. {
  287. struct device *dev = &onenand->pdev->dev;
  288. unsigned int flags = INT_ACT;
  289. unsigned int stat, ecc;
  290. unsigned long timeout;
  291. switch (state) {
  292. case FL_READING:
  293. flags |= BLK_RW_CMP | LOAD_CMP;
  294. break;
  295. case FL_WRITING:
  296. flags |= BLK_RW_CMP | PGM_CMP;
  297. break;
  298. case FL_ERASING:
  299. flags |= BLK_RW_CMP | ERS_CMP;
  300. break;
  301. case FL_LOCKING:
  302. flags |= BLK_RW_CMP;
  303. break;
  304. default:
  305. break;
  306. }
  307. /* The 20 msec is enough */
  308. timeout = jiffies + msecs_to_jiffies(20);
  309. while (time_before(jiffies, timeout)) {
  310. stat = s3c_read_reg(INT_ERR_STAT_OFFSET);
  311. if (stat & flags)
  312. break;
  313. if (state != FL_READING)
  314. cond_resched();
  315. }
  316. /* To get correct interrupt status in timeout case */
  317. stat = s3c_read_reg(INT_ERR_STAT_OFFSET);
  318. s3c_write_reg(stat, INT_ERR_ACK_OFFSET);
  319. /*
  320. * In the Spec. it checks the controller status first
  321. * However if you get the correct information in case of
  322. * power off recovery (POR) test, it should read ECC status first
  323. */
  324. if (stat & LOAD_CMP) {
  325. ecc = s3c_read_reg(ECC_ERR_STAT_OFFSET);
  326. if (ecc & ONENAND_ECC_4BIT_UNCORRECTABLE) {
  327. dev_info(dev, "%s: ECC error = 0x%04x\n", __func__,
  328. ecc);
  329. mtd->ecc_stats.failed++;
  330. return -EBADMSG;
  331. }
  332. }
  333. if (stat & (LOCKED_BLK | ERS_FAIL | PGM_FAIL | LD_FAIL_ECC_ERR)) {
  334. dev_info(dev, "%s: controller error = 0x%04x\n", __func__,
  335. stat);
  336. if (stat & LOCKED_BLK)
  337. dev_info(dev, "%s: it's locked error = 0x%04x\n",
  338. __func__, stat);
  339. return -EIO;
  340. }
  341. return 0;
  342. }
  343. static int s3c_onenand_command(struct mtd_info *mtd, int cmd, loff_t addr,
  344. size_t len)
  345. {
  346. struct onenand_chip *this = mtd->priv;
  347. unsigned int *m, *s;
  348. int fba, fpa, fsa = 0;
  349. unsigned int mem_addr, cmd_map_01, cmd_map_10;
  350. int i, mcount, scount;
  351. int index;
  352. fba = (int) (addr >> this->erase_shift);
  353. fpa = (int) (addr >> this->page_shift);
  354. fpa &= this->page_mask;
  355. mem_addr = onenand->mem_addr(fba, fpa, fsa);
  356. cmd_map_01 = CMD_MAP_01(onenand, mem_addr);
  357. cmd_map_10 = CMD_MAP_10(onenand, mem_addr);
  358. switch (cmd) {
  359. case ONENAND_CMD_READ:
  360. case ONENAND_CMD_READOOB:
  361. case ONENAND_CMD_BUFFERRAM:
  362. ONENAND_SET_NEXT_BUFFERRAM(this);
  363. default:
  364. break;
  365. }
  366. index = ONENAND_CURRENT_BUFFERRAM(this);
  367. /*
  368. * Emulate Two BufferRAMs and access with 4 bytes pointer
  369. */
  370. m = (unsigned int *) onenand->page_buf;
  371. s = (unsigned int *) onenand->oob_buf;
  372. if (index) {
  373. m += (this->writesize >> 2);
  374. s += (mtd->oobsize >> 2);
  375. }
  376. mcount = mtd->writesize >> 2;
  377. scount = mtd->oobsize >> 2;
  378. switch (cmd) {
  379. case ONENAND_CMD_READ:
  380. /* Main */
  381. for (i = 0; i < mcount; i++)
  382. *m++ = s3c_read_cmd(cmd_map_01);
  383. return 0;
