cx24110.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668
  1. /*
  2. cx24110 - Single Chip Satellite Channel Receiver driver module
  3. Copyright (C) 2002 Peter Hettkamp <peter.hettkamp@htp-tel.de> based on
  4. work
  5. Copyright (C) 1999 Convergence Integrated Media GmbH <ralph@convergence.de>
  6. This program is free software; you can redistribute it and/or modify
  7. it under the terms of the GNU General Public License as published by
  8. the Free Software Foundation; either version 2 of the License, or
  9. (at your option) any later version.
  10. This program is distributed in the hope that it will be useful,
  11. but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. GNU General Public License for more details.
  14. You should have received a copy of the GNU General Public License
  15. along with this program; if not, write to the Free Software
  16. Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  17. */
  18. #include <linux/slab.h>
  19. #include <linux/kernel.h>
  20. #include <linux/module.h>
  21. #include <linux/init.h>
  22. #include "dvb_frontend.h"
  23. #include "cx24110.h"
  24. struct cx24110_state {
  25. struct i2c_adapter* i2c;
  26. const struct cx24110_config* config;
  27. struct dvb_frontend frontend;
  28. u32 lastber;
  29. u32 lastbler;
  30. u32 lastesn0;
  31. };
  32. static int debug;
  33. #define dprintk(args...) \
  34. do { \
  35. if (debug) printk(KERN_DEBUG "cx24110: " args); \
  36. } while (0)
  37. static struct {u8 reg; u8 data;} cx24110_regdata[]=
  38. /* Comments beginning with @ denote this value should
  39. be the default */
  40. {{0x09,0x01}, /* SoftResetAll */
  41. {0x09,0x00}, /* release reset */
  42. {0x01,0xe8}, /* MSB of code rate 27.5MS/s */
  43. {0x02,0x17}, /* middle byte " */
  44. {0x03,0x29}, /* LSB " */
  45. {0x05,0x03}, /* @ DVB mode, standard code rate 3/4 */
  46. {0x06,0xa5}, /* @ PLL 60MHz */
  47. {0x07,0x01}, /* @ Fclk, i.e. sampling clock, 60MHz */
  48. {0x0a,0x00}, /* @ partial chip disables, do not set */
  49. {0x0b,0x01}, /* set output clock in gapped mode, start signal low
  50. active for first byte */
  51. {0x0c,0x11}, /* no parity bytes, large hold time, serial data out */
  52. {0x0d,0x6f}, /* @ RS Sync/Unsync thresholds */
  53. {0x10,0x40}, /* chip doc is misleading here: write bit 6 as 1
  54. to avoid starting the BER counter. Reset the
  55. CRC test bit. Finite counting selected */
  56. {0x15,0xff}, /* @ size of the limited time window for RS BER
  57. estimation. It is <value>*256 RS blocks, this
  58. gives approx. 2.6 sec at 27.5MS/s, rate 3/4 */
  59. {0x16,0x00}, /* @ enable all RS output ports */
  60. {0x17,0x04}, /* @ time window allowed for the RS to sync */
  61. {0x18,0xae}, /* @ allow all standard DVB code rates to be scanned
  62. for automatically */
  63. /* leave the current code rate and normalization
  64. registers as they are after reset... */
  65. {0x21,0x10}, /* @ during AutoAcq, search each viterbi setting
  66. only once */
  67. {0x23,0x18}, /* @ size of the limited time window for Viterbi BER
  68. estimation. It is <value>*65536 channel bits, i.e.
