i7300_edac.c 36 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248
  1. /*
  2. * Intel 7300 class Memory Controllers kernel module (Clarksboro)
  3. *
  4. * This file may be distributed under the terms of the
  5. * GNU General Public License version 2 only.
  6. *
  7. * Copyright (c) 2010 by:
  8. * Mauro Carvalho Chehab <mchehab@redhat.com>
  9. *
  10. * Red Hat Inc. http://www.redhat.com
  11. *
  12. * Intel 7300 Chipset Memory Controller Hub (MCH) - Datasheet
  13. * http://www.intel.com/Assets/PDF/datasheet/318082.pdf
  14. *
  15. * TODO: The chipset allow checking for PCI Express errors also. Currently,
  16. * the driver covers only memory error errors
  17. *
  18. * This driver uses "csrows" EDAC attribute to represent DIMM slot#
  19. */
  20. #include <linux/module.h>
  21. #include <linux/init.h>
  22. #include <linux/pci.h>
  23. #include <linux/pci_ids.h>
  24. #include <linux/slab.h>
  25. #include <linux/edac.h>
  26. #include <linux/mmzone.h>
  27. #include "edac_core.h"
  28. /*
  29. * Alter this version for the I7300 module when modifications are made
  30. */
  31. #define I7300_REVISION " Ver: 1.0.0"
  32. #define EDAC_MOD_STR "i7300_edac"
  33. #define i7300_printk(level, fmt, arg...) \
  34. edac_printk(level, "i7300", fmt, ##arg)
  35. #define i7300_mc_printk(mci, level, fmt, arg...) \
  36. edac_mc_chipset_printk(mci, level, "i7300", fmt, ##arg)
  37. /***********************************************
  38. * i7300 Limit constants Structs and static vars
  39. ***********************************************/
  40. /*
  41. * Memory topology is organized as:
  42. * Branch 0 - 2 channels: channels 0 and 1 (FDB0 PCI dev 21.0)
  43. * Branch 1 - 2 channels: channels 2 and 3 (FDB1 PCI dev 22.0)
  44. * Each channel can have to 8 DIMM sets (called as SLOTS)
  45. * Slots should generally be filled in pairs
  46. * Except on Single Channel mode of operation
  47. * just slot 0/channel0 filled on this mode
  48. * On normal operation mode, the two channels on a branch should be
  49. * filled together for the same SLOT#
  50. * When in mirrored mode, Branch 1 replicate memory at Branch 0, so, the four
  51. * channels on both branches should be filled
  52. */
  53. /* Limits for i7300 */
  54. #define MAX_SLOTS 8
  55. #define MAX_BRANCHES 2
  56. #define MAX_CH_PER_BRANCH 2
  57. #define MAX_CHANNELS (MAX_CH_PER_BRANCH * MAX_BRANCHES)
  58. #define MAX_MIR 3
  59. #define to_channel(ch, branch) ((((branch)) << 1) | (ch))
  60. #define to_csrow(slot, ch, branch) \
  61. (to_channel(ch, branch) | ((slot) << 2))
  62. /* Device name and register DID (Device ID) */
  63. struct i7300_dev_info {
  64. const char *ctl_name; /* name for this device */
  65. u16 fsb_mapping_errors; /* DID for the branchmap,control */
  66. };
  67. /* Table of devices attributes supported by this driver */
  68. static const struct i7300_dev_info i7300_devs[] = {
  69. {
  70. .ctl_name = "I7300",
  71. .fsb_mapping_errors = PCI_DEVICE_ID_INTEL_I7300_MCH_ERR,
  72. },
  73. };
  74. struct i7300_dimm_info {
  75. int megabytes; /* size, 0 means not present */
  76. };
  77. /* driver private data structure */
  78. struct i7300_pvt {
  79. struct pci_dev *pci_dev_16_0_fsb_ctlr; /* 16.0 */
  80. struct pci_dev *pci_dev_16_1_fsb_addr_map; /* 16.1 */
  81. struct pci_dev *pci_dev_16_2_fsb_err_regs; /* 16.2 */
  82. struct pci_dev *pci_dev_2x_0_fbd_branch[MAX_BRANCHES]; /* 21.0 and 22.0 */
  83. u16 tolm; /* top of low memory */
  84. u64 ambase; /* AMB BAR */
  85. u32 mc_settings; /* Report several settings */
  86. u32 mc_settings_a;
  87. u16 mir[MAX_MIR]; /* Memory Interleave Reg*/
  88. u16 mtr[MAX_SLOTS][MAX_BRANCHES]; /* Memory Technlogy Reg */
  89. u16 ambpresent[MAX_CHANNELS]; /* AMB present regs */
  90. /* DIMM information matrix, allocating architecture maximums */
  91. struct i7300_dimm_info dimm_info[MAX_SLOTS][MAX_CHANNELS];
  92. /* Temporary buffer for use when preparing error messages */
  93. char *tmp_prt_buffer;
  94. };
  95. /* FIXME: Why do we need to have this static? */
  96. static struct edac_pci_ctl_info *i7300_pci;
  97. /***************************************************
  98. * i7300 Register definitions for memory enumeration
  99. ***************************************************/
  100. /*
  101. * Device 16,
  102. * Function 0: System Address (not documented)
  103. * Function 1: Memory Branch Map, Control, Errors Register
  104. */
  105. /* OFFSETS for Function 0 */
  106. #define AMBASE 0x48 /* AMB Mem Mapped Reg Region Base */
  107. #define MAXCH 0x56 /* Max Channel Number */
  108. #define MAXDIMMPERCH 0x57 /* Max DIMM PER Channel Number */
  109. /* OFFSETS for Function 1 */
  110. #define MC_SETTINGS 0x40
  111. #define IS_MIRRORED(mc) ((mc) & (1 << 16))
  112. #define IS_ECC_ENABLED(mc) ((mc) & (1 << 5))
  113. #define IS_RETRY_ENABLED(mc) ((mc) & (1 << 31))
  114. #define IS_SCRBALGO_ENHANCED(mc) ((mc) & (1 << 8))
  115. #define MC_SETTINGS_A 0x58
  116. #define IS_SINGLE_MODE(mca) ((mca) & (1 << 14))
  117. #define TOLM 0x6C
  118. #define MIR0 0x80
  119. #define MIR1 0x84
  120. #define MIR2 0x88
  121. /*
  122. * Note: Other Intel EDAC drivers use AMBPRESENT to identify if the available
  123. * memory. From datasheet item 7.3.1 (FB-DIMM technology & organization), it
  124. * seems that we cannot use this information directly for the same usage.