  384. case ONENAND_CMD_READOOB:
  385. s3c_write_reg(TSRF, TRANS_SPARE_OFFSET);
  386. /* Main */
  387. for (i = 0; i < mcount; i++)
  388. *m++ = s3c_read_cmd(cmd_map_01);
  389. /* Spare */
  390. for (i = 0; i < scount; i++)
  391. *s++ = s3c_read_cmd(cmd_map_01);
  392. s3c_write_reg(0, TRANS_SPARE_OFFSET);
  393. return 0;
  394. case ONENAND_CMD_PROG:
  395. /* Main */
  396. for (i = 0; i < mcount; i++)
  397. s3c_write_cmd(*m++, cmd_map_01);
  398. return 0;
  399. case ONENAND_CMD_PROGOOB:
  400. s3c_write_reg(TSRF, TRANS_SPARE_OFFSET);
  401. /* Main - dummy write */
  402. for (i = 0; i < mcount; i++)
  403. s3c_write_cmd(0xffffffff, cmd_map_01);
  404. /* Spare */
  405. for (i = 0; i < scount; i++)
  406. s3c_write_cmd(*s++, cmd_map_01);
  407. s3c_write_reg(0, TRANS_SPARE_OFFSET);
  408. return 0;
  409. case ONENAND_CMD_UNLOCK_ALL:
  410. s3c_write_cmd(ONENAND_UNLOCK_ALL, cmd_map_10);
  411. return 0;
  412. case ONENAND_CMD_ERASE:
  413. s3c_write_cmd(ONENAND_ERASE_START, cmd_map_10);
  414. return 0;
  415. default:
  416. break;
  417. }
  418. return 0;
  419. }
  420. static unsigned char *s3c_get_bufferram(struct mtd_info *mtd, int area)
  421. {
  422. struct onenand_chip *this = mtd->priv;
  423. int index = ONENAND_CURRENT_BUFFERRAM(this);
  424. unsigned char *p;
  425. if (area == ONENAND_DATARAM) {
  426. p = (unsigned char *) onenand->page_buf;
  427. if (index == 1)
  428. p += this->writesize;
  429. } else {
  430. p = (unsigned char *) onenand->oob_buf;
  431. if (index == 1)
  432. p += mtd->oobsize;
  433. }
  434. return p;
  435. }
  436. static int onenand_read_bufferram(struct mtd_info *mtd, int area,
  437. unsigned char *buffer, int offset,
  438. size_t count)
  439. {
  440. unsigned char *p;
  441. p = s3c_get_bufferram(mtd, area);
  442. memcpy(buffer, p + offset, count);
  443. return 0;
  444. }
  445. static int onenand_write_bufferram(struct mtd_info *mtd, int area,
  446. const unsigned char *buffer, int offset,
  447. size_t count)
  448. {
  449. unsigned char *p;
  450. p = s3c_get_bufferram(mtd, area);
  451. memcpy(p + offset, buffer, count);
  452. return 0;
  453. }
  454. static int (*s5pc110_dma_ops)(void *dst, void *src, size_t count, int direction);
  455. static int s5pc110_dma_poll(void *dst, void *src, size_t count, int direction)
  456. {
  457. void __iomem *base = onenand->dma_addr;
  458. int status;
  459. unsigned long timeout;
  460. writel(src, base + S5PC110_DMA_SRC_ADDR);
  461. writel(dst, base + S5PC110_DMA_DST_ADDR);
  462. if (direction == S5PC110_DMA_DIR_READ) {
  463. writel(S5PC110_DMA_SRC_CFG_READ, base + S5PC110_DMA_SRC_CFG);
  464. writel(S5PC110_DMA_DST_CFG_READ, base + S5PC110_DMA_DST_CFG);
  465. } else {
  466. writel(S5PC110_DMA_SRC_CFG_WRITE, base + S5PC110_DMA_SRC_CFG);
  467. writel(S5PC110_DMA_DST_CFG_WRITE, base + S5PC110_DMA_DST_CFG);
  468. }
  469. writel(count, base + S5PC110_DMA_TRANS_SIZE);
  470. writel(direction, base + S5PC110_DMA_TRANS_DIR);
  471. writel(S5PC110_DMA_TRANS_CMD_TR, base + S5PC110_DMA_TRANS_CMD);
  472. /*
  473. * There's no exact timeout values at Spec.