  69. approx. 38ms at 27.5MS/s, rate 3/4 */
  70. {0x24,0x24}, /* do not trigger Viterbi CRC test. Finite count window */
  71. /* leave front-end AGC parameters at default values */
  72. /* leave decimation AGC parameters at default values */
  73. {0x35,0x40}, /* disable all interrupts. They are not connected anyway */
  74. {0x36,0xff}, /* clear all interrupt pending flags */
  75. {0x37,0x00}, /* @ fully enable AutoAcqq state machine */
  76. {0x38,0x07}, /* @ enable fade recovery, but not autostart AutoAcq */
  77. /* leave the equalizer parameters on their default values */
  78. /* leave the final AGC parameters on their default values */
  79. {0x41,0x00}, /* @ MSB of front-end derotator frequency */
  80. {0x42,0x00}, /* @ middle bytes " */
  81. {0x43,0x00}, /* @ LSB " */
  82. /* leave the carrier tracking loop parameters on default */
  83. /* leave the bit timing loop parameters at default */
  84. {0x56,0x4d}, /* set the filtune voltage to 2.7V, as recommended by */
  85. /* the cx24108 data sheet for symbol rates above 15MS/s */
  86. {0x57,0x00}, /* @ Filter sigma delta enabled, positive */
  87. {0x61,0x95}, /* GPIO pins 1-4 have special function */
  88. {0x62,0x05}, /* GPIO pin 5 has special function, pin 6 is GPIO */
  89. {0x63,0x00}, /* All GPIO pins use CMOS output characteristics */
  90. {0x64,0x20}, /* GPIO 6 is input, all others are outputs */
  91. {0x6d,0x30}, /* tuner auto mode clock freq 62kHz */
  92. {0x70,0x15}, /* use auto mode, tuner word is 21 bits long */
  93. {0x73,0x00}, /* @ disable several demod bypasses */
  94. {0x74,0x00}, /* @ " */
  95. {0x75,0x00} /* @ " */
  96. /* the remaining registers are for SEC */
  97. };
  98. static int cx24110_writereg (struct cx24110_state* state, int reg, int data)
  99. {
  100. u8 buf [] = { reg, data };
  101. struct i2c_msg msg = { .addr = state->config->demod_address, .flags = 0, .buf = buf, .len = 2 };
  102. int err;
  103. if ((err = i2c_transfer(state->i2c, &msg, 1)) != 1) {
  104. dprintk ("%s: writereg error (err == %i, reg == 0x%02x,"
  105. " data == 0x%02x)\n", __func__, err, reg, data);
  106. return -EREMOTEIO;
  107. }
  108. return 0;
  109. }
  110. static int cx24110_readreg (struct cx24110_state* state, u8 reg)
  111. {
  112. int ret;
  113. u8 b0 [] = { reg };
  114. u8 b1 [] = { 0 };
  115. struct i2c_msg msg [] = { { .addr = state->config->demod_address, .flags = 0, .buf = b0, .len = 1 },
  116. { .addr = state->config->demod_address, .flags = I2C_M_RD, .buf = b1, .len = 1 } };
  117. ret = i2c_transfer(state->i2c, msg, 2);
  118. if (ret != 2) return ret;
  119. return b1[0];
  120. }
  121. static int cx24110_set_inversion (struct cx24110_state* state, fe_spectral_inversion_t inversion)
  122. {
  123. /* fixme (low): error handling */
  124. switch (inversion) {
  125. case INVERSION_OFF:
  126. cx24110_writereg(state,0x37,cx24110_readreg(state,0x37)|0x1);
  127. /* AcqSpectrInvDis on. No idea why someone should want this */
  128. cx24110_writereg(state,0x5,cx24110_readreg(state,0x5)&0xf7);
  129. /* Initial value 0 at start of acq */
  130. cx24110_writereg(state,0x22,cx24110_readreg(state,0x22)&0xef);
  131. /* current value 0 */
  132. /* The cx24110 manual tells us this reg is read-only.
