padlock-aes.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565
  1. /*
  2. * Cryptographic API.
  3. *
  4. * Support for VIA PadLock hardware crypto engine.
  5. *
  6. * Copyright (c) 2004 Michal Ludvig <michal@logix.cz>
  7. *
  8. */
  9. #include <crypto/algapi.h>
  10. #include <crypto/aes.h>
  11. #include <crypto/padlock.h>
  12. #include <linux/module.h>
  13. #include <linux/init.h>
  14. #include <linux/types.h>
  15. #include <linux/errno.h>
  16. #include <linux/interrupt.h>
  17. #include <linux/kernel.h>
  18. #include <linux/percpu.h>
  19. #include <linux/smp.h>
  20. #include <linux/slab.h>
  21. #include <asm/byteorder.h>
  22. #include <asm/processor.h>
  23. #include <asm/i387.h>
  24. /*
  25. * Number of data blocks actually fetched for each xcrypt insn.
  26. * Processors with prefetch errata will fetch extra blocks.
  27. */
  28. static unsigned int ecb_fetch_blocks = 2;
  29. #define MAX_ECB_FETCH_BLOCKS (8)
  30. #define ecb_fetch_bytes (ecb_fetch_blocks * AES_BLOCK_SIZE)
  31. static unsigned int cbc_fetch_blocks = 1;
  32. #define MAX_CBC_FETCH_BLOCKS (4)
  33. #define cbc_fetch_bytes (cbc_fetch_blocks * AES_BLOCK_SIZE)
  34. /* Control word. */
  35. struct cword {
  36. unsigned int __attribute__ ((__packed__))
  37. rounds:4,
  38. algo:3,
  39. keygen:1,
  40. interm:1,
  41. encdec:1,
  42. ksize:2;
  43. } __attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
  44. /* Whenever making any changes to the following
  45. * structure *make sure* you keep E, d_data
  46. * and cword aligned on 16 Bytes boundaries and
  47. * the Hardware can access 16 * 16 bytes of E and d_data
  48. * (only the first 15 * 16 bytes matter but the HW reads
  49. * more).
  50. */
  51. struct aes_ctx {
  52. u32 E[AES_MAX_KEYLENGTH_U32]
  53. __attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
  54. u32 d_data[AES_MAX_KEYLENGTH_U32]
  55. __attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
  56. struct {
  57. struct cword encrypt;
  58. struct cword decrypt;
  59. } cword;
  60. u32 *D;
  61. };
  62. static DEFINE_PER_CPU(struct cword *, paes_last_cword);
  63. /* Tells whether the ACE is capable to generate
  64. the extended key for a given key_len. */
  65. static inline int
  66. aes_hw_extkey_available(uint8_t key_len)
  67. {
  68. /* TODO: We should check the actual CPU model/stepping
  69. as it's possible that the capability will be
  70. added in the next CPU revisions. */
  71. if (key_len == 16)
  72. return 1;
  73. return 0;
  74. }
  75. static inline struct aes_ctx *aes_ctx_common(void *ctx)
  76. {
  77. unsigned long addr = (unsigned long)ctx;
  78. unsigned long align = PADLOCK_ALIGNMENT;
  79. if (align <= crypto_tfm_ctx_alignment())
  80. align = 1;
  81. return (struct aes_ctx *)ALIGN(addr, align);
  82. }
  83. static inline struct aes_ctx *aes_ctx(struct crypto_tfm *tfm)
  84. {
  85. return aes_ctx_common(crypto_tfm_ctx(tfm));
  86. }
  87. static inline struct aes_ctx *blk_aes_ctx(struct crypto_blkcipher *tfm)
  88. {
  89. return aes_ctx_common(crypto_blkcipher_ctx(tfm));
  90. }
  91. static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
  92. unsigned int key_len)
  93. {
  94. struct aes_ctx *ctx = aes_ctx(tfm);
  95. const __le32 *key = (const __le32 *)in_key;
  96. u32 *flags = &tfm->crt_flags;
  97. struct crypto_aes_ctx gen_aes;
  98. int cpu;
  99. if (key_len % 8) {
  100. *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
  101. return -EINVAL;
  102. }
  103. /*
  104. * If the hardware is capable of generating the extended key
  105. * itself we must supply the plain key for both encryption
  106. * and decryption.
