12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813 |
- #include "amd64_edac.h"
- #include <asm/amd_nb.h>
- static struct edac_pci_ctl_info *amd64_ctl_pci;
- static int report_gart_errors;
- module_param(report_gart_errors, int, 0644);
- /*
- * Set by command line parameter. If BIOS has enabled the ECC, this override is
- * cleared to prevent re-enabling the hardware by this driver.
- */
- static int ecc_enable_override;
- module_param(ecc_enable_override, int, 0644);
- static struct msr __percpu *msrs;
- /*
- * count successfully initialized driver instances for setup_pci_device()
- */
- static atomic_t drv_instances = ATOMIC_INIT(0);
- /* Per-node driver instances */
- static struct mem_ctl_info **mcis;
- static struct ecc_settings **ecc_stngs;
- /*
- * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
- * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
- * or higher value'.
- *
- *FIXME: Produce a better mapping/linearisation.
- */
- struct scrubrate {
- u32 scrubval; /* bit pattern for scrub rate */
- u32 bandwidth; /* bandwidth consumed (bytes/sec) */
- } scrubrates[] = {
- { 0x01, 1600000000UL},
- { 0x02, 800000000UL},
- { 0x03, 400000000UL},
- { 0x04, 200000000UL},
- { 0x05, 100000000UL},
- { 0x06, 50000000UL},
- { 0x07, 25000000UL},
- { 0x08, 12284069UL},
- { 0x09, 6274509UL},
- { 0x0A, 3121951UL},
- { 0x0B, 1560975UL},
- { 0x0C, 781440UL},
- { 0x0D, 390720UL},
- { 0x0E, 195300UL},
- { 0x0F, 97650UL},
- { 0x10, 48854UL},
- { 0x11, 24427UL},
- { 0x12, 12213UL},
- { 0x13, 6101UL},
- { 0x14, 3051UL},
- { 0x15, 1523UL},
- { 0x16, 761UL},
- { 0x00, 0UL}, /* scrubbing off */
- };
- static int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
- u32 *val, const char *func)
- {
- int err = 0;
- err = pci_read_config_dword(pdev, offset, val);
- if (err)
- amd64_warn("%s: error reading F%dx%03x.\n",
- func, PCI_FUNC(pdev->devfn), offset);
- return err;
- }
- int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
- u32 val, const char *func)
- {
- int err = 0;
- err = pci_write_config_dword(pdev, offset, val);
- if (err)
- amd64_warn("%s: error writing to F%dx%03x.\n",
- func, PCI_FUNC(pdev->devfn), offset);
- return err;
- }
- /*
- *
- * Depending on the family, F2 DCT reads need special handling:
- *
- * K8: has a single DCT only
- *
- * F10h: each DCT has its own set of regs
- * DCT0 -> F2x040..
- * DCT1 -> F2x140..
- *
- * F15h: we select which DCT we access using F1x10C[DctCfgSel]
- *
- */
- static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
- const char *func)
- {
- if (addr >= 0x100)
- return -EINVAL;
- return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
- }
- static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
- const char *func)
- {
- return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
- }
- static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
- const char *func)
- {
- u32 reg = 0;
- u8 dct = 0;
- if (addr >= 0x140 && addr <= 0x1a0) {
- dct = 1;
- addr -= 0x100;
- }
- amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, ®);
- reg &= 0xfffffffe;
- reg |= dct;
- amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
- return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
- }
- /*
- * Memory scrubber control interface. For K8, memory scrubbing is handled by
- * hardware and can involve L2 cache, dcache as well as the main memory. With
- * F10, this is extended to L3 cache scrubbing on CPU models sporting that
- * functionality.
- *
- * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
- * (dram) over to cache lines. This is nasty, so we will use bandwidth in
- * bytes/sec for the setting.
- *
- * Currently, we only do dram scrubbing. If the scrubbing is done in software on
- * other archs, we might not have access to the caches directly.
- */
- /*
- * scan the scrub rate mapping table for a close or matching bandwidth value to
- * issue. If requested is too big, then use last maximum value found.
- */
- static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
- {
- u32 scrubval;
- int i;
- /*
- * map the configured rate (new_bw) to a value specific to the AMD64
- * memory controller and apply to register. Search for the first
- * bandwidth entry that is greater or equal than the setting requested
- * and program that. If at last entry, turn off DRAM scrubbing.
- */
- for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
- /*
- * skip scrub rates which aren't recommended
- * (see F10 BKDG, F3x58)
- */
- if (scrubrates[i].scrubval < min_rate)
- continue;
- if (scrubrates[i].bandwidth <= new_bw)
- break;
- /*
- * if no suitable bandwidth found, turn off DRAM scrubbing
- * entirely by falling back to the last element in the
- * scrubrates array.
- */
- }
- scrubval = scrubrates[i].scrubval;
- pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F);
- if (scrubval)
- return scrubrates[i].bandwidth;
- return 0;
- }
- static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
- {
- struct amd64_pvt *pvt = mci->pvt_info;
- u32 min_scrubrate = 0x5;
- if (boot_cpu_data.x86 == 0xf)
- min_scrubrate = 0x0;
- return __amd64_set_scrub_rate(pvt->F3, bw, min_scrubrate);
- }
- static int amd64_get_scrub_rate(struct mem_ctl_info *mci)
- {
- struct amd64_pvt *pvt = mci->pvt_info;
- u32 scrubval = 0;
- int i, retval = -EINVAL;
- amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
- scrubval = scrubval & 0x001F;
- for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
- if (scrubrates[i].scrubval == scrubval) {
- retval = scrubrates[i].bandwidth;
- break;
- }
- }
- return retval;
- }
- /*
- * returns true if the SysAddr given by sys_addr matches the
- * DRAM base/limit associated with node_id
- */
- static bool amd64_base_limit_match(struct amd64_pvt *pvt, u64 sys_addr,
- unsigned nid)
- {
- u64 addr;
- /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
- * all ones if the most significant implemented address bit is 1.
- * Here we discard bits 63-40. See section 3.4.2 of AMD publication
- * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
- * Application Programming.
- */
- addr = sys_addr & 0x000000ffffffffffull;
- return ((addr >= get_dram_base(pvt, nid)) &&
- (addr <= get_dram_limit(pvt, nid)));
- }
- /*
- * Attempt to map a SysAddr to a node. On success, return a pointer to the
- * mem_ctl_info structure for the node that the SysAddr maps to.
- *
- * On failure, return NULL.
- */
- static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
- u64 sys_addr)
- {
- struct amd64_pvt *pvt;
- unsigned node_id;
- u32 intlv_en, bits;
- /*
- * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
- * 3.4.4.2) registers to map the SysAddr to a node ID.
- */
- pvt = mci->pvt_info;
- /*
- * The value of this field should be the same for all DRAM Base
- * registers. Therefore we arbitrarily choose to read it from the
- * register for node 0.
- */
- intlv_en = dram_intlv_en(pvt, 0);
- if (intlv_en == 0) {
- for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
- if (amd64_base_limit_match(pvt, sys_addr, node_id))
- goto found;
- }
- goto err_no_match;
- }
- if (unlikely((intlv_en != 0x01) &&
- (intlv_en != 0x03) &&
- (intlv_en != 0x07))) {
- amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
- return NULL;
- }
- bits = (((u32) sys_addr) >> 12) & intlv_en;
- for (node_id = 0; ; ) {
- if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
- break; /* intlv_sel field matches */
- if (++node_id >= DRAM_RANGES)
- goto err_no_match;
- }
- /* sanity test for sys_addr */
- if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
- amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
- "range for node %d with node interleaving enabled.\n",
- __func__, sys_addr, node_id);
- return NULL;
- }
- found:
- return edac_mc_find((int)node_id);
- err_no_match:
- debugf2("sys_addr 0x%lx doesn't match any node\n",
- (unsigned long)sys_addr);
- return NULL;
- }
- /*
- * compute the CS base address of the @csrow on the DRAM controller @dct.
- * For details see F2x[5C:40] in the processor's BKDG
- */
- static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
- u64 *base, u64 *mask)
- {
- u64 csbase, csmask, base_bits, mask_bits;
- u8 addr_shift;
- if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
- csbase = pvt->csels[dct].csbases[csrow];
- csmask = pvt->csels[dct].csmasks[csrow];
- base_bits = GENMASK(21, 31) | GENMASK(9, 15);
- mask_bits = GENMASK(21, 29) | GENMASK(9, 15);
- addr_shift = 4;
- } else {
- csbase = pvt->csels[dct].csbases[csrow];
- csmask = pvt->csels[dct].csmasks[csrow >> 1];
- addr_shift = 8;
- if (boot_cpu_data.x86 == 0x15)
- base_bits = mask_bits = GENMASK(19,30) | GENMASK(5,13);
- else
- base_bits = mask_bits = GENMASK(19,28) | GENMASK(5,13);
- }
- *base = (csbase & base_bits) << addr_shift;
- *mask = ~0ULL;
- /* poke holes for the csmask */
- *mask &= ~(mask_bits << addr_shift);
- /* OR them in */
- *mask |= (csmask & mask_bits) << addr_shift;
- }
- #define for_each_chip_select(i, dct, pvt) \
- for (i = 0; i < pvt->csels[dct].b_cnt; i++)
- #define chip_select_base(i, dct, pvt) \
- pvt->csels[dct].csbases[i]
- #define for_each_chip_select_mask(i, dct, pvt) \
- for (i = 0; i < pvt->csels[dct].m_cnt; i++)
- /*
- * @input_addr is an InputAddr associated with the node given by mci. Return the
- * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
- */
- static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
- {
- struct amd64_pvt *pvt;
- int csrow;
- u64 base, mask;
- pvt = mci->pvt_info;
- for_each_chip_select(csrow, 0, pvt) {
- if (!csrow_enabled(csrow, 0, pvt))
- continue;
- get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
- mask = ~mask;
- if ((input_addr & mask) == (base & mask)) {
- debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
- (unsigned long)input_addr, csrow,
- pvt->mc_node_id);
- return csrow;
- }
- }
- debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
- (unsigned long)input_addr, pvt->mc_node_id);
- return -1;
- }
- /*
- * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
- * for the node represented by mci. Info is passed back in *hole_base,
- * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
- * info is invalid. Info may be invalid for either of the following reasons:
- *
- * - The revision of the node is not E or greater. In this case, the DRAM Hole
- * Address Register does not exist.