  133. But what the heck... set it ayways */
  134. break;
  135. case INVERSION_ON:
  136. cx24110_writereg(state,0x37,cx24110_readreg(state,0x37)|0x1);
  137. /* AcqSpectrInvDis on. No idea why someone should want this */
  138. cx24110_writereg(state,0x5,cx24110_readreg(state,0x5)|0x08);
  139. /* Initial value 1 at start of acq */
  140. cx24110_writereg(state,0x22,cx24110_readreg(state,0x22)|0x10);
  141. /* current value 1 */
  142. break;
  143. case INVERSION_AUTO:
  144. cx24110_writereg(state,0x37,cx24110_readreg(state,0x37)&0xfe);
  145. /* AcqSpectrInvDis off. Leave initial & current states as is */
  146. break;
  147. default:
  148. return -EINVAL;
  149. }
  150. return 0;
  151. }
  152. static int cx24110_set_fec (struct cx24110_state* state, fe_code_rate_t fec)
  153. {
  154. /* fixme (low): error handling */
  155. static const int rate[]={-1,1,2,3,5,7,-1};
  156. static const int g1[]={-1,0x01,0x02,0x05,0x15,0x45,-1};
  157. static const int g2[]={-1,0x01,0x03,0x06,0x1a,0x7a,-1};
  158. /* Well, the AutoAcq engine of the cx24106 and 24110 automatically
  159. searches all enabled viterbi rates, and can handle non-standard
  160. rates as well. */
  161. if (fec>FEC_AUTO)
  162. fec=FEC_AUTO;
  163. if (fec==FEC_AUTO) { /* (re-)establish AutoAcq behaviour */
  164. cx24110_writereg(state,0x37,cx24110_readreg(state,0x37)&0xdf);
  165. /* clear AcqVitDis bit */
  166. cx24110_writereg(state,0x18,0xae);
  167. /* allow all DVB standard code rates */
  168. cx24110_writereg(state,0x05,(cx24110_readreg(state,0x05)&0xf0)|0x3);
  169. /* set nominal Viterbi rate 3/4 */
  170. cx24110_writereg(state,0x22,(cx24110_readreg(state,0x22)&0xf0)|0x3);
  171. /* set current Viterbi rate 3/4 */
  172. cx24110_writereg(state,0x1a,0x05); cx24110_writereg(state,0x1b,0x06);
  173. /* set the puncture registers for code rate 3/4 */
  174. return 0;
  175. } else {
  176. cx24110_writereg(state,0x37,cx24110_readreg(state,0x37)|0x20);
  177. /* set AcqVitDis bit */
  178. if(rate[fec]>0) {
  179. cx24110_writereg(state,0x05,(cx24110_readreg(state,0x05)&0xf0)|rate[fec]);
  180. /* set nominal Viterbi rate */
  181. cx24110_writereg(state,0x22,(cx24110_readreg(state,0x22)&0xf0)|rate[fec]);
  182. /* set current Viterbi rate */
  183. cx24110_writereg(state,0x1a,g1[fec]);
  184. cx24110_writereg(state,0x1b,g2[fec]);
  185. /* not sure if this is the right way: I always used AutoAcq mode */
  186. } else
  187. return -EOPNOTSUPP;
  188. /* fixme (low): which is the correct return code? */
  189. };
  190. return 0;
  191. }
  192. static fe_code_rate_t cx24110_get_fec (struct cx24110_state* state)
  193. {
  194. int i;
  195. i=cx24110_readreg(state,0x22)&0x0f;
  196. if(!(i&0x08)) {
  197. return FEC_1_2 + i - 1;
  198. } else {
  199. /* fixme (low): a special code rate has been selected. In theory, we need to
  200. return a denominator value, a numerator value, and a pair of puncture
  201. maps to correctly describe this mode. But this should never happen in
  202. practice, because it cannot be set by cx24110_get_fec. */
  203. return FEC_NONE;
  204. }
  205. }
  206. static int cx24110_set_symbolrate (struct cx24110_state* state, u32 srate)
  207. {
  208. /* fixme (low): add error handling */
  209. u32 ratio;
  210. u32 tmp, fclk, BDRI;
  211. static const u32 bands[]={5000000UL,15000000UL,90999000UL/2};
  212. int i;