  474. * In real case it takes under 1 msec.
  475. * So 20 msecs are enough.
  476. */
  477. timeout = jiffies + msecs_to_jiffies(20);
  478. do {
  479. status = readl(base + S5PC110_DMA_TRANS_STATUS);
  480. if (status & S5PC110_DMA_TRANS_STATUS_TE) {
  481. writel(S5PC110_DMA_TRANS_CMD_TEC,
  482. base + S5PC110_DMA_TRANS_CMD);
  483. return -EIO;
  484. }
  485. } while (!(status & S5PC110_DMA_TRANS_STATUS_TD) &&
  486. time_before(jiffies, timeout));
  487. writel(S5PC110_DMA_TRANS_CMD_TDC, base + S5PC110_DMA_TRANS_CMD);
  488. return 0;
  489. }
  490. static irqreturn_t s5pc110_onenand_irq(int irq, void *data)
  491. {
  492. void __iomem *base = onenand->dma_addr;
  493. int status, cmd = 0;
  494. status = readl(base + S5PC110_INTC_DMA_STATUS);
  495. if (likely(status & S5PC110_INTC_DMA_TD))
  496. cmd = S5PC110_DMA_TRANS_CMD_TDC;
  497. if (unlikely(status & S5PC110_INTC_DMA_TE))
  498. cmd = S5PC110_DMA_TRANS_CMD_TEC;
  499. writel(cmd, base + S5PC110_DMA_TRANS_CMD);
  500. writel(status, base + S5PC110_INTC_DMA_CLR);
  501. if (!onenand->complete.done)
  502. complete(&onenand->complete);
  503. return IRQ_HANDLED;
  504. }
  505. static int s5pc110_dma_irq(void *dst, void *src, size_t count, int direction)
  506. {
  507. void __iomem *base = onenand->dma_addr;
  508. int status;
  509. status = readl(base + S5PC110_INTC_DMA_MASK);
  510. if (status) {
  511. status &= ~(S5PC110_INTC_DMA_TD | S5PC110_INTC_DMA_TE);
  512. writel(status, base + S5PC110_INTC_DMA_MASK);
  513. }
  514. writel(src, base + S5PC110_DMA_SRC_ADDR);
  515. writel(dst, base + S5PC110_DMA_DST_ADDR);
  516. if (direction == S5PC110_DMA_DIR_READ) {
  517. writel(S5PC110_DMA_SRC_CFG_READ, base + S5PC110_DMA_SRC_CFG);
  518. writel(S5PC110_DMA_DST_CFG_READ, base + S5PC110_DMA_DST_CFG);
  519. } else {
  520. writel(S5PC110_DMA_SRC_CFG_WRITE, base + S5PC110_DMA_SRC_CFG);
  521. writel(S5PC110_DMA_DST_CFG_WRITE, base + S5PC110_DMA_DST_CFG);
  522. }
  523. writel(count, base + S5PC110_DMA_TRANS_SIZE);
  524. writel(direction, base + S5PC110_DMA_TRANS_DIR);
  525. writel(S5PC110_DMA_TRANS_CMD_TR, base + S5PC110_DMA_TRANS_CMD);
  526. wait_for_completion_timeout(&onenand->complete, msecs_to_jiffies(20));
  527. return 0;
  528. }
  529. static int s5pc110_read_bufferram(struct mtd_info *mtd, int area,
  530. unsigned char *buffer, int offset, size_t count)
  531. {
  532. struct onenand_chip *this = mtd->priv;
  533. void __iomem *p;
  534. void *buf = (void *) buffer;
  535. dma_addr_t dma_src, dma_dst;
  536. int err, ofs, page_dma = 0;
  537. struct device *dev = &onenand->pdev->dev;
  538. p = this->base + area;
  539. if (ONENAND_CURRENT_BUFFERRAM(this)) {
  540. if (area == ONENAND_DATARAM)
  541. p += this->writesize;
  542. else
  543. p += mtd->oobsize;
  544. }
  545. if (offset & 3 || (size_t) buf & 3 ||
  546. !onenand->dma_addr || count != mtd->writesize)
  547. goto normal;
  548. /* Handle vmalloc address */