- *
- * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
- * indicating that its contents are not valid.
- *
- * The values passed back in *hole_base, *hole_offset, and *hole_size are
- * complete 32-bit values despite the fact that the bitfields in the DHAR
- * only represent bits 31-24 of the base and offset values.
- */
- int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
- u64 *hole_offset, u64 *hole_size)
- {
- struct amd64_pvt *pvt = mci->pvt_info;
- u64 base;
- /* only revE and later have the DRAM Hole Address Register */
- if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
- debugf1(" revision %d for node %d does not support DHAR\n",
- pvt->ext_model, pvt->mc_node_id);
- return 1;
- }
- /* valid for Fam10h and above */
- if (boot_cpu_data.x86 >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
- debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
- return 1;
- }
- if (!dhar_valid(pvt)) {
- debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
- pvt->mc_node_id);
- return 1;
- }
- /* This node has Memory Hoisting */
- /* +------------------+--------------------+--------------------+-----
- * | memory | DRAM hole | relocated |
- * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
- * | | | DRAM hole |
- * | | | [0x100000000, |
- * | | | (0x100000000+ |
- * | | | (0xffffffff-x))] |
- * +------------------+--------------------+--------------------+-----
- *
- * Above is a diagram of physical memory showing the DRAM hole and the
- * relocated addresses from the DRAM hole. As shown, the DRAM hole
- * starts at address x (the base address) and extends through address
- * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
- * addresses in the hole so that they start at 0x100000000.
- */
- base = dhar_base(pvt);
- *hole_base = base;
- *hole_size = (0x1ull << 32) - base;
- if (boot_cpu_data.x86 > 0xf)
- *hole_offset = f10_dhar_offset(pvt);
- else
- *hole_offset = k8_dhar_offset(pvt);
- debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
- pvt->mc_node_id, (unsigned long)*hole_base,
- (unsigned long)*hole_offset, (unsigned long)*hole_size);
- return 0;
- }
- EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
- /*
- * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
- * assumed that sys_addr maps to the node given by mci.
- *
- * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
- * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
- * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
- * then it is also involved in translating a SysAddr to a DramAddr. Sections
- * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
- * These parts of the documentation are unclear. I interpret them as follows:
- *
- * When node n receives a SysAddr, it processes the SysAddr as follows:
- *
- * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
- * Limit registers for node n. If the SysAddr is not within the range
- * specified by the base and limit values, then node n ignores the Sysaddr
- * (since it does not map to node n). Otherwise continue to step 2 below.
- *
- * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
- * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
- * the range of relocated addresses (starting at 0x100000000) from the DRAM
- * hole. If not, skip to step 3 below. Else get the value of the
- * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
- * offset defined by this value from the SysAddr.
- *
- * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
- * Base register for node n. To obtain the DramAddr, subtract the base
- * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
- */
- static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
- {
- struct amd64_pvt *pvt = mci->pvt_info;
- u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
- int ret = 0;
- dram_base = get_dram_base(pvt, pvt->mc_node_id);
- ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
- &hole_size);
- if (!ret) {
- if ((sys_addr >= (1ull << 32)) &&
- (sys_addr < ((1ull << 32) + hole_size))) {
- /* use DHAR to translate SysAddr to DramAddr */
- dram_addr = sys_addr - hole_offset;
- debugf2("using DHAR to translate SysAddr 0x%lx to "
- "DramAddr 0x%lx\n",
- (unsigned long)sys_addr,
- (unsigned long)dram_addr);
- return dram_addr;
- }
- }
- /*
- * Translate the SysAddr to a DramAddr as shown near the start of
- * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
- * only deals with 40-bit values. Therefore we discard bits 63-40 of
- * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
- * discard are all 1s. Otherwise the bits we discard are all 0s. See
- * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
- * Programmer's Manual Volume 1 Application Programming.
- */
- dram_addr = (sys_addr & GENMASK(0, 39)) - dram_base;
- debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
- "DramAddr 0x%lx\n", (unsigned long)sys_addr,
- (unsigned long)dram_addr);
- return dram_addr;
- }
- /*
- * @intlv_en is the value of the IntlvEn field from a DRAM Base register
- * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
- * for node interleaving.
- */
- static int num_node_interleave_bits(unsigned intlv_en)
- {
- static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
- int n;
- BUG_ON(intlv_en > 7);
- n = intlv_shift_table[intlv_en];
- return n;
- }
- /* Translate the DramAddr given by @dram_addr to an InputAddr. */
- static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
- {
- struct amd64_pvt *pvt;
- int intlv_shift;
- u64 input_addr;
- pvt = mci->pvt_info;
- /*
- * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
- * concerning translating a DramAddr to an InputAddr.
- */
- intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
- input_addr = ((dram_addr >> intlv_shift) & GENMASK(12, 35)) +
- (dram_addr & 0xfff);
- debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
- intlv_shift, (unsigned long)dram_addr,
- (unsigned long)input_addr);
- return input_addr;
- }
- /*
- * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
- * assumed that @sys_addr maps to the node given by mci.
- */
- static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
- {
- u64 input_addr;
- input_addr =
- dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
- debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
- (unsigned long)sys_addr, (unsigned long)input_addr);
- return input_addr;
- }
- /*
- * @input_addr is an InputAddr associated with the node represented by mci.
- * Translate @input_addr to a DramAddr and return the result.
- */
- static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
- {
- struct amd64_pvt *pvt;
- unsigned node_id, intlv_shift;
- u64 bits, dram_addr;
- u32 intlv_sel;
- /*
- * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
- * shows how to translate a DramAddr to an InputAddr. Here we reverse
- * this procedure. When translating from a DramAddr to an InputAddr, the
- * bits used for node interleaving are discarded. Here we recover these
- * bits from the IntlvSel field of the DRAM Limit register (section
- * 3.4.4.2) for the node that input_addr is associated with.
- */
- pvt = mci->pvt_info;
- node_id = pvt->mc_node_id;
- BUG_ON(node_id > 7);
- intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
- if (intlv_shift == 0) {
- debugf1(" InputAddr 0x%lx translates to DramAddr of "
- "same value\n", (unsigned long)input_addr);
- return input_addr;
- }
- bits = ((input_addr & GENMASK(12, 35)) << intlv_shift) +
- (input_addr & 0xfff);
- intlv_sel = dram_intlv_sel(pvt, node_id) & ((1 << intlv_shift) - 1);
- dram_addr = bits + (intlv_sel << 12);
- debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
- "(%d node interleave bits)\n", (unsigned long)input_addr,
- (unsigned long)dram_addr, intlv_shift);
- return dram_addr;
- }
- /*
- * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
- * @dram_addr to a SysAddr.
- */
- static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
- {
- struct amd64_pvt *pvt = mci->pvt_info;
- u64 hole_base, hole_offset, hole_size, base, sys_addr;
- int ret = 0;
- ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
- &hole_size);
- if (!ret) {
- if ((dram_addr >= hole_base) &&
- (dram_addr < (hole_base + hole_size))) {
- sys_addr = dram_addr + hole_offset;
- debugf1("using DHAR to translate DramAddr 0x%lx to "
- "SysAddr 0x%lx\n", (unsigned long)dram_addr,
- (unsigned long)sys_addr);
- return sys_addr;
- }
- }
- base = get_dram_base(pvt, pvt->mc_node_id);
- sys_addr = dram_addr + base;
- /*
- * The sys_addr we have computed up to this point is a 40-bit value
- * because the k8 deals with 40-bit values. However, the value we are
- * supposed to return is a full 64-bit physical address. The AMD
- * x86-64 architecture specifies that the most significant implemented
- * address bit through bit 63 of a physical address must be either all
- * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
- * 64-bit value below. See section 3.4.2 of AMD publication 24592:
- * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
- * Programming.
- */
- sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
- debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
- pvt->mc_node_id, (unsigned long)dram_addr,
- (unsigned long)sys_addr);
- return sys_addr;
- }
- /*
- * @input_addr is an InputAddr associated with the node given by mci. Translate
- * @input_addr to a SysAddr.