  125. * Each memory slot may have up to 2 AMB interfaces, one for income and another
  126. * for outcome interface to the next slot.
  127. * For now, the driver just stores the AMB present registers, but rely only at
  128. * the MTR info to detect memory.
  129. * Datasheet is also not clear about how to map each AMBPRESENT registers to
  130. * one of the 4 available channels.
  131. */
  132. #define AMBPRESENT_0 0x64
  133. #define AMBPRESENT_1 0x66
  134. static const u16 mtr_regs[MAX_SLOTS] = {
  135. 0x80, 0x84, 0x88, 0x8c,
  136. 0x82, 0x86, 0x8a, 0x8e
  137. };
  138. /*
  139. * Defines to extract the vaious fields from the
  140. * MTRx - Memory Technology Registers
  141. */
  142. #define MTR_DIMMS_PRESENT(mtr) ((mtr) & (1 << 8))
  143. #define MTR_DIMMS_ETHROTTLE(mtr) ((mtr) & (1 << 7))
  144. #define MTR_DRAM_WIDTH(mtr) (((mtr) & (1 << 6)) ? 8 : 4)
  145. #define MTR_DRAM_BANKS(mtr) (((mtr) & (1 << 5)) ? 8 : 4)
  146. #define MTR_DIMM_RANKS(mtr) (((mtr) & (1 << 4)) ? 1 : 0)
  147. #define MTR_DIMM_ROWS(mtr) (((mtr) >> 2) & 0x3)
  148. #define MTR_DRAM_BANKS_ADDR_BITS 2
  149. #define MTR_DIMM_ROWS_ADDR_BITS(mtr) (MTR_DIMM_ROWS(mtr) + 13)
  150. #define MTR_DIMM_COLS(mtr) ((mtr) & 0x3)
  151. #define MTR_DIMM_COLS_ADDR_BITS(mtr) (MTR_DIMM_COLS(mtr) + 10)
  152. #ifdef CONFIG_EDAC_DEBUG
  153. /* MTR NUMROW */
  154. static const char *numrow_toString[] = {
  155. "8,192 - 13 rows",
  156. "16,384 - 14 rows",
  157. "32,768 - 15 rows",
  158. "65,536 - 16 rows"
  159. };
  160. /* MTR NUMCOL */
  161. static const char *numcol_toString[] = {
  162. "1,024 - 10 columns",
  163. "2,048 - 11 columns",
  164. "4,096 - 12 columns",
  165. "reserved"
  166. };
  167. #endif
  168. /************************************************
  169. * i7300 Register definitions for error detection
  170. ************************************************/
  171. /*
  172. * Device 16.1: FBD Error Registers
  173. */
  174. #define FERR_FAT_FBD 0x98
  175. static const char *ferr_fat_fbd_name[] = {
  176. [22] = "Non-Redundant Fast Reset Timeout",
  177. [2] = ">Tmid Thermal event with intelligent throttling disabled",
  178. [1] = "Memory or FBD configuration CRC read error",
  179. [0] = "Memory Write error on non-redundant retry or "
  180. "FBD configuration Write error on retry",
  181. };
  182. #define GET_FBD_FAT_IDX(fbderr) (fbderr & (3 << 28))
  183. #define FERR_FAT_FBD_ERR_MASK ((1 << 0) | (1 << 1) | (1 << 2) | (1 << 3))
  184. #define FERR_NF_FBD 0xa0
  185. static const char *ferr_nf_fbd_name[] = {
  186. [24] = "DIMM-Spare Copy Completed",
  187. [23] = "DIMM-Spare Copy Initiated",
  188. [22] = "Redundant Fast Reset Timeout",
  189. [21] = "Memory Write error on redundant retry",
  190. [18] = "SPD protocol Error",
  191. [17] = "FBD Northbound parity error on FBD Sync Status",
  192. [16] = "Correctable Patrol Data ECC",
  193. [15] = "Correctable Resilver- or Spare-Copy Data ECC",
  194. [14] = "Correctable Mirrored Demand Data ECC",
  195. [13] = "Correctable Non-Mirrored Demand Data ECC",
  196. [11] = "Memory or FBD configuration CRC read error",
  197. [10] = "FBD Configuration Write error on first attempt",
  198. [9] = "Memory Write error on first attempt",
  199. [8] = "Non-Aliased Uncorrectable Patrol Data ECC",
  200. [7] = "Non-Aliased Uncorrectable Resilver- or Spare-Copy Data ECC",
  201. [6] = "Non-Aliased Uncorrectable Mirrored Demand Data ECC",
  202. [5] = "Non-Aliased Uncorrectable Non-Mirrored Demand Data ECC",
  203. [4] = "Aliased Uncorrectable Patrol Data ECC",
  204. [3] = "Aliased Uncorrectable Resilver- or Spare-Copy Data ECC",
  205. [2] = "Aliased Uncorrectable Mirrored Demand Data ECC",
  206. [1] = "Aliased Uncorrectable Non-Mirrored Demand Data ECC",
  207. [0] = "Uncorrectable Data ECC on Replay",
  208. };
  209. #define GET_FBD_NF_IDX(fbderr) (fbderr & (3 << 28))
  210. #define FERR_NF_FBD_ERR_MASK ((1 << 24) | (1 << 23) | (1 << 22) | (1 << 21) |\
  211. (1 << 18) | (1 << 17) | (1 << 16) | (1 << 15) |\
  212. (1 << 14) | (1 << 13) | (1 << 11) | (1 << 10) |\
  213. (1 << 9) | (1 << 8) | (1 << 7) | (1 << 6) |\
  214. (1 << 5) | (1 << 4) | (1 << 3) | (1 << 2) |\
  215. (1 << 1) | (1 << 0))
  216. #define EMASK_FBD 0xa8
  217. #define EMASK_FBD_ERR_MASK ((1 << 27) | (1 << 26) | (1 << 25) | (1 << 24) |\
  218. (1 << 22) | (1 << 21) | (1 << 20) | (1 << 19) |\
  219. (1 << 18) | (1 << 17) | (1 << 16) | (1 << 14) |\
  220. (1 << 13) | (1 << 12) | (1 << 11) | (1 << 10) |\
  221. (1 << 9) | (1 << 8) | (1 << 7) | (1 << 6) |\
  222. (1 << 5) | (1 << 4) | (1 << 3) | (1 << 2) |\
  223. (1 << 1) | (1 << 0))
  224. /*
  225. * Device 16.2: Global Error Registers
  226. */
  227. #define FERR_GLOBAL_HI 0x48
  228. static const char *ferr_global_hi_name[] = {
  229. [3] = "FSB 3 Fatal Error",
  230. [2] = "FSB 2 Fatal Error",
  231. [1] = "FSB 1 Fatal Error",
  232. [0] = "FSB 0 Fatal Error",
  233. };
  234. #define ferr_global_hi_is_fatal(errno) 1
  235. #define FERR_GLOBAL_LO 0x40
  236. static const char *ferr_global_lo_name[] = {
  237. [31] = "Internal MCH Fatal Error",
  238. [30] = "Intel QuickData Technology Device Fatal Error",
  239. [29] = "FSB1 Fatal Error",
  240. [28] = "FSB0 Fatal Error",
  241. [27] = "FBD Channel 3 Fatal Error",
  242. [26] = "FBD Channel 2 Fatal Error",
  243. [25] = "FBD Channel 1 Fatal Error",