  549. if (buf >= high_memory) {
  550. struct page *page;
  551. if (((size_t) buf & PAGE_MASK) !=
  552. ((size_t) (buf + count - 1) & PAGE_MASK))
  553. goto normal;
  554. page = vmalloc_to_page(buf);
  555. if (!page)
  556. goto normal;
  557. /* Page offset */
  558. ofs = ((size_t) buf & ~PAGE_MASK);
  559. page_dma = 1;
  560. /* DMA routine */
  561. dma_src = onenand->phys_base + (p - this->base);
  562. dma_dst = dma_map_page(dev, page, ofs, count, DMA_FROM_DEVICE);
  563. } else {
  564. /* DMA routine */
  565. dma_src = onenand->phys_base + (p - this->base);
  566. dma_dst = dma_map_single(dev, buf, count, DMA_FROM_DEVICE);
  567. }
  568. if (dma_mapping_error(dev, dma_dst)) {
  569. dev_err(dev, "Couldn't map a %d byte buffer for DMA\n", count);
  570. goto normal;
  571. }
  572. err = s5pc110_dma_ops((void *) dma_dst, (void *) dma_src,
  573. count, S5PC110_DMA_DIR_READ);
  574. if (page_dma)
  575. dma_unmap_page(dev, dma_dst, count, DMA_FROM_DEVICE);
  576. else
  577. dma_unmap_single(dev, dma_dst, count, DMA_FROM_DEVICE);
  578. if (!err)
  579. return 0;
  580. normal:
  581. if (count != mtd->writesize) {
  582. /* Copy the bufferram to memory to prevent unaligned access */
  583. memcpy(this->page_buf, p, mtd->writesize);
  584. p = this->page_buf + offset;
  585. }
  586. memcpy(buffer, p, count);
  587. return 0;
  588. }
  589. static int s5pc110_chip_probe(struct mtd_info *mtd)
  590. {
  591. /* Now just return 0 */
  592. return 0;
  593. }
  594. static int s3c_onenand_bbt_wait(struct mtd_info *mtd, int state)
  595. {
  596. unsigned int flags = INT_ACT | LOAD_CMP;
  597. unsigned int stat;
  598. unsigned long timeout;
  599. /* The 20 msec is enough */
  600. timeout = jiffies + msecs_to_jiffies(20);
  601. while (time_before(jiffies, timeout)) {
  602. stat = s3c_read_reg(INT_ERR_STAT_OFFSET);
  603. if (stat & flags)
  604. break;
  605. }
  606. /* To get correct interrupt status in timeout case */
  607. stat = s3c_read_reg(INT_ERR_STAT_OFFSET);
  608. s3c_write_reg(stat, INT_ERR_ACK_OFFSET);
  609. if (stat & LD_FAIL_ECC_ERR) {
  610. s3c_onenand_reset();
  611. return ONENAND_BBT_READ_ERROR;
  612. }
  613. if (stat & LOAD_CMP) {
  614. int ecc = s3c_read_reg(ECC_ERR_STAT_OFFSET);
  615. if (ecc & ONENAND_ECC_4BIT_UNCORRECTABLE) {
  616. s3c_onenand_reset();
  617. return ONENAND_BBT_READ_ERROR;
  618. }
  619. }
  620. return 0;
  621. }
  622. static void s3c_onenand_check_lock_status(struct mtd_info *mtd)
  623. {
  624. struct onenand_chip *this = mtd->priv;
  625. struct device *dev = &onenand->pdev->dev;
  626. unsigned int block, end;
  627. int tmp;
  628. end = this->chipsize >> this->erase_shift;
  629. for (block = 0; block < end; block++) {
  630. unsigned int mem_addr = onenand->mem_addr(block, 0, 0);
  631. tmp = s3c_read_cmd(CMD_MAP_01(onenand, mem_addr));
  632. if (s3c_read_reg(INT_ERR_STAT_OFFSET) & LOCKED_BLK) {