  107. */
  108. ctx->D = ctx->E;
  109. ctx->E[0] = le32_to_cpu(key[0]);
  110. ctx->E[1] = le32_to_cpu(key[1]);
  111. ctx->E[2] = le32_to_cpu(key[2]);
  112. ctx->E[3] = le32_to_cpu(key[3]);
  113. /* Prepare control words. */
  114. memset(&ctx->cword, 0, sizeof(ctx->cword));
  115. ctx->cword.decrypt.encdec = 1;
  116. ctx->cword.encrypt.rounds = 10 + (key_len - 16) / 4;
  117. ctx->cword.decrypt.rounds = ctx->cword.encrypt.rounds;
  118. ctx->cword.encrypt.ksize = (key_len - 16) / 8;
  119. ctx->cword.decrypt.ksize = ctx->cword.encrypt.ksize;
  120. /* Don't generate extended keys if the hardware can do it. */
  121. if (aes_hw_extkey_available(key_len))
  122. goto ok;
  123. ctx->D = ctx->d_data;
  124. ctx->cword.encrypt.keygen = 1;
  125. ctx->cword.decrypt.keygen = 1;
  126. if (crypto_aes_expand_key(&gen_aes, in_key, key_len)) {
  127. *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
  128. return -EINVAL;
  129. }
  130. memcpy(ctx->E, gen_aes.key_enc, AES_MAX_KEYLENGTH);
  131. memcpy(ctx->D, gen_aes.key_dec, AES_MAX_KEYLENGTH);
  132. ok:
  133. for_each_online_cpu(cpu)
  134. if (&ctx->cword.encrypt == per_cpu(paes_last_cword, cpu) ||
  135. &ctx->cword.decrypt == per_cpu(paes_last_cword, cpu))
  136. per_cpu(paes_last_cword, cpu) = NULL;
  137. return 0;
  138. }
  139. /* ====== Encryption/decryption routines ====== */
  140. /* These are the real call to PadLock. */
  141. static inline void padlock_reset_key(struct cword *cword)
  142. {
  143. int cpu = raw_smp_processor_id();
  144. if (cword != per_cpu(paes_last_cword, cpu))
  145. #ifndef CONFIG_X86_64
  146. asm volatile ("pushfl; popfl");
  147. #else
  148. asm volatile ("pushfq; popfq");
  149. #endif
  150. }
  151. static inline void padlock_store_cword(struct cword *cword)
  152. {
  153. per_cpu(paes_last_cword, raw_smp_processor_id()) = cword;
  154. }
  155. /*
  156. * While the padlock instructions don't use FP/SSE registers, they
  157. * generate a spurious DNA fault when cr0.ts is '1'. These instructions
  158. * should be used only inside the irq_ts_save/restore() context
  159. */
  160. static inline void rep_xcrypt_ecb(const u8 *input, u8 *output, void *key,
  161. struct cword *control_word, int count)
  162. {
  163. asm volatile (".byte 0xf3,0x0f,0xa7,0xc8" /* rep xcryptecb */
  164. : "+S"(input), "+D"(output)
  165. : "d"(control_word), "b"(key), "c"(count));
  166. }
  167. static inline u8 *rep_xcrypt_cbc(const u8 *input, u8 *output, void *key,
  168. u8 *iv, struct cword *control_word, int count)
  169. {
  170. asm volatile (".byte 0xf3,0x0f,0xa7,0xd0" /* rep xcryptcbc */
  171. : "+S" (input), "+D" (output), "+a" (iv)
  172. : "d" (control_word), "b" (key), "c" (count));
  173. return iv;
  174. }
  175. static void ecb_crypt_copy(const u8 *in, u8 *out, u32 *key,
  176. struct cword *cword, int count)
  177. {
  178. /*
  179. * Padlock prefetches extra data so we must provide mapped input buffers.
  180. * Assume there are at least 16 bytes of stack already in use.
  181. */
  182. u8 buf[AES_BLOCK_SIZE * (MAX_ECB_FETCH_BLOCKS - 1) + PADLOCK_ALIGNMENT - 1];
  183. u8 *tmp = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
  184. memcpy(tmp, in, count * AES_BLOCK_SIZE);
  185. rep_xcrypt_ecb(tmp, out, key, cword, count);
  186. }
  187. static u8 *cbc_crypt_copy(const u8 *in, u8 *out, u32 *key,
  188. u8 *iv, struct cword *cword, int count)
  189. {
  190. /*
  191. * Padlock prefetches extra data so we must provide mapped input buffers.