  213. dprintk("cx24110 debug: entering %s(%d)\n",__func__,srate);
  214. if (srate>90999000UL/2)
  215. srate=90999000UL/2;
  216. if (srate<500000)
  217. srate=500000;
  218. for(i = 0; (i < ARRAY_SIZE(bands)) && (srate>bands[i]); i++)
  219. ;
  220. /* first, check which sample rate is appropriate: 45, 60 80 or 90 MHz,
  221. and set the PLL accordingly (R07[1:0] Fclk, R06[7:4] PLLmult,
  222. R06[3:0] PLLphaseDetGain */
  223. tmp=cx24110_readreg(state,0x07)&0xfc;
  224. if(srate<90999000UL/4) { /* sample rate 45MHz*/
  225. cx24110_writereg(state,0x07,tmp);
  226. cx24110_writereg(state,0x06,0x78);
  227. fclk=90999000UL/2;
  228. } else if(srate<60666000UL/2) { /* sample rate 60MHz */
  229. cx24110_writereg(state,0x07,tmp|0x1);
  230. cx24110_writereg(state,0x06,0xa5);
  231. fclk=60666000UL;
  232. } else if(srate<80888000UL/2) { /* sample rate 80MHz */
  233. cx24110_writereg(state,0x07,tmp|0x2);
  234. cx24110_writereg(state,0x06,0x87);
  235. fclk=80888000UL;
  236. } else { /* sample rate 90MHz */
  237. cx24110_writereg(state,0x07,tmp|0x3);
  238. cx24110_writereg(state,0x06,0x78);
  239. fclk=90999000UL;
  240. };
  241. dprintk("cx24110 debug: fclk %d Hz\n",fclk);
  242. /* we need to divide two integers with approx. 27 bits in 32 bit
  243. arithmetic giving a 25 bit result */
  244. /* the maximum dividend is 90999000/2, 0x02b6446c, this number is
  245. also the most complex divisor. Hence, the dividend has,
  246. assuming 32bit unsigned arithmetic, 6 clear bits on top, the
  247. divisor 2 unused bits at the bottom. Also, the quotient is
  248. always less than 1/2. Borrowed from VES1893.c, of course */
  249. tmp=srate<<6;
  250. BDRI=fclk>>2;
  251. ratio=(tmp/BDRI);
  252. tmp=(tmp%BDRI)<<8;
  253. ratio=(ratio<<8)+(tmp/BDRI);
  254. tmp=(tmp%BDRI)<<8;
  255. ratio=(ratio<<8)+(tmp/BDRI);
  256. tmp=(tmp%BDRI)<<1;
  257. ratio=(ratio<<1)+(tmp/BDRI);
  258. dprintk("srate= %d (range %d, up to %d)\n", srate,i,bands[i]);
  259. dprintk("fclk = %d\n", fclk);
  260. dprintk("ratio= %08x\n", ratio);
  261. cx24110_writereg(state, 0x1, (ratio>>16)&0xff);
  262. cx24110_writereg(state, 0x2, (ratio>>8)&0xff);
  263. cx24110_writereg(state, 0x3, (ratio)&0xff);
  264. return 0;
  265. }
  266. static int _cx24110_pll_write (struct dvb_frontend* fe, const u8 buf[], int len)
  267. {
  268. struct cx24110_state *state = fe->demodulator_priv;
  269. if (len != 3)
  270. return -EINVAL;
  271. /* tuner data is 21 bits long, must be left-aligned in data */
  272. /* tuner cx24108 is written through a dedicated 3wire interface on the demod chip */
  273. /* FIXME (low): add error handling, avoid infinite loops if HW fails... */
  274. cx24110_writereg(state,0x6d,0x30); /* auto mode at 62kHz */
  275. cx24110_writereg(state,0x70,0x15); /* auto mode 21 bits */
  276. /* if the auto tuner writer is still busy, clear it out */
  277. while (cx24110_readreg(state,0x6d)&0x80)
  278. cx24110_writereg(state,0x72,0);
  279. /* write the topmost 8 bits */
  280. cx24110_writereg(state,0x72,buf[0]);
  281. /* wait for the send to be completed */
  282. while ((cx24110_readreg(state,0x6d)&0xc0)==0x80)
  283. ;
  284. /* send another 8 bytes */
  285. cx24110_writereg(state,0x72,buf[1]);
  286. while ((cx24110_readreg(state,0x6d)&0xc0)==0x80)
  287. ;
  288. /* and the topmost 5 bits of this byte */
  289. cx24110_writereg(state,0x72,buf[2]);
  290. while ((cx24110_readreg(state,0x6d)&0xc0)==0x80)