  633. dev_err(dev, "block %d is write-protected!\n", block);
  634. s3c_write_reg(LOCKED_BLK, INT_ERR_ACK_OFFSET);
  635. }
  636. }
  637. }
  638. static void s3c_onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs,
  639. size_t len, int cmd)
  640. {
  641. struct onenand_chip *this = mtd->priv;
  642. int start, end, start_mem_addr, end_mem_addr;
  643. start = ofs >> this->erase_shift;
  644. start_mem_addr = onenand->mem_addr(start, 0, 0);
  645. end = start + (len >> this->erase_shift) - 1;
  646. end_mem_addr = onenand->mem_addr(end, 0, 0);
  647. if (cmd == ONENAND_CMD_LOCK) {
  648. s3c_write_cmd(ONENAND_LOCK_START, CMD_MAP_10(onenand,
  649. start_mem_addr));
  650. s3c_write_cmd(ONENAND_LOCK_END, CMD_MAP_10(onenand,
  651. end_mem_addr));
  652. } else {
  653. s3c_write_cmd(ONENAND_UNLOCK_START, CMD_MAP_10(onenand,
  654. start_mem_addr));
  655. s3c_write_cmd(ONENAND_UNLOCK_END, CMD_MAP_10(onenand,
  656. end_mem_addr));
  657. }
  658. this->wait(mtd, FL_LOCKING);
  659. }
  660. static void s3c_unlock_all(struct mtd_info *mtd)
  661. {
  662. struct onenand_chip *this = mtd->priv;
  663. loff_t ofs = 0;
  664. size_t len = this->chipsize;
  665. if (this->options & ONENAND_HAS_UNLOCK_ALL) {
  666. /* Write unlock command */
  667. this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
  668. /* No need to check return value */
  669. this->wait(mtd, FL_LOCKING);
  670. /* Workaround for all block unlock in DDP */
  671. if (!ONENAND_IS_DDP(this)) {
  672. s3c_onenand_check_lock_status(mtd);
  673. return;
  674. }
  675. /* All blocks on another chip */
  676. ofs = this->chipsize >> 1;
  677. len = this->chipsize >> 1;
  678. }
  679. s3c_onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
  680. s3c_onenand_check_lock_status(mtd);
  681. }
  682. static void s3c_onenand_setup(struct mtd_info *mtd)
  683. {
  684. struct onenand_chip *this = mtd->priv;
  685. onenand->mtd = mtd;
  686. if (onenand->type == TYPE_S3C6400) {
  687. onenand->mem_addr = s3c6400_mem_addr;
  688. onenand->cmd_map = s3c64xx_cmd_map;
  689. } else if (onenand->type == TYPE_S3C6410) {
  690. onenand->mem_addr = s3c6410_mem_addr;
  691. onenand->cmd_map = s3c64xx_cmd_map;
  692. } else if (onenand->type == TYPE_S5PC100) {
  693. onenand->mem_addr = s5pc100_mem_addr;
  694. onenand->cmd_map = s5pc1xx_cmd_map;
  695. } else if (onenand->type == TYPE_S5PC110) {
  696. /* Use generic onenand functions */
  697. this->read_bufferram = s5pc110_read_bufferram;
  698. this->chip_probe = s5pc110_chip_probe;
  699. return;
  700. } else {
  701. BUG();
  702. }
  703. this->read_word = s3c_onenand_readw;
  704. this->write_word = s3c_onenand_writew;
  705. this->wait = s3c_onenand_wait;
  706. this->bbt_wait = s3c_onenand_bbt_wait;
  707. this->unlock_all = s3c_unlock_all;
  708. this->command = s3c_onenand_command;
  709. this->read_bufferram = onenand_read_bufferram;