  244. [24] = "FBD Channel 0 Fatal Error",
  245. [23] = "PCI Express Device 7Fatal Error",
  246. [22] = "PCI Express Device 6 Fatal Error",
  247. [21] = "PCI Express Device 5 Fatal Error",
  248. [20] = "PCI Express Device 4 Fatal Error",
  249. [19] = "PCI Express Device 3 Fatal Error",
  250. [18] = "PCI Express Device 2 Fatal Error",
  251. [17] = "PCI Express Device 1 Fatal Error",
  252. [16] = "ESI Fatal Error",
  253. [15] = "Internal MCH Non-Fatal Error",
  254. [14] = "Intel QuickData Technology Device Non Fatal Error",
  255. [13] = "FSB1 Non-Fatal Error",
  256. [12] = "FSB 0 Non-Fatal Error",
  257. [11] = "FBD Channel 3 Non-Fatal Error",
  258. [10] = "FBD Channel 2 Non-Fatal Error",
  259. [9] = "FBD Channel 1 Non-Fatal Error",
  260. [8] = "FBD Channel 0 Non-Fatal Error",
  261. [7] = "PCI Express Device 7 Non-Fatal Error",
  262. [6] = "PCI Express Device 6 Non-Fatal Error",
  263. [5] = "PCI Express Device 5 Non-Fatal Error",
  264. [4] = "PCI Express Device 4 Non-Fatal Error",
  265. [3] = "PCI Express Device 3 Non-Fatal Error",
  266. [2] = "PCI Express Device 2 Non-Fatal Error",
  267. [1] = "PCI Express Device 1 Non-Fatal Error",
  268. [0] = "ESI Non-Fatal Error",
  269. };
  270. #define ferr_global_lo_is_fatal(errno) ((errno < 16) ? 0 : 1)
  271. #define NRECMEMA 0xbe
  272. #define NRECMEMA_BANK(v) (((v) >> 12) & 7)
  273. #define NRECMEMA_RANK(v) (((v) >> 8) & 15)
  274. #define NRECMEMB 0xc0
  275. #define NRECMEMB_IS_WR(v) ((v) & (1 << 31))
  276. #define NRECMEMB_CAS(v) (((v) >> 16) & 0x1fff)
  277. #define NRECMEMB_RAS(v) ((v) & 0xffff)
  278. #define REDMEMA 0xdc
  279. #define REDMEMB 0x7c
  280. #define IS_SECOND_CH(v) ((v) * (1 << 17))
  281. #define RECMEMA 0xe0
  282. #define RECMEMA_BANK(v) (((v) >> 12) & 7)
  283. #define RECMEMA_RANK(v) (((v) >> 8) & 15)
  284. #define RECMEMB 0xe4
  285. #define RECMEMB_IS_WR(v) ((v) & (1 << 31))
  286. #define RECMEMB_CAS(v) (((v) >> 16) & 0x1fff)
  287. #define RECMEMB_RAS(v) ((v) & 0xffff)
  288. /********************************************
  289. * i7300 Functions related to error detection
  290. ********************************************/
  291. /**
  292. * get_err_from_table() - Gets the error message from a table
  293. * @table: table name (array of char *)
  294. * @size: number of elements at the table
  295. * @pos: position of the element to be returned
  296. *
  297. * This is a small routine that gets the pos-th element of a table. If the
  298. * element doesn't exist (or it is empty), it returns "reserved".
  299. * Instead of calling it directly, the better is to call via the macro
  300. * GET_ERR_FROM_TABLE(), that automatically checks the table size via
  301. * ARRAY_SIZE() macro
  302. */
  303. static const char *get_err_from_table(const char *table[], int size, int pos)
  304. {
  305. if (unlikely(pos >= size))
  306. return "Reserved";
  307. if (unlikely(!table[pos]))
  308. return "Reserved";
  309. return table[pos];
  310. }
  311. #define GET_ERR_FROM_TABLE(table, pos) \
  312. get_err_from_table(table, ARRAY_SIZE(table), pos)
  313. /**
  314. * i7300_process_error_global() - Retrieve the hardware error information from
  315. * the hardware global error registers and
  316. * sends it to dmesg
  317. * @mci: struct mem_ctl_info pointer
  318. */
  319. static void i7300_process_error_global(struct mem_ctl_info *mci)
  320. {
  321. struct i7300_pvt *pvt;
  322. u32 errnum, value;
  323. unsigned long errors;
  324. const char *specific;
  325. bool is_fatal;
  326. pvt = mci->pvt_info;
  327. /* read in the 1st FATAL error register */
  328. pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
  329. FERR_GLOBAL_HI, &value);
  330. if (unlikely(value)) {
  331. errors = value;
  332. errnum = find_first_bit(&errors,
  333. ARRAY_SIZE(ferr_global_hi_name));
  334. specific = GET_ERR_FROM_TABLE(ferr_global_hi_name, errnum);
  335. is_fatal = ferr_global_hi_is_fatal(errnum);
  336. /* Clear the error bit */
  337. pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
  338. FERR_GLOBAL_HI, value);
  339. goto error_global;
  340. }
  341. pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
  342. FERR_GLOBAL_LO, &value);
  343. if (unlikely(value)) {
  344. errors = value;
  345. errnum = find_first_bit(&errors,
  346. ARRAY_SIZE(ferr_global_lo_name));
  347. specific = GET_ERR_FROM_TABLE(ferr_global_lo_name, errnum);
  348. is_fatal = ferr_global_lo_is_fatal(errnum);
  349. /* Clear the error bit */
  350. pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
  351. FERR_GLOBAL_LO, value);
  352. goto error_global;
  353. }
  354. return;
  355. error_global:
  356. i7300_mc_printk(mci, KERN_EMERG, "%s misc error: %s\n",
  357. is_fatal ? "Fatal" : "NOT fatal", specific);
  358. }
  359. /**
  360. * i7300_process_fbd_error() - Retrieve the hardware error information from
  361. * the FBD error registers and sends it via
  362. * EDAC error API calls
  363. * @mci: struct mem_ctl_info pointer
  364. */
  365. static void i7300_process_fbd_error(struct mem_ctl_info *mci)
  366. {
  367. struct i7300_pvt *pvt;
  368. u32 errnum, value;
  369. u16 val16;
  370. unsigned branch, channel, bank, rank, cas, ras;
  371. u32 syndrome;
  372. unsigned long errors;
  373. const char *specific;
  374. bool is_wr;
  375. pvt = mci->pvt_info;