- */
- static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
- u64 input_addr)
- {
- return dram_addr_to_sys_addr(mci,
- input_addr_to_dram_addr(mci, input_addr));
- }
- /*
- * Find the minimum and maximum InputAddr values that map to the given @csrow.
- * Pass back these values in *input_addr_min and *input_addr_max.
- */
- static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
- u64 *input_addr_min, u64 *input_addr_max)
- {
- struct amd64_pvt *pvt;
- u64 base, mask;
- pvt = mci->pvt_info;
- BUG_ON((csrow < 0) || (csrow >= pvt->csels[0].b_cnt));
- get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
- *input_addr_min = base & ~mask;
- *input_addr_max = base | mask;
- }
- /* Map the Error address to a PAGE and PAGE OFFSET. */
- static inline void error_address_to_page_and_offset(u64 error_address,
- u32 *page, u32 *offset)
- {
- *page = (u32) (error_address >> PAGE_SHIFT);
- *offset = ((u32) error_address) & ~PAGE_MASK;
- }
- /*
- * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
- * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
- * of a node that detected an ECC memory error. mci represents the node that
- * the error address maps to (possibly different from the node that detected
- * the error). Return the number of the csrow that sys_addr maps to, or -1 on
- * error.
- */
- static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
- {
- int csrow;
- csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
- if (csrow == -1)
- amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
- "address 0x%lx\n", (unsigned long)sys_addr);
- return csrow;
- }
- static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
- /*
- * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
- * are ECC capable.
- */
- static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
- {
- u8 bit;
- enum dev_type edac_cap = EDAC_FLAG_NONE;
- bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
- ? 19
- : 17;
- if (pvt->dclr0 & BIT(bit))
- edac_cap = EDAC_FLAG_SECDED;
- return edac_cap;
- }
- static void amd64_debug_display_dimm_sizes(struct amd64_pvt *, u8);
- static void amd64_dump_dramcfg_low(u32 dclr, int chan)
- {
- debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
- debugf1(" DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
- (dclr & BIT(16)) ? "un" : "",
- (dclr & BIT(19)) ? "yes" : "no");
- debugf1(" PAR/ERR parity: %s\n",
- (dclr & BIT(8)) ? "enabled" : "disabled");
- if (boot_cpu_data.x86 == 0x10)
- debugf1(" DCT 128bit mode width: %s\n",
- (dclr & BIT(11)) ? "128b" : "64b");
- debugf1(" x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
- (dclr & BIT(12)) ? "yes" : "no",
- (dclr & BIT(13)) ? "yes" : "no",
- (dclr & BIT(14)) ? "yes" : "no",
- (dclr & BIT(15)) ? "yes" : "no");
- }
- /* Display and decode various NB registers for debug purposes. */
- static void dump_misc_regs(struct amd64_pvt *pvt)
- {
- debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
- debugf1(" NB two channel DRAM capable: %s\n",
- (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
- debugf1(" ECC capable: %s, ChipKill ECC capable: %s\n",
- (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
- (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
- amd64_dump_dramcfg_low(pvt->dclr0, 0);
- debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
- debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
- "offset: 0x%08x\n",
- pvt->dhar, dhar_base(pvt),
- (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt)
- : f10_dhar_offset(pvt));
- debugf1(" DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
- amd64_debug_display_dimm_sizes(pvt, 0);
- /* everything below this point is Fam10h and above */
- if (boot_cpu_data.x86 == 0xf)
- return;
- amd64_debug_display_dimm_sizes(pvt, 1);
- amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
- /* Only if NOT ganged does dclr1 have valid info */
- if (!dct_ganging_enabled(pvt))
- amd64_dump_dramcfg_low(pvt->dclr1, 1);
- }
- /*
- * see BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
- */
- static void prep_chip_selects(struct amd64_pvt *pvt)
- {
- if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
- pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
- pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
- } else {
- pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
- pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
- }
- }
- /*
- * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
- */
- static void read_dct_base_mask(struct amd64_pvt *pvt)
- {
- int cs;
- prep_chip_selects(pvt);
- for_each_chip_select(cs, 0, pvt) {
- int reg0 = DCSB0 + (cs * 4);
- int reg1 = DCSB1 + (cs * 4);
- u32 *base0 = &pvt->csels[0].csbases[cs];
- u32 *base1 = &pvt->csels[1].csbases[cs];
- if (!amd64_read_dct_pci_cfg(pvt, reg0, base0))
- debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
- cs, *base0, reg0);
- if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
- continue;
- if (!amd64_read_dct_pci_cfg(pvt, reg1, base1))
- debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
- cs, *base1, reg1);
- }
- for_each_chip_select_mask(cs, 0, pvt) {
- int reg0 = DCSM0 + (cs * 4);
- int reg1 = DCSM1 + (cs * 4);
- u32 *mask0 = &pvt->csels[0].csmasks[cs];
- u32 *mask1 = &pvt->csels[1].csmasks[cs];
- if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0))
- debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
- cs, *mask0, reg0);
- if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
- continue;
- if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1))
- debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
- cs, *mask1, reg1);
- }
- }
- static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
- {
- enum mem_type type;
- /* F15h supports only DDR3 */
- if (boot_cpu_data.x86 >= 0x15)
- type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
- else if (boot_cpu_data.x86 == 0x10 || pvt->ext_model >= K8_REV_F) {
- if (pvt->dchr0 & DDR3_MODE)
- type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
- else
- type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
- } else {
- type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
- }
- amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
- return type;
- }
- /* Get the number of DCT channels the memory controller is using. */
- static int k8_early_channel_count(struct amd64_pvt *pvt)
- {
- int flag;
- if (pvt->ext_model >= K8_REV_F)
- /* RevF (NPT) and later */
- flag = pvt->dclr0 & WIDTH_128;
- else
- /* RevE and earlier */
- flag = pvt->dclr0 & REVE_WIDTH_128;
- /* not used */
- pvt->dclr1 = 0;
- return (flag) ? 2 : 1;
- }
- /* On F10h and later ErrAddr is MC4_ADDR[47:1] */
- static u64 get_error_address(struct mce *m)
- {
- struct cpuinfo_x86 *c = &boot_cpu_data;
- u64 addr;
- u8 start_bit = 1;
- u8 end_bit = 47;
- if (c->x86 == 0xf) {
- start_bit = 3;
- end_bit = 39;
- }
- addr = m->addr & GENMASK(start_bit, end_bit);
- /*
- * Erratum 637 workaround
- */
- if (c->x86 == 0x15) {
- struct amd64_pvt *pvt;
- u64 cc6_base, tmp_addr;
- u32 tmp;
- u8 mce_nid, intlv_en;
- if ((addr & GENMASK(24, 47)) >> 24 != 0x00fdf7)
- return addr;
- mce_nid = amd_get_nb_id(m->extcpu);
- pvt = mcis[mce_nid]->pvt_info;
- amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
- intlv_en = tmp >> 21 & 0x7;
- /* add [47:27] + 3 trailing bits */
- cc6_base = (tmp & GENMASK(0, 20)) << 3;
- /* reverse and add DramIntlvEn */
- cc6_base |= intlv_en ^ 0x7;
- /* pin at [47:24] */
- cc6_base <<= 24;
- if (!intlv_en)
- return cc6_base | (addr & GENMASK(0, 23));
- amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);
- /* faster log2 */
- tmp_addr = (addr & GENMASK(12, 23)) << __fls(intlv_en + 1);
- /* OR DramIntlvSel into bits [14:12] */
- tmp_addr |= (tmp & GENMASK(21, 23)) >> 9;
- /* add remaining [11:0] bits from original MC4_ADDR */
- tmp_addr |= addr & GENMASK(0, 11);
- return cc6_base | tmp_addr;
- }
- return addr;
- }
- static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
- {
- struct cpuinfo_x86 *c = &boot_cpu_data;
- int off = range << 3;
- amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo);
- amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
- if (c->x86 == 0xf)
- return;
- if (!dram_rw(pvt, range))
- return;
- amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi);
- amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
- /* Factor in CC6 save area by reading dst node's limit reg */
- if (c->x86 == 0x15) {
- struct pci_dev *f1 = NULL;
- u8 nid = dram_dst_node(pvt, range);
- u32 llim;
- f1 = pci_get_domain_bus_and_slot(0, 0, PCI_DEVFN(0x18 + nid, 1));
- if (WARN_ON(!f1))
- return;
- amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
- pvt->ranges[range].lim.lo &= GENMASK(0, 15);
- /* {[39:27],111b} */
- pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
- pvt->ranges[range].lim.hi &= GENMASK(0, 7);
- /* [47:40] */
- pvt->ranges[range].lim.hi |= llim >> 13;
- pci_dev_put(f1);
- }
- }
- static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
- u16 syndrome)
- {
- struct mem_ctl_info *src_mci;
- struct amd64_pvt *pvt = mci->pvt_info;
- int channel, csrow;
- u32 page, offset;
- /* CHIPKILL enabled */
- if (pvt->nbcfg & NBCFG_CHIPKILL) {
- channel = get_channel_from_ecc_syndrome(mci, syndrome);
- if (channel < 0) {
- /*
- * Syndrome didn't map, so we don't know which of the
- * 2 DIMMs is in error. So we need to ID 'both' of them
- * as suspect.