  710. this->write_bufferram = onenand_write_bufferram;
  711. }
  712. static int s3c_onenand_probe(struct platform_device *pdev)
  713. {
  714. struct onenand_platform_data *pdata;
  715. struct onenand_chip *this;
  716. struct mtd_info *mtd;
  717. struct resource *r;
  718. int size, err;
  719. pdata = pdev->dev.platform_data;
  720. /* No need to check pdata. the platform data is optional */
  721. size = sizeof(struct mtd_info) + sizeof(struct onenand_chip);
  722. mtd = kzalloc(size, GFP_KERNEL);
  723. if (!mtd) {
  724. dev_err(&pdev->dev, "failed to allocate memory\n");
  725. return -ENOMEM;
  726. }
  727. onenand = kzalloc(sizeof(struct s3c_onenand), GFP_KERNEL);
  728. if (!onenand) {
  729. err = -ENOMEM;
  730. goto onenand_fail;
  731. }
  732. this = (struct onenand_chip *) &mtd[1];
  733. mtd->priv = this;
  734. mtd->dev.parent = &pdev->dev;
  735. mtd->owner = THIS_MODULE;
  736. onenand->pdev = pdev;
  737. onenand->type = platform_get_device_id(pdev)->driver_data;
  738. s3c_onenand_setup(mtd);
  739. r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  740. if (!r) {
  741. dev_err(&pdev->dev, "no memory resource defined\n");
  742. return -ENOENT;
  743. goto ahb_resource_failed;
  744. }
  745. onenand->base_res = request_mem_region(r->start, resource_size(r),
  746. pdev->name);
  747. if (!onenand->base_res) {
  748. dev_err(&pdev->dev, "failed to request memory resource\n");
  749. err = -EBUSY;
  750. goto resource_failed;
  751. }
  752. onenand->base = ioremap(r->start, resource_size(r));
  753. if (!onenand->base) {
  754. dev_err(&pdev->dev, "failed to map memory resource\n");
  755. err = -EFAULT;
  756. goto ioremap_failed;
  757. }
  758. /* Set onenand_chip also */
  759. this->base = onenand->base;
  760. /* Use runtime badblock check */
  761. this->options |= ONENAND_SKIP_UNLOCK_CHECK;
  762. if (onenand->type != TYPE_S5PC110) {
  763. r = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  764. if (!r) {
  765. dev_err(&pdev->dev, "no buffer memory resource defined\n");
  766. return -ENOENT;
  767. goto ahb_resource_failed;
  768. }
  769. onenand->ahb_res = request_mem_region(r->start, resource_size(r),
  770. pdev->name);
  771. if (!onenand->ahb_res) {
  772. dev_err(&pdev->dev, "failed to request buffer memory resource\n");
  773. err = -EBUSY;
  774. goto ahb_resource_failed;
  775. }
  776. onenand->ahb_addr = ioremap(r->start, resource_size(r));
  777. if (!onenand->ahb_addr) {
  778. dev_err(&pdev->dev, "failed to map buffer memory resource\n");
  779. err = -EINVAL;
  780. goto ahb_ioremap_failed;
  781. }
  782. /* Allocate 4KiB BufferRAM */
  783. onenand->page_buf = kzalloc(SZ_4K, GFP_KERNEL);
  784. if (!onenand->page_buf) {
  785. err = -ENOMEM;
  786. goto page_buf_fail;
  787. }
  788. /* Allocate 128 SpareRAM */
  789. onenand->oob_buf = kzalloc(128, GFP_KERNEL);
  790. if (!onenand->oob_buf) {
  791. err = -ENOMEM;
  792. goto oob_buf_fail;