  376. /* read in the 1st FATAL error register */
  377. pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
  378. FERR_FAT_FBD, &value);
  379. if (unlikely(value & FERR_FAT_FBD_ERR_MASK)) {
  380. errors = value & FERR_FAT_FBD_ERR_MASK ;
  381. errnum = find_first_bit(&errors,
  382. ARRAY_SIZE(ferr_fat_fbd_name));
  383. specific = GET_ERR_FROM_TABLE(ferr_fat_fbd_name, errnum);
  384. branch = (GET_FBD_FAT_IDX(value) == 2) ? 1 : 0;
  385. pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map,
  386. NRECMEMA, &val16);
  387. bank = NRECMEMA_BANK(val16);
  388. rank = NRECMEMA_RANK(val16);
  389. pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
  390. NRECMEMB, &value);
  391. is_wr = NRECMEMB_IS_WR(value);
  392. cas = NRECMEMB_CAS(value);
  393. ras = NRECMEMB_RAS(value);
  394. snprintf(pvt->tmp_prt_buffer, PAGE_SIZE,
  395. "FATAL (Branch=%d DRAM-Bank=%d %s "
  396. "RAS=%d CAS=%d Err=0x%lx (%s))",
  397. branch, bank,
  398. is_wr ? "RDWR" : "RD",
  399. ras, cas,
  400. errors, specific);
  401. /* Call the helper to output message */
  402. edac_mc_handle_fbd_ue(mci, rank, branch << 1,
  403. (branch << 1) + 1,
  404. pvt->tmp_prt_buffer);
  405. }
  406. /* read in the 1st NON-FATAL error register */
  407. pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
  408. FERR_NF_FBD, &value);
  409. if (unlikely(value & FERR_NF_FBD_ERR_MASK)) {
  410. errors = value & FERR_NF_FBD_ERR_MASK;
  411. errnum = find_first_bit(&errors,
  412. ARRAY_SIZE(ferr_nf_fbd_name));
  413. specific = GET_ERR_FROM_TABLE(ferr_nf_fbd_name, errnum);
  414. /* Clear the error bit */
  415. pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
  416. FERR_GLOBAL_LO, value);
  417. pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
  418. REDMEMA, &syndrome);
  419. branch = (GET_FBD_FAT_IDX(value) == 2) ? 1 : 0;
  420. pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map,
  421. RECMEMA, &val16);
  422. bank = RECMEMA_BANK(val16);
  423. rank = RECMEMA_RANK(val16);
  424. pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
  425. RECMEMB, &value);
  426. is_wr = RECMEMB_IS_WR(value);
  427. cas = RECMEMB_CAS(value);
  428. ras = RECMEMB_RAS(value);
  429. pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
  430. REDMEMB, &value);
  431. channel = (branch << 1);
  432. if (IS_SECOND_CH(value))
  433. channel++;
  434. /* Form out message */
  435. snprintf(pvt->tmp_prt_buffer, PAGE_SIZE,
  436. "Corrected error (Branch=%d, Channel %d), "
  437. " DRAM-Bank=%d %s "
  438. "RAS=%d CAS=%d, CE Err=0x%lx, Syndrome=0x%08x(%s))",
  439. branch, channel,
  440. bank,
  441. is_wr ? "RDWR" : "RD",
  442. ras, cas,
  443. errors, syndrome, specific);
  444. /*
  445. * Call the helper to output message
  446. * NOTE: Errors are reported per-branch, and not per-channel
  447. * Currently, we don't know how to identify the right
  448. * channel.
  449. */
  450. edac_mc_handle_fbd_ce(mci, rank, channel,
  451. pvt->tmp_prt_buffer);
  452. }
  453. return;
  454. }
  455. /**
  456. * i7300_check_error() - Calls the error checking subroutines
  457. * @mci: struct mem_ctl_info pointer
  458. */
  459. static void i7300_check_error(struct mem_ctl_info *mci)
  460. {
  461. i7300_process_error_global(mci);
  462. i7300_process_fbd_error(mci);
  463. };
  464. /**
  465. * i7300_clear_error() - Clears the error registers
  466. * @mci: struct mem_ctl_info pointer
  467. */
  468. static void i7300_clear_error(struct mem_ctl_info *mci)
  469. {
  470. struct i7300_pvt *pvt = mci->pvt_info;
  471. u32 value;
  472. /*
  473. * All error values are RWC - we need to read and write 1 to the
  474. * bit that we want to cleanup
  475. */
  476. /* Clear global error registers */
  477. pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
  478. FERR_GLOBAL_HI, &value);
  479. pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
  480. FERR_GLOBAL_HI, value);
  481. pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
  482. FERR_GLOBAL_LO, &value);
  483. pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
  484. FERR_GLOBAL_LO, value);
  485. /* Clear FBD error registers */
  486. pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
  487. FERR_FAT_FBD, &value);
  488. pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
  489. FERR_FAT_FBD, value);
  490. pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
  491. FERR_NF_FBD, &value);
  492. pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
  493. FERR_NF_FBD, value);
  494. }
  495. /**
  496. * i7300_enable_error_reporting() - Enable the memory reporting logic at the
  497. * hardware
  498. * @mci: struct mem_ctl_info pointer
  499. */
  500. static void i7300_enable_error_reporting(struct mem_ctl_info *mci)
  501. {
  502. struct i7300_pvt *pvt = mci->pvt_info;
  503. u32 fbd_error_mask;
  504. /* Read the FBD Error Mask Register */
  505. pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
  506. EMASK_FBD, &fbd_error_mask);
  507. /* Enable with a '0' */
  508. fbd_error_mask &= ~(EMASK_FBD_ERR_MASK);
  509. pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
  510. EMASK_FBD, fbd_error_mask);
  511. }
  512. /************************************************
  513. * i7300 Functions related to memory enumberation
  514. ************************************************/