- */
- amd64_mc_warn(mci, "unknown syndrome 0x%04x - possible "
- "error reporting race\n", syndrome);
- edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
- return;
- }
- } else {
- /*
- * non-chipkill ecc mode
- *
- * The k8 documentation is unclear about how to determine the
- * channel number when using non-chipkill memory. This method
- * was obtained from email communication with someone at AMD.
- * (Wish the email was placed in this comment - norsk)
- */
- channel = ((sys_addr & BIT(3)) != 0);
- }
- /*
- * Find out which node the error address belongs to. This may be
- * different from the node that detected the error.
- */
- src_mci = find_mc_by_sys_addr(mci, sys_addr);
- if (!src_mci) {
- amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
- (unsigned long)sys_addr);
- edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
- return;
- }
- /* Now map the sys_addr to a CSROW */
- csrow = sys_addr_to_csrow(src_mci, sys_addr);
- if (csrow < 0) {
- edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
- } else {
- error_address_to_page_and_offset(sys_addr, &page, &offset);
- edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
- channel, EDAC_MOD_STR);
- }
- }
- static int ddr2_cs_size(unsigned i, bool dct_width)
- {
- unsigned shift = 0;
- if (i <= 2)
- shift = i;
- else if (!(i & 0x1))
- shift = i >> 1;
- else
- shift = (i + 1) >> 1;
- return 128 << (shift + !!dct_width);
- }
- static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
- unsigned cs_mode)
- {
- u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
- if (pvt->ext_model >= K8_REV_F) {
- WARN_ON(cs_mode > 11);
- return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
- }
- else if (pvt->ext_model >= K8_REV_D) {
- WARN_ON(cs_mode > 10);
- if (cs_mode == 3 || cs_mode == 8)
- return 32 << (cs_mode - 1);
- else
- return 32 << cs_mode;
- }
- else {
- WARN_ON(cs_mode > 6);
- return 32 << cs_mode;
- }
- }
- /*
- * Get the number of DCT channels in use.
- *
- * Return:
- * number of Memory Channels in operation
- * Pass back:
- * contents of the DCL0_LOW register
- */
- static int f1x_early_channel_count(struct amd64_pvt *pvt)
- {
- int i, j, channels = 0;
- /* On F10h, if we are in 128 bit mode, then we are using 2 channels */
- if (boot_cpu_data.x86 == 0x10 && (pvt->dclr0 & WIDTH_128))
- return 2;
- /*
- * Need to check if in unganged mode: In such, there are 2 channels,
- * but they are not in 128 bit mode and thus the above 'dclr0' status
- * bit will be OFF.
- *
- * Need to check DCT0[0] and DCT1[0] to see if only one of them has
- * their CSEnable bit on. If so, then SINGLE DIMM case.
- */
- debugf0("Data width is not 128 bits - need more decoding\n");
- /*
- * Check DRAM Bank Address Mapping values for each DIMM to see if there
- * is more than just one DIMM present in unganged mode. Need to check
- * both controllers since DIMMs can be placed in either one.
- */
- for (i = 0; i < 2; i++) {
- u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
- for (j = 0; j < 4; j++) {
- if (DBAM_DIMM(j, dbam) > 0) {
- channels++;
- break;
- }
- }
- }
- if (channels > 2)
- channels = 2;
- amd64_info("MCT channel count: %d\n", channels);
- return channels;
- }
- static int ddr3_cs_size(unsigned i, bool dct_width)
- {
- unsigned shift = 0;
- int cs_size = 0;
- if (i == 0 || i == 3 || i == 4)
- cs_size = -1;
- else if (i <= 2)
- shift = i;
- else if (i == 12)
- shift = 7;
- else if (!(i & 0x1))
- shift = i >> 1;
- else
- shift = (i + 1) >> 1;
- if (cs_size != -1)
- cs_size = (128 * (1 << !!dct_width)) << shift;
- return cs_size;
- }
- static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
- unsigned cs_mode)
- {
- u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
- WARN_ON(cs_mode > 11);
- if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
- return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
- else
- return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
- }
- /*
- * F15h supports only 64bit DCT interfaces
- */
- static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
- unsigned cs_mode)
- {
- WARN_ON(cs_mode > 12);
- return ddr3_cs_size(cs_mode, false);
- }
- static void read_dram_ctl_register(struct amd64_pvt *pvt)
- {
- if (boot_cpu_data.x86 == 0xf)
- return;
- if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) {
- debugf0("F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
- pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
- debugf0(" DCTs operate in %s mode.\n",
- (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
- if (!dct_ganging_enabled(pvt))
- debugf0(" Address range split per DCT: %s\n",
- (dct_high_range_enabled(pvt) ? "yes" : "no"));
- debugf0(" data interleave for ECC: %s, "
- "DRAM cleared since last warm reset: %s\n",
- (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
- (dct_memory_cleared(pvt) ? "yes" : "no"));
- debugf0(" channel interleave: %s, "
- "interleave bits selector: 0x%x\n",
- (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
- dct_sel_interleave_addr(pvt));
- }
- amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi);
- }
- /*
- * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
- * Interleaving Modes.
- */
- static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
- bool hi_range_sel, u8 intlv_en)
- {
- u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
- if (dct_ganging_enabled(pvt))
- return 0;
- if (hi_range_sel)
- return dct_sel_high;
- /*
- * see F2x110[DctSelIntLvAddr] - channel interleave mode
- */
- if (dct_interleave_enabled(pvt)) {
- u8 intlv_addr = dct_sel_interleave_addr(pvt);
- /* return DCT select function: 0=DCT0, 1=DCT1 */
- if (!intlv_addr)
- return sys_addr >> 6 & 1;
- if (intlv_addr & 0x2) {
- u8 shift = intlv_addr & 0x1 ? 9 : 6;
- u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
- return ((sys_addr >> shift) & 1) ^ temp;
- }
- return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
- }
- if (dct_high_range_enabled(pvt))
- return ~dct_sel_high & 1;
- return 0;
- }
- /* Convert the sys_addr to the normalized DCT address */
- static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, unsigned range,
- u64 sys_addr, bool hi_rng,
- u32 dct_sel_base_addr)
- {
- u64 chan_off;
- u64 dram_base = get_dram_base(pvt, range);
- u64 hole_off = f10_dhar_offset(pvt);
- u64 dct_sel_base_off = (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
- if (hi_rng) {
- /*
- * if
- * base address of high range is below 4Gb
- * (bits [47:27] at [31:11])
- * DRAM address space on this DCT is hoisted above 4Gb &&
- * sys_addr > 4Gb
- *
- * remove hole offset from sys_addr
- * else
- * remove high range offset from sys_addr
- */
- if ((!(dct_sel_base_addr >> 16) ||
- dct_sel_base_addr < dhar_base(pvt)) &&
- dhar_valid(pvt) &&
- (sys_addr >= BIT_64(32)))
- chan_off = hole_off;
- else
- chan_off = dct_sel_base_off;
- } else {
- /*
- * if
- * we have a valid hole &&
- * sys_addr > 4Gb
- *
- * remove hole
- * else
- * remove dram base to normalize to DCT address
- */
- if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
- chan_off = hole_off;
- else
- chan_off = dram_base;
- }
- return (sys_addr & GENMASK(6,47)) - (chan_off & GENMASK(23,47));
- }
- /*
- * checks if the csrow passed in is marked as SPARED, if so returns the new
- * spare row
- */
- static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
- {
- int tmp_cs;
- if (online_spare_swap_done(pvt, dct) &&
- csrow == online_spare_bad_dramcs(pvt, dct)) {
- for_each_chip_select(tmp_cs, dct, pvt) {
- if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
- csrow = tmp_cs;
- break;
- }
- }
- }
- return csrow;
- }
- /*
- * Iterate over the DRAM DCT "base" and "mask" registers looking for a
- * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
- *
- * Return:
- * -EINVAL: NOT FOUND
- * 0..csrow = Chip-Select Row
- */
- static int f1x_lookup_addr_in_dct(u64 in_addr, u32 nid, u8 dct)
- {
- struct mem_ctl_info *mci;
- struct amd64_pvt *pvt;
- u64 cs_base, cs_mask;
- int cs_found = -EINVAL;
- int csrow;
- mci = mcis[nid];
- if (!mci)
- return cs_found;
- pvt = mci->pvt_info;
- debugf1("input addr: 0x%llx, DCT: %d\n", in_addr, dct);
- for_each_chip_select(csrow, dct, pvt) {
- if (!csrow_enabled(csrow, dct, pvt))
- continue;
- get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
- debugf1(" CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
- csrow, cs_base, cs_mask);
- cs_mask = ~cs_mask;
- debugf1(" (InputAddr & ~CSMask)=0x%llx "
- "(CSBase & ~CSMask)=0x%llx\n",
- (in_addr & cs_mask), (cs_base & cs_mask));
- if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
- cs_found = f10_process_possible_spare(pvt, dct, csrow);
- debugf1(" MATCH csrow=%d\n", cs_found);
- break;
- }
- }
- return cs_found;
- }
- /*
- * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
- * swapped with a region located at the bottom of memory so that the GPU can use
- * the interleaved region and thus two channels.