  291. ;
  292. /* now strobe the enable line once */
  293. cx24110_writereg(state,0x6d,0x32);
  294. cx24110_writereg(state,0x6d,0x30);
  295. return 0;
  296. }
  297. static int cx24110_initfe(struct dvb_frontend* fe)
  298. {
  299. struct cx24110_state *state = fe->demodulator_priv;
  300. /* fixme (low): error handling */
  301. int i;
  302. dprintk("%s: init chip\n", __func__);
  303. for(i = 0; i < ARRAY_SIZE(cx24110_regdata); i++) {
  304. cx24110_writereg(state, cx24110_regdata[i].reg, cx24110_regdata[i].data);
  305. };
  306. return 0;
  307. }
  308. static int cx24110_set_voltage (struct dvb_frontend* fe, fe_sec_voltage_t voltage)
  309. {
  310. struct cx24110_state *state = fe->demodulator_priv;
  311. switch (voltage) {
  312. case SEC_VOLTAGE_13:
  313. return cx24110_writereg(state,0x76,(cx24110_readreg(state,0x76)&0x3b)|0xc0);
  314. case SEC_VOLTAGE_18:
  315. return cx24110_writereg(state,0x76,(cx24110_readreg(state,0x76)&0x3b)|0x40);
  316. default:
  317. return -EINVAL;
  318. };
  319. }
  320. static int cx24110_diseqc_send_burst(struct dvb_frontend* fe, fe_sec_mini_cmd_t burst)
  321. {
  322. int rv, bit;
  323. struct cx24110_state *state = fe->demodulator_priv;
  324. unsigned long timeout;
  325. if (burst == SEC_MINI_A)
  326. bit = 0x00;
  327. else if (burst == SEC_MINI_B)
  328. bit = 0x08;
  329. else
  330. return -EINVAL;
  331. rv = cx24110_readreg(state, 0x77);
  332. if (!(rv & 0x04))
  333. cx24110_writereg(state, 0x77, rv | 0x04);
  334. rv = cx24110_readreg(state, 0x76);
  335. cx24110_writereg(state, 0x76, ((rv & 0x90) | 0x40 | bit));
  336. timeout = jiffies + msecs_to_jiffies(100);
  337. while (!time_after(jiffies, timeout) && !(cx24110_readreg(state, 0x76) & 0x40))
  338. ; /* wait for LNB ready */
  339. return 0;
  340. }
  341. static int cx24110_send_diseqc_msg(struct dvb_frontend* fe,
  342. struct dvb_diseqc_master_cmd *cmd)
  343. {
  344. int i, rv;
  345. struct cx24110_state *state = fe->demodulator_priv;
  346. unsigned long timeout;
  347. if (cmd->msg_len < 3 || cmd->msg_len > 6)
  348. return -EINVAL; /* not implemented */
  349. for (i = 0; i < cmd->msg_len; i++)
  350. cx24110_writereg(state, 0x79 + i, cmd->msg[i]);
  351. rv = cx24110_readreg(state, 0x77);
  352. if (rv & 0x04) {
  353. cx24110_writereg(state, 0x77, rv & ~0x04);
  354. msleep(30); /* reportedly fixes switching problems */
  355. }
  356. rv = cx24110_readreg(state, 0x76);
  357. cx24110_writereg(state, 0x76, ((rv & 0x90) | 0x40) | ((cmd->msg_len-3) & 3));
  358. timeout = jiffies + msecs_to_jiffies(100);
  359. while (!time_after(jiffies, timeout) && !(cx24110_readreg(state, 0x76) & 0x40))
  360. ; /* wait for LNB ready */
  361. return 0;
  362. }
  363. static int cx24110_read_status(struct dvb_frontend* fe, fe_status_t* status)
  364. {
  365. struct cx24110_state *state = fe->demodulator_priv;
  366. int sync = cx24110_readreg (state, 0x55);
  367. *status = 0;
  368. if (sync & 0x10)
  369. *status |= FE_HAS_SIGNAL;
  370. if (sync & 0x08)
  371. *status |= FE_HAS_CARRIER;
  372. sync = cx24110_readreg (state, 0x08);
  373. if (sync & 0x40)
  374. *status |= FE_HAS_VITERBI;
  375. if (sync & 0x20)
  376. *status |= FE_HAS_SYNC;
  377. if ((sync & 0x60) == 0x60)
  378. *status |= FE_HAS_LOCK;
  379. return 0;
  380. }
  381. static int cx24110_read_ber(struct dvb_frontend* fe, u32* ber)
  382. {