  515. /**
  516. * decode_mtr() - Decodes the MTR descriptor, filling the edac structs
  517. * @pvt: pointer to the private data struct used by i7300 driver
  518. * @slot: DIMM slot (0 to 7)
  519. * @ch: Channel number within the branch (0 or 1)
  520. * @branch: Branch number (0 or 1)
  521. * @dinfo: Pointer to DIMM info where dimm size is stored
  522. * @p_csrow: Pointer to the struct csrow_info that corresponds to that element
  523. */
  524. static int decode_mtr(struct i7300_pvt *pvt,
  525. int slot, int ch, int branch,
  526. struct i7300_dimm_info *dinfo,
  527. struct csrow_info *p_csrow,
  528. u32 *nr_pages)
  529. {
  530. int mtr, ans, addrBits, channel;
  531. channel = to_channel(ch, branch);
  532. mtr = pvt->mtr[slot][branch];
  533. ans = MTR_DIMMS_PRESENT(mtr) ? 1 : 0;
  534. debugf2("\tMTR%d CH%d: DIMMs are %s (mtr)\n",
  535. slot, channel,
  536. ans ? "Present" : "NOT Present");
  537. /* Determine if there is a DIMM present in this DIMM slot */
  538. if (!ans)
  539. return 0;
  540. /* Start with the number of bits for a Bank
  541. * on the DRAM */
  542. addrBits = MTR_DRAM_BANKS_ADDR_BITS;
  543. /* Add thenumber of ROW bits */
  544. addrBits += MTR_DIMM_ROWS_ADDR_BITS(mtr);
  545. /* add the number of COLUMN bits */
  546. addrBits += MTR_DIMM_COLS_ADDR_BITS(mtr);
  547. /* add the number of RANK bits */
  548. addrBits += MTR_DIMM_RANKS(mtr);
  549. addrBits += 6; /* add 64 bits per DIMM */
  550. addrBits -= 20; /* divide by 2^^20 */
  551. addrBits -= 3; /* 8 bits per bytes */
  552. dinfo->megabytes = 1 << addrBits;
  553. *nr_pages = dinfo->megabytes << 8;
  554. debugf2("\t\tWIDTH: x%d\n", MTR_DRAM_WIDTH(mtr));
  555. debugf2("\t\tELECTRICAL THROTTLING is %s\n",
  556. MTR_DIMMS_ETHROTTLE(mtr) ? "enabled" : "disabled");
  557. debugf2("\t\tNUMBANK: %d bank(s)\n", MTR_DRAM_BANKS(mtr));
  558. debugf2("\t\tNUMRANK: %s\n", MTR_DIMM_RANKS(mtr) ? "double" : "single");
  559. debugf2("\t\tNUMROW: %s\n", numrow_toString[MTR_DIMM_ROWS(mtr)]);
  560. debugf2("\t\tNUMCOL: %s\n", numcol_toString[MTR_DIMM_COLS(mtr)]);
  561. debugf2("\t\tSIZE: %d MB\n", dinfo->megabytes);
  562. p_csrow->grain = 8;
  563. p_csrow->mtype = MEM_FB_DDR2;
  564. p_csrow->csrow_idx = slot;
  565. p_csrow->page_mask = 0;
  566. /*
  567. * The type of error detection actually depends of the
  568. * mode of operation. When it is just one single memory chip, at
  569. * socket 0, channel 0, it uses 8-byte-over-32-byte SECDED+ code.
  570. * In normal or mirrored mode, it uses Lockstep mode,
  571. * with the possibility of using an extended algorithm for x8 memories
  572. * See datasheet Sections 7.3.6 to 7.3.8
  573. */
  574. if (IS_SINGLE_MODE(pvt->mc_settings_a)) {
  575. p_csrow->edac_mode = EDAC_SECDED;
  576. debugf2("\t\tECC code is 8-byte-over-32-byte SECDED+ code\n");
  577. } else {
  578. debugf2("\t\tECC code is on Lockstep mode\n");
  579. if (MTR_DRAM_WIDTH(mtr) == 8)
  580. p_csrow->edac_mode = EDAC_S8ECD8ED;
  581. else
  582. p_csrow->edac_mode = EDAC_S4ECD4ED;
  583. }
  584. /* ask what device type on this row */
  585. if (MTR_DRAM_WIDTH(mtr) == 8) {
  586. debugf2("\t\tScrub algorithm for x8 is on %s mode\n",
  587. IS_SCRBALGO_ENHANCED(pvt->mc_settings) ?
  588. "enhanced" : "normal");
  589. p_csrow->dtype = DEV_X8;
  590. } else
  591. p_csrow->dtype = DEV_X4;
  592. return mtr;
  593. }
  594. /**
  595. * print_dimm_size() - Prints dump of the memory organization
  596. * @pvt: pointer to the private data struct used by i7300 driver
  597. *
  598. * Useful for debug. If debug is disabled, this routine do nothing
  599. */
  600. static void print_dimm_size(struct i7300_pvt *pvt)
  601. {
  602. #ifdef CONFIG_EDAC_DEBUG
  603. struct i7300_dimm_info *dinfo;
  604. char *p;
  605. int space, n;
  606. int channel, slot;
  607. space = PAGE_SIZE;
  608. p = pvt->tmp_prt_buffer;
  609. n = snprintf(p, space, " ");
  610. p += n;
  611. space -= n;
  612. for (channel = 0; channel < MAX_CHANNELS; channel++) {
  613. n = snprintf(p, space, "channel %d | ", channel);
  614. p += n;
  615. space -= n;
  616. }
  617. debugf2("%s\n", pvt->tmp_prt_buffer);
  618. p = pvt->tmp_prt_buffer;
  619. space = PAGE_SIZE;
  620. n = snprintf(p, space, "-------------------------------"
  621. "------------------------------");
  622. p += n;
  623. space -= n;
  624. debugf2("%s\n", pvt->tmp_prt_buffer);
  625. p = pvt->tmp_prt_buffer;
  626. space = PAGE_SIZE;
  627. for (slot = 0; slot < MAX_SLOTS; slot++) {
  628. n = snprintf(p, space, "csrow/SLOT %d ", slot);
  629. p += n;
  630. space -= n;
  631. for (channel = 0; channel < MAX_CHANNELS; channel++) {
  632. dinfo = &pvt->dimm_info[slot][channel];
  633. n = snprintf(p, space, "%4d MB | ", dinfo->megabytes);
  634. p += n;
  635. space -= n;
  636. }
  637. debugf2("%s\n", pvt->tmp_prt_buffer);
  638. p = pvt->tmp_prt_buffer;
  639. space = PAGE_SIZE;
  640. }
  641. n = snprintf(p, space, "-------------------------------"
  642. "------------------------------");
  643. p += n;
  644. space -= n;
  645. debugf2("%s\n", pvt->tmp_prt_buffer);
  646. p = pvt->tmp_prt_buffer;
  647. space = PAGE_SIZE;
  648. #endif
  649. }
  650. /**
  651. * i7300_init_csrows() - Initialize the 'csrows' table within
  652. * the mci control structure with the
  653. * addressing of memory.