- */
- static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
- {
- u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;
- if (boot_cpu_data.x86 == 0x10) {
- /* only revC3 and revE have that feature */
- if (boot_cpu_data.x86_model < 4 ||
- (boot_cpu_data.x86_model < 0xa &&
- boot_cpu_data.x86_mask < 3))
- return sys_addr;
- }
- amd64_read_dct_pci_cfg(pvt, SWAP_INTLV_REG, &swap_reg);
- if (!(swap_reg & 0x1))
- return sys_addr;
- swap_base = (swap_reg >> 3) & 0x7f;
- swap_limit = (swap_reg >> 11) & 0x7f;
- rgn_size = (swap_reg >> 20) & 0x7f;
- tmp_addr = sys_addr >> 27;
- if (!(sys_addr >> 34) &&
- (((tmp_addr >= swap_base) &&
- (tmp_addr <= swap_limit)) ||
- (tmp_addr < rgn_size)))
- return sys_addr ^ (u64)swap_base << 27;
- return sys_addr;
- }
- /* For a given @dram_range, check if @sys_addr falls within it. */
- static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
- u64 sys_addr, int *nid, int *chan_sel)
- {
- int cs_found = -EINVAL;
- u64 chan_addr;
- u32 dct_sel_base;
- u8 channel;
- bool high_range = false;
- u8 node_id = dram_dst_node(pvt, range);
- u8 intlv_en = dram_intlv_en(pvt, range);
- u32 intlv_sel = dram_intlv_sel(pvt, range);
- debugf1("(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
- range, sys_addr, get_dram_limit(pvt, range));
- if (dhar_valid(pvt) &&
- dhar_base(pvt) <= sys_addr &&
- sys_addr < BIT_64(32)) {
- amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
- sys_addr);
- return -EINVAL;
- }
- if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
- return -EINVAL;
- sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
- dct_sel_base = dct_sel_baseaddr(pvt);
- /*
- * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
- * select between DCT0 and DCT1.
- */
- if (dct_high_range_enabled(pvt) &&
- !dct_ganging_enabled(pvt) &&
- ((sys_addr >> 27) >= (dct_sel_base >> 11)))
- high_range = true;
- channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
- chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
- high_range, dct_sel_base);
- /* Remove node interleaving, see F1x120 */
- if (intlv_en)
- chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
- (chan_addr & 0xfff);
- /* remove channel interleave */
- if (dct_interleave_enabled(pvt) &&
- !dct_high_range_enabled(pvt) &&
- !dct_ganging_enabled(pvt)) {
- if (dct_sel_interleave_addr(pvt) != 1) {
- if (dct_sel_interleave_addr(pvt) == 0x3)
- /* hash 9 */
- chan_addr = ((chan_addr >> 10) << 9) |
- (chan_addr & 0x1ff);
- else
- /* A[6] or hash 6 */
- chan_addr = ((chan_addr >> 7) << 6) |
- (chan_addr & 0x3f);
- } else
- /* A[12] */
- chan_addr = ((chan_addr >> 13) << 12) |
- (chan_addr & 0xfff);
- }
- debugf1(" Normalized DCT addr: 0x%llx\n", chan_addr);
- cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
- if (cs_found >= 0) {
- *nid = node_id;
- *chan_sel = channel;
- }
- return cs_found;
- }
- static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
- int *node, int *chan_sel)
- {
- int cs_found = -EINVAL;
- unsigned range;
- for (range = 0; range < DRAM_RANGES; range++) {
- if (!dram_rw(pvt, range))
- continue;
- if ((get_dram_base(pvt, range) <= sys_addr) &&
- (get_dram_limit(pvt, range) >= sys_addr)) {
- cs_found = f1x_match_to_this_node(pvt, range,
- sys_addr, node,
- chan_sel);
- if (cs_found >= 0)
- break;
- }
- }
- return cs_found;
- }
- /*
- * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
- * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
- *
- * The @sys_addr is usually an error address received from the hardware
- * (MCX_ADDR).
- */
- static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
- u16 syndrome)
- {
- struct amd64_pvt *pvt = mci->pvt_info;
- u32 page, offset;
- int nid, csrow, chan = 0;
- csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
- if (csrow < 0) {
- edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
- return;
- }
- error_address_to_page_and_offset(sys_addr, &page, &offset);
- /*
- * We need the syndromes for channel detection only when we're
- * ganged. Otherwise @chan should already contain the channel at
- * this point.
- */
- if (dct_ganging_enabled(pvt))
- chan = get_channel_from_ecc_syndrome(mci, syndrome);
- if (chan >= 0)
- edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan,
- EDAC_MOD_STR);
- else
- /*
- * Channel unknown, report all channels on this CSROW as failed.
- */
- for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++)
- edac_mc_handle_ce(mci, page, offset, syndrome,
- csrow, chan, EDAC_MOD_STR);
- }
- /*
- * debug routine to display the memory sizes of all logical DIMMs and its
- * CSROWs
- */
- static void amd64_debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
- {
- int dimm, size0, size1, factor = 0;
- u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
- u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
- if (boot_cpu_data.x86 == 0xf) {
- if (pvt->dclr0 & WIDTH_128)
- factor = 1;
- /* K8 families < revF not supported yet */
- if (pvt->ext_model < K8_REV_F)
- return;
- else
- WARN_ON(ctrl != 0);
- }
- dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0;
- dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases
- : pvt->csels[0].csbases;
- debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n", ctrl, dbam);
- edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
- /* Dump memory sizes for DIMM and its CSROWs */
- for (dimm = 0; dimm < 4; dimm++) {
- size0 = 0;
- if (dcsb[dimm*2] & DCSB_CS_ENABLE)
- size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
- DBAM_DIMM(dimm, dbam));
- size1 = 0;
- if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
- size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
- DBAM_DIMM(dimm, dbam));
- amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
- dimm * 2, size0 << factor,
- dimm * 2 + 1, size1 << factor);
- }
- }
- static struct amd64_family_type amd64_family_types[] = {
- [K8_CPUS] = {
- .ctl_name = "K8",
- .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
- .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
- .ops = {
- .early_channel_count = k8_early_channel_count,
- .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
- .dbam_to_cs = k8_dbam_to_chip_select,
- .read_dct_pci_cfg = k8_read_dct_pci_cfg,
- }
- },
- [F10_CPUS] = {
- .ctl_name = "F10h",
- .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
- .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
- .ops = {
- .early_channel_count = f1x_early_channel_count,
- .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
- .dbam_to_cs = f10_dbam_to_chip_select,
- .read_dct_pci_cfg = f10_read_dct_pci_cfg,
- }
- },
- [F15_CPUS] = {
- .ctl_name = "F15h",
- .f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
- .f3_id = PCI_DEVICE_ID_AMD_15H_NB_F3,
- .ops = {
- .early_channel_count = f1x_early_channel_count,
- .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
- .dbam_to_cs = f15_dbam_to_chip_select,
- .read_dct_pci_cfg = f15_read_dct_pci_cfg,
- }
- },
- };
- static struct pci_dev *pci_get_related_function(unsigned int vendor,
- unsigned int device,
- struct pci_dev *related)
- {
- struct pci_dev *dev = NULL;
- dev = pci_get_device(vendor, device, dev);
- while (dev) {
- if ((dev->bus->number == related->bus->number) &&
- (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
- break;
- dev = pci_get_device(vendor, device, dev);
- }
- return dev;
- }
- /*
- * These are tables of eigenvectors (one per line) which can be used for the
- * construction of the syndrome tables. The modified syndrome search algorithm
- * uses those to find the symbol in error and thus the DIMM.
- *
- * Algorithm courtesy of Ross LaFetra from AMD.