  192. * Assume there are at least 16 bytes of stack already in use.
  193. */
  194. u8 buf[AES_BLOCK_SIZE * (MAX_CBC_FETCH_BLOCKS - 1) + PADLOCK_ALIGNMENT - 1];
  195. u8 *tmp = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
  196. memcpy(tmp, in, count * AES_BLOCK_SIZE);
  197. return rep_xcrypt_cbc(tmp, out, key, iv, cword, count);
  198. }
  199. static inline void ecb_crypt(const u8 *in, u8 *out, u32 *key,
  200. struct cword *cword, int count)
  201. {
  202. /* Padlock in ECB mode fetches at least ecb_fetch_bytes of data.
  203. * We could avoid some copying here but it's probably not worth it.
  204. */
  205. if (unlikely(((unsigned long)in & ~PAGE_MASK) + ecb_fetch_bytes > PAGE_SIZE)) {
  206. ecb_crypt_copy(in, out, key, cword, count);
  207. return;
  208. }
  209. rep_xcrypt_ecb(in, out, key, cword, count);
  210. }
  211. static inline u8 *cbc_crypt(const u8 *in, u8 *out, u32 *key,
  212. u8 *iv, struct cword *cword, int count)
  213. {
  214. /* Padlock in CBC mode fetches at least cbc_fetch_bytes of data. */
  215. if (unlikely(((unsigned long)in & ~PAGE_MASK) + cbc_fetch_bytes > PAGE_SIZE))
  216. return cbc_crypt_copy(in, out, key, iv, cword, count);
  217. return rep_xcrypt_cbc(in, out, key, iv, cword, count);
  218. }
  219. static inline void padlock_xcrypt_ecb(const u8 *input, u8 *output, void *key,
  220. void *control_word, u32 count)
  221. {
  222. u32 initial = count & (ecb_fetch_blocks - 1);
  223. if (count < ecb_fetch_blocks) {
  224. ecb_crypt(input, output, key, control_word, count);
  225. return;
  226. }
  227. if (initial)
  228. asm volatile (".byte 0xf3,0x0f,0xa7,0xc8" /* rep xcryptecb */
  229. : "+S"(input), "+D"(output)
  230. : "d"(control_word), "b"(key), "c"(initial));
  231. asm volatile (".byte 0xf3,0x0f,0xa7,0xc8" /* rep xcryptecb */
  232. : "+S"(input), "+D"(output)
  233. : "d"(control_word), "b"(key), "c"(count - initial));
  234. }
  235. static inline u8 *padlock_xcrypt_cbc(const u8 *input, u8 *output, void *key,
  236. u8 *iv, void *control_word, u32 count)
  237. {
  238. u32 initial = count & (cbc_fetch_blocks - 1);
  239. if (count < cbc_fetch_blocks)
  240. return cbc_crypt(input, output, key, iv, control_word, count);
  241. if (initial)
  242. asm volatile (".byte 0xf3,0x0f,0xa7,0xd0" /* rep xcryptcbc */
  243. : "+S" (input), "+D" (output), "+a" (iv)
  244. : "d" (control_word), "b" (key), "c" (initial));
  245. asm volatile (".byte 0xf3,0x0f,0xa7,0xd0" /* rep xcryptcbc */
  246. : "+S" (input), "+D" (output), "+a" (iv)
  247. : "d" (control_word), "b" (key), "c" (count-initial));
  248. return iv;
  249. }
  250. static void aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
  251. {
  252. struct aes_ctx *ctx = aes_ctx(tfm);
  253. int ts_state;
  254. padlock_reset_key(&ctx->cword.encrypt);
  255. ts_state = irq_ts_save();
  256. ecb_crypt(in, out, ctx->E, &ctx->cword.encrypt, 1);
  257. irq_ts_restore(ts_state);
  258. padlock_store_cword(&ctx->cword.encrypt);
  259. }
  260. static void aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
  261. {
  262. struct aes_ctx *ctx = aes_ctx(tfm);
  263. int ts_state;
  264. padlock_reset_key(&ctx->cword.encrypt);
  265. ts_state = irq_ts_save();