  654. * @mci: struct mem_ctl_info pointer
  655. */
  656. static int i7300_init_csrows(struct mem_ctl_info *mci)
  657. {
  658. struct i7300_pvt *pvt;
  659. struct i7300_dimm_info *dinfo;
  660. struct csrow_info *p_csrow;
  661. int rc = -ENODEV;
  662. int mtr;
  663. int ch, branch, slot, channel;
  664. u32 last_page = 0, nr_pages;
  665. pvt = mci->pvt_info;
  666. debugf2("Memory Technology Registers:\n");
  667. /* Get the AMB present registers for the four channels */
  668. for (branch = 0; branch < MAX_BRANCHES; branch++) {
  669. /* Read and dump branch 0's MTRs */
  670. channel = to_channel(0, branch);
  671. pci_read_config_word(pvt->pci_dev_2x_0_fbd_branch[branch],
  672. AMBPRESENT_0,
  673. &pvt->ambpresent[channel]);
  674. debugf2("\t\tAMB-present CH%d = 0x%x:\n",
  675. channel, pvt->ambpresent[channel]);
  676. channel = to_channel(1, branch);
  677. pci_read_config_word(pvt->pci_dev_2x_0_fbd_branch[branch],
  678. AMBPRESENT_1,
  679. &pvt->ambpresent[channel]);
  680. debugf2("\t\tAMB-present CH%d = 0x%x:\n",
  681. channel, pvt->ambpresent[channel]);
  682. }
  683. /* Get the set of MTR[0-7] regs by each branch */
  684. for (slot = 0; slot < MAX_SLOTS; slot++) {
  685. int where = mtr_regs[slot];
  686. for (branch = 0; branch < MAX_BRANCHES; branch++) {
  687. pci_read_config_word(pvt->pci_dev_2x_0_fbd_branch[branch],
  688. where,
  689. &pvt->mtr[slot][branch]);
  690. for (ch = 0; ch < MAX_BRANCHES; ch++) {
  691. int channel = to_channel(ch, branch);
  692. dinfo = &pvt->dimm_info[slot][channel];
  693. p_csrow = &mci->csrows[slot];
  694. mtr = decode_mtr(pvt, slot, ch, branch,
  695. dinfo, p_csrow, &nr_pages);
  696. /* if no DIMMS on this row, continue */
  697. if (!MTR_DIMMS_PRESENT(mtr))
  698. continue;
  699. /* Update per_csrow memory count */
  700. p_csrow->nr_pages += nr_pages;
  701. p_csrow->first_page = last_page;
  702. last_page += nr_pages;
  703. p_csrow->last_page = last_page;
  704. rc = 0;
  705. }
  706. }
  707. }
  708. return rc;
  709. }
  710. /**
  711. * decode_mir() - Decodes Memory Interleave Register (MIR) info
  712. * @int mir_no: number of the MIR register to decode
  713. * @mir: array with the MIR data cached on the driver
  714. */
  715. static void decode_mir(int mir_no, u16 mir[MAX_MIR])
  716. {
  717. if (mir[mir_no] & 3)
  718. debugf2("MIR%d: limit= 0x%x Branch(es) that participate:"
  719. " %s %s\n",
  720. mir_no,
  721. (mir[mir_no] >> 4) & 0xfff,
  722. (mir[mir_no] & 1) ? "B0" : "",
  723. (mir[mir_no] & 2) ? "B1" : "");
  724. }
  725. /**
  726. * i7300_get_mc_regs() - Get the contents of the MC enumeration registers
  727. * @mci: struct mem_ctl_info pointer
  728. *
  729. * Data read is cached internally for its usage when needed
  730. */
  731. static int i7300_get_mc_regs(struct mem_ctl_info *mci)
  732. {
  733. struct i7300_pvt *pvt;
  734. u32 actual_tolm;
  735. int i, rc;
  736. pvt = mci->pvt_info;
  737. pci_read_config_dword(pvt->pci_dev_16_0_fsb_ctlr, AMBASE,
  738. (u32 *) &pvt->ambase);
  739. debugf2("AMBASE= 0x%lx\n", (long unsigned int)pvt->ambase);
  740. /* Get the Branch Map regs */
  741. pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, TOLM, &pvt->tolm);
  742. pvt->tolm >>= 12;
  743. debugf2("TOLM (number of 256M regions) =%u (0x%x)\n", pvt->tolm,
  744. pvt->tolm);
  745. actual_tolm = (u32) ((1000l * pvt->tolm) >> (30 - 28));
  746. debugf2("Actual TOLM byte addr=%u.%03u GB (0x%x)\n",
  747. actual_tolm/1000, actual_tolm % 1000, pvt->tolm << 28);
  748. /* Get memory controller settings */
  749. pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, MC_SETTINGS,
  750. &pvt->mc_settings);
  751. pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, MC_SETTINGS_A,
  752. &pvt->mc_settings_a);
  753. if (IS_SINGLE_MODE(pvt->mc_settings_a))
  754. debugf0("Memory controller operating on single mode\n");
  755. else
  756. debugf0("Memory controller operating on %s mode\n",
  757. IS_MIRRORED(pvt->mc_settings) ? "mirrored" : "non-mirrored");
  758. debugf0("Error detection is %s\n",
  759. IS_ECC_ENABLED(pvt->mc_settings) ? "enabled" : "disabled");
  760. debugf0("Retry is %s\n",
  761. IS_RETRY_ENABLED(pvt->mc_settings) ? "enabled" : "disabled");
  762. /* Get Memory Interleave Range registers */
  763. pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, MIR0,
  764. &pvt->mir[0]);
  765. pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, MIR1,
  766. &pvt->mir[1]);
  767. pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, MIR2,
  768. &pvt->mir[2]);
  769. /* Decode the MIR regs */
  770. for (i = 0; i < MAX_MIR; i++)
  771. decode_mir(i, pvt->mir);
  772. rc = i7300_init_csrows(mci);
  773. if (rc < 0)
  774. return rc;
  775. /* Go and determine the size of each DIMM and place in an
  776. * orderly matrix */
  777. print_dimm_size(pvt);
  778. return 0;
  779. }
  780. /*************************************************