  793. }
  794. /* S3C doesn't handle subpage write */
  795. mtd->subpage_sft = 0;
  796. this->subpagesize = mtd->writesize;
  797. } else { /* S5PC110 */
  798. r = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  799. if (!r) {
  800. dev_err(&pdev->dev, "no dma memory resource defined\n");
  801. return -ENOENT;
  802. goto dma_resource_failed;
  803. }
  804. onenand->dma_res = request_mem_region(r->start, resource_size(r),
  805. pdev->name);
  806. if (!onenand->dma_res) {
  807. dev_err(&pdev->dev, "failed to request dma memory resource\n");
  808. err = -EBUSY;
  809. goto dma_resource_failed;
  810. }
  811. onenand->dma_addr = ioremap(r->start, resource_size(r));
  812. if (!onenand->dma_addr) {
  813. dev_err(&pdev->dev, "failed to map dma memory resource\n");
  814. err = -EINVAL;
  815. goto dma_ioremap_failed;
  816. }
  817. onenand->phys_base = onenand->base_res->start;
  818. s5pc110_dma_ops = s5pc110_dma_poll;
  819. /* Interrupt support */
  820. r = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
  821. if (r) {
  822. init_completion(&onenand->complete);
  823. s5pc110_dma_ops = s5pc110_dma_irq;
  824. err = request_irq(r->start, s5pc110_onenand_irq,
  825. IRQF_SHARED, "onenand", &onenand);
  826. if (err) {
  827. dev_err(&pdev->dev, "failed to get irq\n");
  828. goto scan_failed;
  829. }
  830. }
  831. }
  832. if (onenand_scan(mtd, 1)) {
  833. err = -EFAULT;
  834. goto scan_failed;
  835. }
  836. if (onenand->type != TYPE_S5PC110) {
  837. /* S3C doesn't handle subpage write */
  838. mtd->subpage_sft = 0;
  839. this->subpagesize = mtd->writesize;
  840. }
  841. if (s3c_read_reg(MEM_CFG_OFFSET) & ONENAND_SYS_CFG1_SYNC_READ)
  842. dev_info(&onenand->pdev->dev, "OneNAND Sync. Burst Read enabled\n");
  843. err = parse_mtd_partitions(mtd, part_probes, &onenand->parts, 0);
  844. if (err > 0)
  845. mtd_device_register(mtd, onenand->parts, err);
  846. else if (err <= 0 && pdata && pdata->parts)
  847. mtd_device_register(mtd, pdata->parts, pdata->nr_parts);
  848. else
  849. err = mtd_device_register(mtd, NULL, 0);
  850. platform_set_drvdata(pdev, mtd);
  851. return 0;
  852. scan_failed:
  853. if (onenand->dma_addr)
  854. iounmap(onenand->dma_addr);
  855. dma_ioremap_failed:
  856. if (onenand->dma_res)
  857. release_mem_region(onenand->dma_res->start,
  858. resource_size(onenand->dma_res));
  859. kfree(onenand->oob_buf);
  860. oob_buf_fail:
  861. kfree(onenand->page_buf);
  862. page_buf_fail:
  863. if (onenand->ahb_addr)
  864. iounmap(onenand->ahb_addr);
  865. ahb_ioremap_failed:
  866. if (onenand->ahb_res)
  867. release_mem_region(onenand->ahb_res->start,
  868. resource_size(onenand->ahb_res));
  869. dma_resource_failed:
  870. ahb_resource_failed:
  871. iounmap(onenand->base);
  872. ioremap_failed:
  873. if (onenand->base_res)
  874. release_mem_region(onenand->base_res->start,
  875. resource_size(onenand->base_res));