- */
- static u16 x4_vectors[] = {
- 0x2f57, 0x1afe, 0x66cc, 0xdd88,
- 0x11eb, 0x3396, 0x7f4c, 0xeac8,
- 0x0001, 0x0002, 0x0004, 0x0008,
- 0x1013, 0x3032, 0x4044, 0x8088,
- 0x106b, 0x30d6, 0x70fc, 0xe0a8,
- 0x4857, 0xc4fe, 0x13cc, 0x3288,
- 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
- 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
- 0x15c1, 0x2a42, 0x89ac, 0x4758,
- 0x2b03, 0x1602, 0x4f0c, 0xca08,
- 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
- 0x8ba7, 0x465e, 0x244c, 0x1cc8,
- 0x2b87, 0x164e, 0x642c, 0xdc18,
- 0x40b9, 0x80de, 0x1094, 0x20e8,
- 0x27db, 0x1eb6, 0x9dac, 0x7b58,
- 0x11c1, 0x2242, 0x84ac, 0x4c58,
- 0x1be5, 0x2d7a, 0x5e34, 0xa718,
- 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
- 0x4c97, 0xc87e, 0x11fc, 0x33a8,
- 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
- 0x16b3, 0x3d62, 0x4f34, 0x8518,
- 0x1e2f, 0x391a, 0x5cac, 0xf858,
- 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
- 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
- 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
- 0x4397, 0xc27e, 0x17fc, 0x3ea8,
- 0x1617, 0x3d3e, 0x6464, 0xb8b8,
- 0x23ff, 0x12aa, 0xab6c, 0x56d8,
- 0x2dfb, 0x1ba6, 0x913c, 0x7328,
- 0x185d, 0x2ca6, 0x7914, 0x9e28,
- 0x171b, 0x3e36, 0x7d7c, 0xebe8,
- 0x4199, 0x82ee, 0x19f4, 0x2e58,
- 0x4807, 0xc40e, 0x130c, 0x3208,
- 0x1905, 0x2e0a, 0x5804, 0xac08,
- 0x213f, 0x132a, 0xadfc, 0x5ba8,
- 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
- };
- static u16 x8_vectors[] = {
- 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
- 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
- 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
- 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
- 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
- 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
- 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
- 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
- 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
- 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
- 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
- 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
- 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
- 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
- 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
- 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
- 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
- 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
- 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
- };
- static int decode_syndrome(u16 syndrome, u16 *vectors, unsigned num_vecs,
- unsigned v_dim)
- {
- unsigned int i, err_sym;
- for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
- u16 s = syndrome;
- unsigned v_idx = err_sym * v_dim;
- unsigned v_end = (err_sym + 1) * v_dim;
- /* walk over all 16 bits of the syndrome */
- for (i = 1; i < (1U << 16); i <<= 1) {
- /* if bit is set in that eigenvector... */
- if (v_idx < v_end && vectors[v_idx] & i) {
- u16 ev_comp = vectors[v_idx++];
- /* ... and bit set in the modified syndrome, */
- if (s & i) {
- /* remove it. */
- s ^= ev_comp;
- if (!s)
- return err_sym;
- }
- } else if (s & i)
- /* can't get to zero, move to next symbol */
- break;
- }
- }
- debugf0("syndrome(%x) not found\n", syndrome);
- return -1;
- }
- static int map_err_sym_to_channel(int err_sym, int sym_size)
- {
- if (sym_size == 4)
- switch (err_sym) {
- case 0x20:
- case 0x21:
- return 0;
- break;
- case 0x22:
- case 0x23:
- return 1;
- break;
- default:
- return err_sym >> 4;
- break;
- }
- /* x8 symbols */
- else
- switch (err_sym) {
- /* imaginary bits not in a DIMM */
- case 0x10:
- WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
- err_sym);
- return -1;
- break;
- case 0x11:
- return 0;
- break;
- case 0x12:
- return 1;
- break;
- default:
- return err_sym >> 3;
- break;
- }
- return -1;
- }
- static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
- {
- struct amd64_pvt *pvt = mci->pvt_info;
- int err_sym = -1;
- if (pvt->ecc_sym_sz == 8)
- err_sym = decode_syndrome(syndrome, x8_vectors,
- ARRAY_SIZE(x8_vectors),
- pvt->ecc_sym_sz);
- else if (pvt->ecc_sym_sz == 4)
- err_sym = decode_syndrome(syndrome, x4_vectors,
- ARRAY_SIZE(x4_vectors),
- pvt->ecc_sym_sz);
- else {
- amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
- return err_sym;
- }
- return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
- }
- /*
- * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
- * ADDRESS and process.
- */
- static void amd64_handle_ce(struct mem_ctl_info *mci, struct mce *m)
- {
- struct amd64_pvt *pvt = mci->pvt_info;
- u64 sys_addr;
- u16 syndrome;
- /* Ensure that the Error Address is VALID */
- if (!(m->status & MCI_STATUS_ADDRV)) {
- amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
- edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
- return;
- }
- sys_addr = get_error_address(m);
- syndrome = extract_syndrome(m->status);
- amd64_mc_err(mci, "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
- pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, syndrome);
- }
- /* Handle any Un-correctable Errors (UEs) */
- static void amd64_handle_ue(struct mem_ctl_info *mci, struct mce *m)
- {
- struct mem_ctl_info *log_mci, *src_mci = NULL;
- int csrow;
- u64 sys_addr;
- u32 page, offset;
- log_mci = mci;
- if (!(m->status & MCI_STATUS_ADDRV)) {
- amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
- edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
- return;
- }
- sys_addr = get_error_address(m);
- /*
- * Find out which node the error address belongs to. This may be
- * different from the node that detected the error.
- */
- src_mci = find_mc_by_sys_addr(mci, sys_addr);
- if (!src_mci) {
- amd64_mc_err(mci, "ERROR ADDRESS (0x%lx) NOT mapped to a MC\n",
- (unsigned long)sys_addr);
- edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
- return;
- }
- log_mci = src_mci;
- csrow = sys_addr_to_csrow(log_mci, sys_addr);
- if (csrow < 0) {
- amd64_mc_err(mci, "ERROR_ADDRESS (0x%lx) NOT mapped to CS\n",
- (unsigned long)sys_addr);
- edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
- } else {
- error_address_to_page_and_offset(sys_addr, &page, &offset);
- edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
- }
- }
- static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
- struct mce *m)
- {
- u16 ec = EC(m->status);
- u8 xec = XEC(m->status, 0x1f);
- u8 ecc_type = (m->status >> 45) & 0x3;
- /* Bail early out if this was an 'observed' error */
- if (PP(ec) == NBSL_PP_OBS)
- return;
- /* Do only ECC errors */
- if (xec && xec != F10_NBSL_EXT_ERR_ECC)
- return;
- if (ecc_type == 2)
- amd64_handle_ce(mci, m);
- else if (ecc_type == 1)
- amd64_handle_ue(mci, m);
- }
- void amd64_decode_bus_error(int node_id, struct mce *m, u32 nbcfg)
- {
- struct mem_ctl_info *mci = mcis[node_id];
- __amd64_decode_bus_error(mci, m);
- }
- /*
- * Use pvt->F2 which contains the F2 CPU PCI device to get the related
- * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
- */
- static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
- {
- /* Reserve the ADDRESS MAP Device */
- pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
- if (!pvt->F1) {
- amd64_err("error address map device not found: "
- "vendor %x device 0x%x (broken BIOS?)\n",
- PCI_VENDOR_ID_AMD, f1_id);
- return -ENODEV;
- }
- /* Reserve the MISC Device */
- pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
- if (!pvt->F3) {
- pci_dev_put(pvt->F1);
- pvt->F1 = NULL;
- amd64_err("error F3 device not found: "
- "vendor %x device 0x%x (broken BIOS?)\n",
- PCI_VENDOR_ID_AMD, f3_id);
- return -ENODEV;
- }
- debugf1("F1: %s\n", pci_name(pvt->F1));
- debugf1("F2: %s\n", pci_name(pvt->F2));
- debugf1("F3: %s\n", pci_name(pvt->F3));
- return 0;
- }
- static void free_mc_sibling_devs(struct amd64_pvt *pvt)
- {
- pci_dev_put(pvt->F1);
- pci_dev_put(pvt->F3);
- }
- /*
- * Retrieve the hardware registers of the memory controller (this includes the
- * 'Address Map' and 'Misc' device regs)
- */
- static void read_mc_regs(struct amd64_pvt *pvt)
- {
- struct cpuinfo_x86 *c = &boot_cpu_data;
- u64 msr_val;
- u32 tmp;
- unsigned range;
- /*
- * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
- * those are Read-As-Zero
- */
- rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
- debugf0(" TOP_MEM: 0x%016llx\n", pvt->top_mem);
- /* check first whether TOP_MEM2 is enabled */
- rdmsrl(MSR_K8_SYSCFG, msr_val);
- if (msr_val & (1U << 21)) {
- rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
- debugf0(" TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
- } else
- debugf0(" TOP_MEM2 disabled.\n");
- amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
- read_dram_ctl_register(pvt);
- for (range = 0; range < DRAM_RANGES; range++) {
- u8 rw;
- /* read settings for this DRAM range */
- read_dram_base_limit_regs(pvt, range);
- rw = dram_rw(pvt, range);
- if (!rw)
- continue;
- debugf1(" DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
- range,
- get_dram_base(pvt, range),
- get_dram_limit(pvt, range));
- debugf1(" IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
- dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
- (rw & 0x1) ? "R" : "-",
- (rw & 0x2) ? "W" : "-",
- dram_intlv_sel(pvt, range),
- dram_dst_node(pvt, range));
- }
- read_dct_base_mask(pvt);
- amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
- amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0);
- amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
- amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0);
- amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0);
- if (!dct_ganging_enabled(pvt)) {
- amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1);
- amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1);
- }
- pvt->ecc_sym_sz = 4;
- if (c->x86 >= 0x10) {
- amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
- amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1);
- /* F10h, revD and later can do x8 ECC too */
- if ((c->x86 > 0x10 || c->x86_model > 7) && tmp & BIT(25))
- pvt->ecc_sym_sz = 8;
- }
- dump_misc_regs(pvt);
- }
- /*
- * NOTE: CPU Revision Dependent code
- *
- * Input:
- * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
- * k8 private pointer to -->
- * DRAM Bank Address mapping register
- * node_id
- * DCL register where dual_channel_active is
- *
- * The DBAM register consists of 4 sets of 4 bits each definitions:
- *
- * Bits: CSROWs
- * 0-3 CSROWs 0 and 1
- * 4-7 CSROWs 2 and 3
- * 8-11 CSROWs 4 and 5
- * 12-15 CSROWs 6 and 7
- *
- * Values range from: 0 to 15
- * The meaning of the values depends on CPU revision and dual-channel state,
- * see relevant BKDG more info.
- *
- * The memory controller provides for total of only 8 CSROWs in its current
- * architecture. Each "pair" of CSROWs normally represents just one DIMM in
- * single channel or two (2) DIMMs in dual channel mode.