  781. * i7300 Functions related to device probe/release
  782. *************************************************/
  783. /**
  784. * i7300_put_devices() - Release the PCI devices
  785. * @mci: struct mem_ctl_info pointer
  786. */
  787. static void i7300_put_devices(struct mem_ctl_info *mci)
  788. {
  789. struct i7300_pvt *pvt;
  790. int branch;
  791. pvt = mci->pvt_info;
  792. /* Decrement usage count for devices */
  793. for (branch = 0; branch < MAX_CH_PER_BRANCH; branch++)
  794. pci_dev_put(pvt->pci_dev_2x_0_fbd_branch[branch]);
  795. pci_dev_put(pvt->pci_dev_16_2_fsb_err_regs);
  796. pci_dev_put(pvt->pci_dev_16_1_fsb_addr_map);
  797. }
  798. /**
  799. * i7300_get_devices() - Find and perform 'get' operation on the MCH's
  800. * device/functions we want to reference for this driver
  801. * @mci: struct mem_ctl_info pointer
  802. *
  803. * Access and prepare the several devices for usage:
  804. * I7300 devices used by this driver:
  805. * Device 16, functions 0,1 and 2: PCI_DEVICE_ID_INTEL_I7300_MCH_ERR
  806. * Device 21 function 0: PCI_DEVICE_ID_INTEL_I7300_MCH_FB0
  807. * Device 22 function 0: PCI_DEVICE_ID_INTEL_I7300_MCH_FB1
  808. */
  809. static int __devinit i7300_get_devices(struct mem_ctl_info *mci)
  810. {
  811. struct i7300_pvt *pvt;
  812. struct pci_dev *pdev;
  813. pvt = mci->pvt_info;
  814. /* Attempt to 'get' the MCH register we want */
  815. pdev = NULL;
  816. while (!pvt->pci_dev_16_1_fsb_addr_map ||
  817. !pvt->pci_dev_16_2_fsb_err_regs) {
  818. pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
  819. PCI_DEVICE_ID_INTEL_I7300_MCH_ERR, pdev);
  820. if (!pdev) {
  821. /* End of list, leave */
  822. i7300_printk(KERN_ERR,
  823. "'system address,Process Bus' "
  824. "device not found:"
  825. "vendor 0x%x device 0x%x ERR funcs "
  826. "(broken BIOS?)\n",
  827. PCI_VENDOR_ID_INTEL,
  828. PCI_DEVICE_ID_INTEL_I7300_MCH_ERR);
  829. goto error;
  830. }
  831. /* Store device 16 funcs 1 and 2 */
  832. switch (PCI_FUNC(pdev->devfn)) {
  833. case 1:
  834. pvt->pci_dev_16_1_fsb_addr_map = pdev;
  835. break;
  836. case 2:
  837. pvt->pci_dev_16_2_fsb_err_regs = pdev;
  838. break;
  839. }
  840. }
  841. debugf1("System Address, processor bus- PCI Bus ID: %s %x:%x\n",
  842. pci_name(pvt->pci_dev_16_0_fsb_ctlr),
  843. pvt->pci_dev_16_0_fsb_ctlr->vendor,
  844. pvt->pci_dev_16_0_fsb_ctlr->device);
  845. debugf1("Branchmap, control and errors - PCI Bus ID: %s %x:%x\n",
  846. pci_name(pvt->pci_dev_16_1_fsb_addr_map),
  847. pvt->pci_dev_16_1_fsb_addr_map->vendor,
  848. pvt->pci_dev_16_1_fsb_addr_map->device);
  849. debugf1("FSB Error Regs - PCI Bus ID: %s %x:%x\n",
  850. pci_name(pvt->pci_dev_16_2_fsb_err_regs),
  851. pvt->pci_dev_16_2_fsb_err_regs->vendor,
  852. pvt->pci_dev_16_2_fsb_err_regs->device);
  853. pvt->pci_dev_2x_0_fbd_branch[0] = pci_get_device(PCI_VENDOR_ID_INTEL,
  854. PCI_DEVICE_ID_INTEL_I7300_MCH_FB0,
  855. NULL);
  856. if (!pvt->pci_dev_2x_0_fbd_branch[0]) {
  857. i7300_printk(KERN_ERR,
  858. "MC: 'BRANCH 0' device not found:"
  859. "vendor 0x%x device 0x%x Func 0 (broken BIOS?)\n",
  860. PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I7300_MCH_FB0);
  861. goto error;
  862. }
  863. pvt->pci_dev_2x_0_fbd_branch[1] = pci_get_device(PCI_VENDOR_ID_INTEL,
  864. PCI_DEVICE_ID_INTEL_I7300_MCH_FB1,
  865. NULL);
  866. if (!pvt->pci_dev_2x_0_fbd_branch[1]) {
  867. i7300_printk(KERN_ERR,
  868. "MC: 'BRANCH 1' device not found:"
  869. "vendor 0x%x device 0x%x Func 0 "
  870. "(broken BIOS?)\n",
  871. PCI_VENDOR_ID_INTEL,
  872. PCI_DEVICE_ID_INTEL_I7300_MCH_FB1);
  873. goto error;
  874. }
  875. return 0;
  876. error:
  877. i7300_put_devices(mci);
  878. return -ENODEV;
  879. }
  880. /**
  881. * i7300_init_one() - Probe for one instance of the device
  882. * @pdev: struct pci_dev pointer
  883. * @id: struct pci_device_id pointer - currently unused
  884. */
  885. static int __devinit i7300_init_one(struct pci_dev *pdev,
  886. const struct pci_device_id *id)
  887. {
  888. struct mem_ctl_info *mci;
  889. struct i7300_pvt *pvt;
  890. int num_channels;
  891. int num_dimms_per_channel;
  892. int num_csrows;
  893. int rc;
  894. /* wake up device */
  895. rc = pci_enable_device(pdev);
  896. if (rc == -EIO)
  897. return rc;
  898. debugf0("MC: " __FILE__ ": %s(), pdev bus %u dev=0x%x fn=0x%x\n",
  899. __func__,
  900. pdev->bus->number,
  901. PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
  902. /* We only are looking for func 0 of the set */
  903. if (PCI_FUNC(pdev->devfn) != 0)
  904. return -ENODEV;
  905. /* As we don't have a motherboard identification routine to determine
  906. * actual number of slots/dimms per channel, we thus utilize the
  907. * resource as specified by the chipset. Thus, we might have
  908. * have more DIMMs per channel than actually on the mobo, but this
  909. * allows the driver to support up to the chipset max, without
  910. * some fancy mobo determination.