  876. resource_failed:
  877. kfree(onenand);
  878. onenand_fail:
  879. kfree(mtd);
  880. return err;
  881. }
  882. static int __devexit s3c_onenand_remove(struct platform_device *pdev)
  883. {
  884. struct mtd_info *mtd = platform_get_drvdata(pdev);
  885. onenand_release(mtd);
  886. if (onenand->ahb_addr)
  887. iounmap(onenand->ahb_addr);
  888. if (onenand->ahb_res)
  889. release_mem_region(onenand->ahb_res->start,
  890. resource_size(onenand->ahb_res));
  891. if (onenand->dma_addr)
  892. iounmap(onenand->dma_addr);
  893. if (onenand->dma_res)
  894. release_mem_region(onenand->dma_res->start,
  895. resource_size(onenand->dma_res));
  896. iounmap(onenand->base);
  897. release_mem_region(onenand->base_res->start,
  898. resource_size(onenand->base_res));
  899. platform_set_drvdata(pdev, NULL);
  900. kfree(onenand->oob_buf);
  901. kfree(onenand->page_buf);
  902. kfree(onenand);
  903. kfree(mtd);
  904. return 0;
  905. }
  906. static int s3c_pm_ops_suspend(struct device *dev)
  907. {
  908. struct platform_device *pdev = to_platform_device(dev);
  909. struct mtd_info *mtd = platform_get_drvdata(pdev);
  910. struct onenand_chip *this = mtd->priv;
  911. this->wait(mtd, FL_PM_SUSPENDED);
  912. return 0;
  913. }
  914. static int s3c_pm_ops_resume(struct device *dev)
  915. {
  916. struct platform_device *pdev = to_platform_device(dev);
  917. struct mtd_info *mtd = platform_get_drvdata(pdev);
  918. struct onenand_chip *this = mtd->priv;
  919. this->unlock_all(mtd);
  920. return 0;
  921. }
  922. static const struct dev_pm_ops s3c_pm_ops = {
  923. .suspend = s3c_pm_ops_suspend,
  924. .resume = s3c_pm_ops_resume,
  925. };
  926. static struct platform_device_id s3c_onenand_driver_ids[] = {
  927. {
  928. .name = "s3c6400-onenand",
  929. .driver_data = TYPE_S3C6400,
  930. }, {
  931. .name = "s3c6410-onenand",
  932. .driver_data = TYPE_S3C6410,
  933. }, {
  934. .name = "s5pc100-onenand",
  935. .driver_data = TYPE_S5PC100,
  936. }, {
  937. .name = "s5pc110-onenand",
  938. .driver_data = TYPE_S5PC110,
  939. }, { },
  940. };
  941. MODULE_DEVICE_TABLE(platform, s3c_onenand_driver_ids);
  942. static struct platform_driver s3c_onenand_driver = {
  943. .driver = {
  944. .name = "samsung-onenand",
  945. .pm = &s3c_pm_ops,
  946. },
  947. .id_table = s3c_onenand_driver_ids,
  948. .probe = s3c_onenand_probe,
  949. .remove = __devexit_p(s3c_onenand_remove),
  950. };
  951. static int __init s3c_onenand_init(void)
  952. {
  953. return platform_driver_register(&s3c_onenand_driver);
  954. }
  955. static void __exit s3c_onenand_exit(void)
  956. {
  957. platform_driver_unregister(&s3c_onenand_driver);
  958. }
  959. module_init(s3c_onenand_init);
  960. module_exit(s3c_onenand_exit);
  961. MODULE_LICENSE("GPL");
  962. MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
  963. MODULE_DESCRIPTION("Samsung OneNAND controller support");