  383. struct cx24110_state *state = fe->demodulator_priv;
  384. /* fixme (maybe): value range is 16 bit. Scale? */
  385. if(cx24110_readreg(state,0x24)&0x10) {
  386. /* the Viterbi error counter has finished one counting window */
  387. cx24110_writereg(state,0x24,0x04); /* select the ber reg */
  388. state->lastber=cx24110_readreg(state,0x25)|
  389. (cx24110_readreg(state,0x26)<<8);
  390. cx24110_writereg(state,0x24,0x04); /* start new count window */
  391. cx24110_writereg(state,0x24,0x14);
  392. }
  393. *ber = state->lastber;
  394. return 0;
  395. }
  396. static int cx24110_read_signal_strength(struct dvb_frontend* fe, u16* signal_strength)
  397. {
  398. struct cx24110_state *state = fe->demodulator_priv;
  399. /* no provision in hardware. Read the frontend AGC accumulator. No idea how to scale this, but I know it is 2s complement */
  400. u8 signal = cx24110_readreg (state, 0x27)+128;
  401. *signal_strength = (signal << 8) | signal;
  402. return 0;
  403. }
  404. static int cx24110_read_snr(struct dvb_frontend* fe, u16* snr)
  405. {
  406. struct cx24110_state *state = fe->demodulator_priv;
  407. /* no provision in hardware. Can be computed from the Es/N0 estimator, but I don't know how. */
  408. if(cx24110_readreg(state,0x6a)&0x80) {
  409. /* the Es/N0 error counter has finished one counting window */
  410. state->lastesn0=cx24110_readreg(state,0x69)|
  411. (cx24110_readreg(state,0x68)<<8);
  412. cx24110_writereg(state,0x6a,0x84); /* start new count window */
  413. }
  414. *snr = state->lastesn0;
  415. return 0;
  416. }
  417. static int cx24110_read_ucblocks(struct dvb_frontend* fe, u32* ucblocks)
  418. {
  419. struct cx24110_state *state = fe->demodulator_priv;
  420. u32 lastbyer;
  421. if(cx24110_readreg(state,0x10)&0x40) {
  422. /* the RS error counter has finished one counting window */
  423. cx24110_writereg(state,0x10,0x60); /* select the byer reg */
  424. lastbyer=cx24110_readreg(state,0x12)|
  425. (cx24110_readreg(state,0x13)<<8)|
  426. (cx24110_readreg(state,0x14)<<16);
  427. cx24110_writereg(state,0x10,0x70); /* select the bler reg */
  428. state->lastbler=cx24110_readreg(state,0x12)|
  429. (cx24110_readreg(state,0x13)<<8)|
  430. (cx24110_readreg(state,0x14)<<16);
  431. cx24110_writereg(state,0x10,0x20); /* start new count window */
  432. }
  433. *ucblocks = state->lastbler;
  434. return 0;
  435. }
  436. static int cx24110_set_frontend(struct dvb_frontend* fe, struct dvb_frontend_parameters *p)
  437. {
  438. struct cx24110_state *state = fe->demodulator_priv;
  439. if (fe->ops.tuner_ops.set_params) {
  440. fe->ops.tuner_ops.set_params(fe, p);
  441. if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0);
  442. }
  443. cx24110_set_inversion (state, p->inversion);
  444. cx24110_set_fec (state, p->u.qpsk.fec_inner);
  445. cx24110_set_symbolrate (state, p->u.qpsk.symbol_rate);
  446. cx24110_writereg(state,0x04,0x05); /* start acquisition */
  447. return 0;
  448. }
  449. static int cx24110_get_frontend(struct dvb_frontend* fe, struct dvb_frontend_parameters *p)
  450. {
  451. struct cx24110_state *state = fe->demodulator_priv;
  452. s32 afc; unsigned sclk;
  453. /* cannot read back tuner settings (freq). Need to have some private storage */
  454. sclk = cx24110_readreg (state, 0x07) & 0x03;
  455. /* ok, real AFC (FEDR) freq. is afc/2^24*fsamp, fsamp=45/60/80/90MHz.