  911. */
  912. num_dimms_per_channel = MAX_SLOTS;
  913. num_channels = MAX_CHANNELS;
  914. num_csrows = MAX_SLOTS * MAX_CHANNELS;
  915. debugf0("MC: %s(): Number of - Channels= %d DIMMS= %d CSROWS= %d\n",
  916. __func__, num_channels, num_dimms_per_channel, num_csrows);
  917. /* allocate a new MC control structure */
  918. mci = edac_mc_alloc(sizeof(*pvt), num_csrows, num_channels, 0);
  919. if (mci == NULL)
  920. return -ENOMEM;
  921. debugf0("MC: " __FILE__ ": %s(): mci = %p\n", __func__, mci);
  922. mci->dev = &pdev->dev; /* record ptr to the generic device */
  923. pvt = mci->pvt_info;
  924. pvt->pci_dev_16_0_fsb_ctlr = pdev; /* Record this device in our private */
  925. pvt->tmp_prt_buffer = kmalloc(PAGE_SIZE, GFP_KERNEL);
  926. if (!pvt->tmp_prt_buffer) {
  927. edac_mc_free(mci);
  928. return -ENOMEM;
  929. }
  930. /* 'get' the pci devices we want to reserve for our use */
  931. if (i7300_get_devices(mci))
  932. goto fail0;
  933. mci->mc_idx = 0;
  934. mci->mtype_cap = MEM_FLAG_FB_DDR2;
  935. mci->edac_ctl_cap = EDAC_FLAG_NONE;
  936. mci->edac_cap = EDAC_FLAG_NONE;
  937. mci->mod_name = "i7300_edac.c";
  938. mci->mod_ver = I7300_REVISION;
  939. mci->ctl_name = i7300_devs[0].ctl_name;
  940. mci->dev_name = pci_name(pdev);
  941. mci->ctl_page_to_phys = NULL;
  942. /* Set the function pointer to an actual operation function */
  943. mci->edac_check = i7300_check_error;
  944. /* initialize the MC control structure 'csrows' table
  945. * with the mapping and control information */
  946. if (i7300_get_mc_regs(mci)) {
  947. debugf0("MC: Setting mci->edac_cap to EDAC_FLAG_NONE\n"
  948. " because i7300_init_csrows() returned nonzero "
  949. "value\n");
  950. mci->edac_cap = EDAC_FLAG_NONE; /* no csrows found */
  951. } else {
  952. debugf1("MC: Enable error reporting now\n");
  953. i7300_enable_error_reporting(mci);
  954. }
  955. /* add this new MC control structure to EDAC's list of MCs */
  956. if (edac_mc_add_mc(mci)) {
  957. debugf0("MC: " __FILE__
  958. ": %s(): failed edac_mc_add_mc()\n", __func__);
  959. /* FIXME: perhaps some code should go here that disables error
  960. * reporting if we just enabled it
  961. */
  962. goto fail1;
  963. }
  964. i7300_clear_error(mci);
  965. /* allocating generic PCI control info */
  966. i7300_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
  967. if (!i7300_pci) {
  968. printk(KERN_WARNING
  969. "%s(): Unable to create PCI control\n",
  970. __func__);
  971. printk(KERN_WARNING
  972. "%s(): PCI error report via EDAC not setup\n",
  973. __func__);
  974. }
  975. return 0;
  976. /* Error exit unwinding stack */
  977. fail1:
  978. i7300_put_devices(mci);
  979. fail0:
  980. kfree(pvt->tmp_prt_buffer);
  981. edac_mc_free(mci);
  982. return -ENODEV;
  983. }
  984. /**
  985. * i7300_remove_one() - Remove the driver
  986. * @pdev: struct pci_dev pointer
  987. */
  988. static void __devexit i7300_remove_one(struct pci_dev *pdev)
  989. {
  990. struct mem_ctl_info *mci;
  991. char *tmp;
  992. debugf0(__FILE__ ": %s()\n", __func__);
  993. if (i7300_pci)
  994. edac_pci_release_generic_ctl(i7300_pci);
  995. mci = edac_mc_del_mc(&pdev->dev);
  996. if (!mci)
  997. return;
  998. tmp = ((struct i7300_pvt *)mci->pvt_info)->tmp_prt_buffer;
  999. /* retrieve references to resources, and free those resources */
  1000. i7300_put_devices(mci);
  1001. kfree(tmp);
  1002. edac_mc_free(mci);
  1003. }
  1004. /*
  1005. * pci_device_id: table for which devices we are looking for
  1006. *
  1007. * Has only 8086:360c PCI ID
  1008. */
  1009. static const struct pci_device_id i7300_pci_tbl[] __devinitdata = {
  1010. {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I7300_MCH_ERR)},
  1011. {0,} /* 0 terminated list. */
  1012. };
  1013. MODULE_DEVICE_TABLE(pci, i7300_pci_tbl);
  1014. /*
  1015. * i7300_driver: pci_driver structure for this module
  1016. */
  1017. static struct pci_driver i7300_driver = {
  1018. .name = "i7300_edac",
  1019. .probe = i7300_init_one,
  1020. .remove = __devexit_p(i7300_remove_one),
  1021. .id_table = i7300_pci_tbl,
  1022. };
  1023. /**
  1024. * i7300_init() - Registers the driver
  1025. */
  1026. static int __init i7300_init(void)
  1027. {
  1028. int pci_rc;
  1029. debugf2("MC: " __FILE__ ": %s()\n", __func__);
  1030. /* Ensure that the OPSTATE is set correctly for POLL or NMI */
  1031. opstate_init();
  1032. pci_rc = pci_register_driver(&i7300_driver);
  1033. return (pci_rc < 0) ? pci_rc : 0;
  1034. }
  1035. /**
  1036. * i7300_init() - Unregisters the driver
  1037. */
  1038. static void __exit i7300_exit(void)
  1039. {
  1040. debugf2("MC: " __FILE__ ": %s()\n", __func__);
  1041. pci_unregister_driver(&i7300_driver);
  1042. }
  1043. module_init(i7300_init);
  1044. module_exit(i7300_exit);
  1045. MODULE_LICENSE("GPL");
  1046. MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
  1047. MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
  1048. MODULE_DESCRIPTION("MC Driver for Intel I7300 memory controllers - "
  1049. I7300_REVISION);
  1050. module_param(edac_op_state, int, 0444);
  1051. MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");