- *
- * The following code logic collapses the various tables for CSROW based on CPU
- * revision.
- *
- * Returns:
- * The number of PAGE_SIZE pages on the specified CSROW number it
- * encompasses
- *
- */
- static u32 amd64_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr)
- {
- u32 cs_mode, nr_pages;
- /*
- * The math on this doesn't look right on the surface because x/2*4 can
- * be simplified to x*2 but this expression makes use of the fact that
- * it is integral math where 1/2=0. This intermediate value becomes the
- * number of bits to shift the DBAM register to extract the proper CSROW
- * field.
- */
- cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
- nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode) << (20 - PAGE_SHIFT);
- /*
- * If dual channel then double the memory size of single channel.
- * Channel count is 1 or 2
- */
- nr_pages <<= (pvt->channel_count - 1);
- debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
- debugf0(" nr_pages= %u channel-count = %d\n",
- nr_pages, pvt->channel_count);
- return nr_pages;
- }
- /*
- * Initialize the array of csrow attribute instances, based on the values
- * from pci config hardware registers.
- */
- static int init_csrows(struct mem_ctl_info *mci)
- {
- struct csrow_info *csrow;
- struct amd64_pvt *pvt = mci->pvt_info;
- u64 input_addr_min, input_addr_max, sys_addr, base, mask;
- u32 val;
- int i, empty = 1;
- amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
- pvt->nbcfg = val;
- debugf0("node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
- pvt->mc_node_id, val,
- !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
- for_each_chip_select(i, 0, pvt) {
- csrow = &mci->csrows[i];
- if (!csrow_enabled(i, 0, pvt)) {
- debugf1("----CSROW %d EMPTY for node %d\n", i,
- pvt->mc_node_id);
- continue;
- }
- debugf1("----CSROW %d VALID for MC node %d\n",
- i, pvt->mc_node_id);
- empty = 0;
- csrow->nr_pages = amd64_csrow_nr_pages(pvt, 0, i);
- find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
- sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
- csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
- sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
- csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
- get_cs_base_and_mask(pvt, i, 0, &base, &mask);
- csrow->page_mask = ~mask;
- /* 8 bytes of resolution */
- csrow->mtype = amd64_determine_memory_type(pvt, i);
- debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i);
- debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
- (unsigned long)input_addr_min,
- (unsigned long)input_addr_max);
- debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n",
- (unsigned long)sys_addr, csrow->page_mask);
- debugf1(" nr_pages: %u first_page: 0x%lx "
- "last_page: 0x%lx\n",
- (unsigned)csrow->nr_pages,
- csrow->first_page, csrow->last_page);
- /*
- * determine whether CHIPKILL or JUST ECC or NO ECC is operating
- */
- if (pvt->nbcfg & NBCFG_ECC_ENABLE)
- csrow->edac_mode =
- (pvt->nbcfg & NBCFG_CHIPKILL) ?
- EDAC_S4ECD4ED : EDAC_SECDED;
- else
- csrow->edac_mode = EDAC_NONE;
- }
- return empty;
- }
- /* get all cores on this DCT */
- static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, unsigned nid)
- {
- int cpu;
- for_each_online_cpu(cpu)
- if (amd_get_nb_id(cpu) == nid)
- cpumask_set_cpu(cpu, mask);
- }
- /* check MCG_CTL on all the cpus on this node */
- static bool amd64_nb_mce_bank_enabled_on_node(unsigned nid)
- {
- cpumask_var_t mask;
- int cpu, nbe;
- bool ret = false;
- if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
- amd64_warn("%s: Error allocating mask\n", __func__);
- return false;
- }
- get_cpus_on_this_dct_cpumask(mask, nid);
- rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
- for_each_cpu(cpu, mask) {
- struct msr *reg = per_cpu_ptr(msrs, cpu);
- nbe = reg->l & MSR_MCGCTL_NBE;
- debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
- cpu, reg->q,
- (nbe ? "enabled" : "disabled"));
- if (!nbe)
- goto out;
- }
- ret = true;
- out:
- free_cpumask_var(mask);
- return ret;
- }
- static int toggle_ecc_err_reporting(struct ecc_settings *s, u8 nid, bool on)
- {
- cpumask_var_t cmask;
- int cpu;
- if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
- amd64_warn("%s: error allocating mask\n", __func__);
- return false;
- }
- get_cpus_on_this_dct_cpumask(cmask, nid);
- rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
- for_each_cpu(cpu, cmask) {
- struct msr *reg = per_cpu_ptr(msrs, cpu);
- if (on) {
- if (reg->l & MSR_MCGCTL_NBE)
- s->flags.nb_mce_enable = 1;
- reg->l |= MSR_MCGCTL_NBE;
- } else {
- /*
- * Turn off NB MCE reporting only when it was off before
- */
- if (!s->flags.nb_mce_enable)
- reg->l &= ~MSR_MCGCTL_NBE;
- }
- }
- wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
- free_cpumask_var(cmask);
- return 0;
- }
- static bool enable_ecc_error_reporting(struct ecc_settings *s, u8 nid,
- struct pci_dev *F3)
- {
- bool ret = true;
- u32 value, mask = 0x3; /* UECC/CECC enable */
- if (toggle_ecc_err_reporting(s, nid, ON)) {
- amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
- return false;
- }
- amd64_read_pci_cfg(F3, NBCTL, &value);
- s->old_nbctl = value & mask;
- s->nbctl_valid = true;
- value |= mask;
- amd64_write_pci_cfg(F3, NBCTL, value);
- amd64_read_pci_cfg(F3, NBCFG, &value);
- debugf0("1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
- nid, value, !!(value & NBCFG_ECC_ENABLE));
- if (!(value & NBCFG_ECC_ENABLE)) {
- amd64_warn("DRAM ECC disabled on this node, enabling...\n");
- s->flags.nb_ecc_prev = 0;
- /* Attempt to turn on DRAM ECC Enable */
- value |= NBCFG_ECC_ENABLE;
- amd64_write_pci_cfg(F3, NBCFG, value);
- amd64_read_pci_cfg(F3, NBCFG, &value);
- if (!(value & NBCFG_ECC_ENABLE)) {
- amd64_warn("Hardware rejected DRAM ECC enable,"
- "check memory DIMM configuration.\n");
- ret = false;
- } else {
- amd64_info("Hardware accepted DRAM ECC Enable\n");
- }
- } else {
- s->flags.nb_ecc_prev = 1;
- }
- debugf0("2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
- nid, value, !!(value & NBCFG_ECC_ENABLE));
- return ret;
- }
- static void restore_ecc_error_reporting(struct ecc_settings *s, u8 nid,
- struct pci_dev *F3)
- {
- u32 value, mask = 0x3; /* UECC/CECC enable */
- if (!s->nbctl_valid)
- return;
- amd64_read_pci_cfg(F3, NBCTL, &value);
- value &= ~mask;
- value |= s->old_nbctl;
- amd64_write_pci_cfg(F3, NBCTL, value);
- /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
- if (!s->flags.nb_ecc_prev) {
- amd64_read_pci_cfg(F3, NBCFG, &value);
- value &= ~NBCFG_ECC_ENABLE;
- amd64_write_pci_cfg(F3, NBCFG, value);
- }
- /* restore the NB Enable MCGCTL bit */
- if (toggle_ecc_err_reporting(s, nid, OFF))
- amd64_warn("Error restoring NB MCGCTL settings!\n");
- }
- /*
- * EDAC requires that the BIOS have ECC enabled before
- * taking over the processing of ECC errors. A command line
- * option allows to force-enable hardware ECC later in
- * enable_ecc_error_reporting().
- */
- static const char *ecc_msg =
- "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
- " Either enable ECC checking or force module loading by setting "
- "'ecc_enable_override'.\n"
- " (Note that use of the override may cause unknown side effects.)\n";
- static bool ecc_enabled(struct pci_dev *F3, u8 nid)
- {
- u32 value;
- u8 ecc_en = 0;
- bool nb_mce_en = false;
- amd64_read_pci_cfg(F3, NBCFG, &value);
- ecc_en = !!(value & NBCFG_ECC_ENABLE);
- amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
- nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid);
- if (!nb_mce_en)
- amd64_notice("NB MCE bank disabled, set MSR "
- "0x%08x[4] on node %d to enable.\n",
- MSR_IA32_MCG_CTL, nid);
- if (!ecc_en || !nb_mce_en) {
- amd64_notice("%s", ecc_msg);
- return false;
- }
- return true;
- }
- struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
- ARRAY_SIZE(amd64_inj_attrs) +
- 1];
- struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
- static void set_mc_sysfs_attrs(struct mem_ctl_info *mci)
- {
- unsigned int i = 0, j = 0;
- for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
- sysfs_attrs[i] = amd64_dbg_attrs[i];
- if (boot_cpu_data.x86 >= 0x10)
- for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
- sysfs_attrs[i] = amd64_inj_attrs[j];
- sysfs_attrs[i] = terminator;
- mci->mc_driver_sysfs_attributes = sysfs_attrs;
- }
- static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
- struct amd64_family_type *fam)
- {
- struct amd64_pvt *pvt = mci->pvt_info;
- mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
- mci->edac_ctl_cap = EDAC_FLAG_NONE;
- if (pvt->nbcap & NBCAP_SECDED)
- mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
- if (pvt->nbcap & NBCAP_CHIPKILL)
- mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
- mci->edac_cap = amd64_determine_edac_cap(pvt);
- mci->mod_name = EDAC_MOD_STR;
- mci->mod_ver = EDAC_AMD64_VERSION;
- mci->ctl_name = fam->ctl_name;
- mci->dev_name = pci_name(pvt->F2);
- mci->ctl_page_to_phys = NULL;
- /* memory scrubber interface */
- mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
- mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
- }
- /*
- * returns a pointer to the family descriptor on success, NULL otherwise.