  456. * Need 64 bit arithmetic. Is thiss possible in the kernel? */
  457. if (sclk==0) sclk=90999000L/2L;
  458. else if (sclk==1) sclk=60666000L;
  459. else if (sclk==2) sclk=80888000L;
  460. else sclk=90999000L;
  461. sclk>>=8;
  462. afc = sclk*(cx24110_readreg (state, 0x44)&0x1f)+
  463. ((sclk*cx24110_readreg (state, 0x45))>>8)+
  464. ((sclk*cx24110_readreg (state, 0x46))>>16);
  465. p->frequency += afc;
  466. p->inversion = (cx24110_readreg (state, 0x22) & 0x10) ?
  467. INVERSION_ON : INVERSION_OFF;
  468. p->u.qpsk.fec_inner = cx24110_get_fec (state);
  469. return 0;
  470. }
  471. static int cx24110_set_tone(struct dvb_frontend* fe, fe_sec_tone_mode_t tone)
  472. {
  473. struct cx24110_state *state = fe->demodulator_priv;
  474. return cx24110_writereg(state,0x76,(cx24110_readreg(state,0x76)&~0x10)|(((tone==SEC_TONE_ON))?0x10:0));
  475. }
  476. static void cx24110_release(struct dvb_frontend* fe)
  477. {
  478. struct cx24110_state* state = fe->demodulator_priv;
  479. kfree(state);
  480. }
  481. static struct dvb_frontend_ops cx24110_ops;
  482. struct dvb_frontend* cx24110_attach(const struct cx24110_config* config,
  483. struct i2c_adapter* i2c)
  484. {
  485. struct cx24110_state* state = NULL;
  486. int ret;
  487. /* allocate memory for the internal state */
  488. state = kzalloc(sizeof(struct cx24110_state), GFP_KERNEL);
  489. if (state == NULL) goto error;
  490. /* setup the state */
  491. state->config = config;
  492. state->i2c = i2c;
  493. state->lastber = 0;
  494. state->lastbler = 0;
  495. state->lastesn0 = 0;
  496. /* check if the demod is there */
  497. ret = cx24110_readreg(state, 0x00);
  498. if ((ret != 0x5a) && (ret != 0x69)) goto error;
  499. /* create dvb_frontend */
  500. memcpy(&state->frontend.ops, &cx24110_ops, sizeof(struct dvb_frontend_ops));
  501. state->frontend.demodulator_priv = state;
  502. return &state->frontend;
  503. error:
  504. kfree(state);
  505. return NULL;
  506. }
  507. static struct dvb_frontend_ops cx24110_ops = {
  508. .info = {
  509. .name = "Conexant CX24110 DVB-S",
  510. .type = FE_QPSK,
  511. .frequency_min = 950000,
  512. .frequency_max = 2150000,
  513. .frequency_stepsize = 1011, /* kHz for QPSK frontends */
  514. .frequency_tolerance = 29500,
  515. .symbol_rate_min = 1000000,
  516. .symbol_rate_max = 45000000,
  517. .caps = FE_CAN_INVERSION_AUTO |
  518. FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
  519. FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
  520. FE_CAN_QPSK | FE_CAN_RECOVER
  521. },
  522. .release = cx24110_release,
  523. .init = cx24110_initfe,
  524. .write = _cx24110_pll_write,
  525. .set_frontend = cx24110_set_frontend,
  526. .get_frontend = cx24110_get_frontend,
  527. .read_status = cx24110_read_status,
  528. .read_ber = cx24110_read_ber,
  529. .read_signal_strength = cx24110_read_signal_strength,
  530. .read_snr = cx24110_read_snr,
  531. .read_ucblocks = cx24110_read_ucblocks,
  532. .diseqc_send_master_cmd = cx24110_send_diseqc_msg,
  533. .set_tone = cx24110_set_tone,
  534. .set_voltage = cx24110_set_voltage,
  535. .diseqc_send_burst = cx24110_diseqc_send_burst,
  536. };
  537. module_param(debug, int, 0644);
  538. MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off).");
  539. MODULE_DESCRIPTION("Conexant CX24110 DVB-S Demodulator driver");
  540. MODULE_AUTHOR("Peter Hettkamp");
  541. MODULE_LICENSE("GPL");
  542. EXPORT_SYMBOL(cx24110_attach);