- */
- static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
- {
- u8 fam = boot_cpu_data.x86;
- struct amd64_family_type *fam_type = NULL;
- switch (fam) {
- case 0xf:
- fam_type = &amd64_family_types[K8_CPUS];
- pvt->ops = &amd64_family_types[K8_CPUS].ops;
- break;
- case 0x10:
- fam_type = &amd64_family_types[F10_CPUS];
- pvt->ops = &amd64_family_types[F10_CPUS].ops;
- break;
- case 0x15:
- fam_type = &amd64_family_types[F15_CPUS];
- pvt->ops = &amd64_family_types[F15_CPUS].ops;
- break;
- default:
- amd64_err("Unsupported family!\n");
- return NULL;
- }
- pvt->ext_model = boot_cpu_data.x86_model >> 4;
- amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
- (fam == 0xf ?
- (pvt->ext_model >= K8_REV_F ? "revF or later "
- : "revE or earlier ")
- : ""), pvt->mc_node_id);
- return fam_type;
- }
- static int amd64_init_one_instance(struct pci_dev *F2)
- {
- struct amd64_pvt *pvt = NULL;
- struct amd64_family_type *fam_type = NULL;
- struct mem_ctl_info *mci = NULL;
- int err = 0, ret;
- u8 nid = get_node_id(F2);
- ret = -ENOMEM;
- pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
- if (!pvt)
- goto err_ret;
- pvt->mc_node_id = nid;
- pvt->F2 = F2;
- ret = -EINVAL;
- fam_type = amd64_per_family_init(pvt);
- if (!fam_type)
- goto err_free;
- ret = -ENODEV;
- err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
- if (err)
- goto err_free;
- read_mc_regs(pvt);
- /*
- * We need to determine how many memory channels there are. Then use
- * that information for calculating the size of the dynamic instance
- * tables in the 'mci' structure.
- */
- ret = -EINVAL;
- pvt->channel_count = pvt->ops->early_channel_count(pvt);
- if (pvt->channel_count < 0)
- goto err_siblings;
- ret = -ENOMEM;
- mci = edac_mc_alloc(0, pvt->csels[0].b_cnt, pvt->channel_count, nid);
- if (!mci)
- goto err_siblings;
- mci->pvt_info = pvt;
- mci->dev = &pvt->F2->dev;
- setup_mci_misc_attrs(mci, fam_type);
- if (init_csrows(mci))
- mci->edac_cap = EDAC_FLAG_NONE;
- set_mc_sysfs_attrs(mci);
- ret = -ENODEV;
- if (edac_mc_add_mc(mci)) {
- debugf1("failed edac_mc_add_mc()\n");
- goto err_add_mc;
- }
- /* register stuff with EDAC MCE */
- if (report_gart_errors)
- amd_report_gart_errors(true);
- amd_register_ecc_decoder(amd64_decode_bus_error);
- mcis[nid] = mci;
- atomic_inc(&drv_instances);
- return 0;
- err_add_mc:
- edac_mc_free(mci);
- err_siblings:
- free_mc_sibling_devs(pvt);
- err_free:
- kfree(pvt);
- err_ret:
- return ret;
- }
- static int __devinit amd64_probe_one_instance(struct pci_dev *pdev,
- const struct pci_device_id *mc_type)
- {
- u8 nid = get_node_id(pdev);
- struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
- struct ecc_settings *s;
- int ret = 0;
- ret = pci_enable_device(pdev);
- if (ret < 0) {
- debugf0("ret=%d\n", ret);
- return -EIO;
- }
- ret = -ENOMEM;
- s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
- if (!s)
- goto err_out;
- ecc_stngs[nid] = s;
- if (!ecc_enabled(F3, nid)) {
- ret = -ENODEV;
- if (!ecc_enable_override)
- goto err_enable;
- amd64_warn("Forcing ECC on!\n");
- if (!enable_ecc_error_reporting(s, nid, F3))
- goto err_enable;
- }
- ret = amd64_init_one_instance(pdev);
- if (ret < 0) {
- amd64_err("Error probing instance: %d\n", nid);
- restore_ecc_error_reporting(s, nid, F3);
- }
- return ret;
- err_enable:
- kfree(s);
- ecc_stngs[nid] = NULL;
- err_out:
- return ret;
- }
- static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
- {
- struct mem_ctl_info *mci;
- struct amd64_pvt *pvt;
- u8 nid = get_node_id(pdev);
- struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
- struct ecc_settings *s = ecc_stngs[nid];
- /* Remove from EDAC CORE tracking list */
- mci = edac_mc_del_mc(&pdev->dev);
- if (!mci)
- return;
- pvt = mci->pvt_info;
- restore_ecc_error_reporting(s, nid, F3);
- free_mc_sibling_devs(pvt);
- /* unregister from EDAC MCE */
- amd_report_gart_errors(false);
- amd_unregister_ecc_decoder(amd64_decode_bus_error);
- kfree(ecc_stngs[nid]);
- ecc_stngs[nid] = NULL;
- /* Free the EDAC CORE resources */
- mci->pvt_info = NULL;
- mcis[nid] = NULL;
- kfree(pvt);
- edac_mc_free(mci);
- }
- /*
- * This table is part of the interface for loading drivers for PCI devices. The
- * PCI core identifies what devices are on a system during boot, and then
- * inquiry this table to see if this driver is for a given device found.
- */
- static const struct pci_device_id amd64_pci_table[] __devinitdata = {
- {
- .vendor = PCI_VENDOR_ID_AMD,
- .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
- .subvendor = PCI_ANY_ID,
- .subdevice = PCI_ANY_ID,
- .class = 0,
- .class_mask = 0,
- },
- {
- .vendor = PCI_VENDOR_ID_AMD,
- .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
- .subvendor = PCI_ANY_ID,
- .subdevice = PCI_ANY_ID,
- .class = 0,
- .class_mask = 0,
- },
- {
- .vendor = PCI_VENDOR_ID_AMD,
- .device = PCI_DEVICE_ID_AMD_15H_NB_F2,
- .subvendor = PCI_ANY_ID,
- .subdevice = PCI_ANY_ID,
- .class = 0,
- .class_mask = 0,
- },
- {0, }
- };
- MODULE_DEVICE_TABLE(pci, amd64_pci_table);
- static struct pci_driver amd64_pci_driver = {
- .name = EDAC_MOD_STR,
- .probe = amd64_probe_one_instance,
- .remove = __devexit_p(amd64_remove_one_instance),
- .id_table = amd64_pci_table,
- };
- static void setup_pci_device(void)
- {
- struct mem_ctl_info *mci;
- struct amd64_pvt *pvt;
- if (amd64_ctl_pci)
- return;
- mci = mcis[0];
- if (mci) {
- pvt = mci->pvt_info;
- amd64_ctl_pci =
- edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
- if (!amd64_ctl_pci) {
- pr_warning("%s(): Unable to create PCI control\n",
- __func__);
- pr_warning("%s(): PCI error report via EDAC not set\n",
- __func__);
- }
- }
- }
- static int __init amd64_edac_init(void)
- {
- int err = -ENODEV;
- printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);
- opstate_init();
- if (amd_cache_northbridges() < 0)
- goto err_ret;
- err = -ENOMEM;
- mcis = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
- ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
- if (!(mcis && ecc_stngs))
- goto err_free;
- msrs = msrs_alloc();
- if (!msrs)
- goto err_free;
- err = pci_register_driver(&amd64_pci_driver);
- if (err)
- goto err_pci;
- err = -ENODEV;
- if (!atomic_read(&drv_instances))
- goto err_no_instances;
- setup_pci_device();
- return 0;
- err_no_instances:
- pci_unregister_driver(&amd64_pci_driver);
- err_pci:
- msrs_free(msrs);
- msrs = NULL;
- err_free:
- kfree(mcis);
- mcis = NULL;
- kfree(ecc_stngs);
- ecc_stngs = NULL;
- err_ret:
- return err;
- }
- static void __exit amd64_edac_exit(void)
- {
- if (amd64_ctl_pci)
- edac_pci_release_generic_ctl(amd64_ctl_pci);
- pci_unregister_driver(&amd64_pci_driver);
- kfree(ecc_stngs);
- ecc_stngs = NULL;
- kfree(mcis);
- mcis = NULL;
- msrs_free(msrs);
- msrs = NULL;
- }
- module_init(amd64_edac_init);
- module_exit(amd64_edac_exit);
- MODULE_LICENSE("GPL");
- MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
- "Dave Peterson, Thayne Harbaugh");
- MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
- EDAC_AMD64_VERSION);
- module_param(edac_op_state, int, 0444);
- MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
|