  266. ecb_crypt(in, out, ctx->D, &ctx->cword.decrypt, 1);
  267. irq_ts_restore(ts_state);
  268. padlock_store_cword(&ctx->cword.encrypt);
  269. }
  270. static struct crypto_alg aes_alg = {
  271. .cra_name = "aes",
  272. .cra_driver_name = "aes-padlock",
  273. .cra_priority = PADLOCK_CRA_PRIORITY,
  274. .cra_flags = CRYPTO_ALG_TYPE_CIPHER,
  275. .cra_blocksize = AES_BLOCK_SIZE,
  276. .cra_ctxsize = sizeof(struct aes_ctx),
  277. .cra_alignmask = PADLOCK_ALIGNMENT - 1,
  278. .cra_module = THIS_MODULE,
  279. .cra_list = LIST_HEAD_INIT(aes_alg.cra_list),
  280. .cra_u = {
  281. .cipher = {
  282. .cia_min_keysize = AES_MIN_KEY_SIZE,
  283. .cia_max_keysize = AES_MAX_KEY_SIZE,
  284. .cia_setkey = aes_set_key,
  285. .cia_encrypt = aes_encrypt,
  286. .cia_decrypt = aes_decrypt,
  287. }
  288. }
  289. };
  290. static int ecb_aes_encrypt(struct blkcipher_desc *desc,
  291. struct scatterlist *dst, struct scatterlist *src,
  292. unsigned int nbytes)
  293. {
  294. struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
  295. struct blkcipher_walk walk;
  296. int err;
  297. int ts_state;
  298. padlock_reset_key(&ctx->cword.encrypt);
  299. blkcipher_walk_init(&walk, dst, src, nbytes);
  300. err = blkcipher_walk_virt(desc, &walk);
  301. ts_state = irq_ts_save();
  302. while ((nbytes = walk.nbytes)) {
  303. padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr,
  304. ctx->E, &ctx->cword.encrypt,
  305. nbytes / AES_BLOCK_SIZE);
  306. nbytes &= AES_BLOCK_SIZE - 1;
  307. err = blkcipher_walk_done(desc, &walk, nbytes);
  308. }
  309. irq_ts_restore(ts_state);
  310. padlock_store_cword(&ctx->cword.encrypt);
  311. return err;
  312. }
  313. static int ecb_aes_decrypt(struct blkcipher_desc *desc,
  314. struct scatterlist *dst, struct scatterlist *src,
  315. unsigned int nbytes)
  316. {
  317. struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
  318. struct blkcipher_walk walk;
  319. int err;
  320. int ts_state;
  321. padlock_reset_key(&ctx->cword.decrypt);
  322. blkcipher_walk_init(&walk, dst, src, nbytes);
  323. err = blkcipher_walk_virt(desc, &walk);
  324. ts_state = irq_ts_save();
  325. while ((nbytes = walk.nbytes)) {
  326. padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr,
  327. ctx->D, &ctx->cword.decrypt,
  328. nbytes / AES_BLOCK_SIZE);
  329. nbytes &= AES_BLOCK_SIZE - 1;
  330. err = blkcipher_walk_done(desc, &walk, nbytes);
  331. }
  332. irq_ts_restore(ts_state);
  333. padlock_store_cword(&ctx->cword.encrypt);
  334. return err;
  335. }
  336. static struct crypto_alg ecb_aes_alg = {
  337. .cra_name = "ecb(aes)",
  338. .cra_driver_name = "ecb-aes-padlock",
  339. .cra_priority = PADLOCK_COMPOSITE_PRIORITY,
  340. .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
  341. .cra_blocksize = AES_BLOCK_SIZE,
  342. .cra_ctxsize = sizeof(struct aes_ctx),
  343. .cra_alignmask = PADLOCK_ALIGNMENT - 1,
  344. .cra_type = &crypto_blkcipher_type,
  345. .cra_module = THIS_MODULE,
  346. .cra_list = LIST_HEAD_INIT(ecb_aes_alg.cra_list),
  347. .cra_u = {
  348. .blkcipher = {
  349. .min_keysize = AES_MIN_KEY_SIZE,
  350. .max_keysize = AES_MAX_KEY_SIZE,
  351. .setkey = aes_set_key,
  352. .encrypt = ecb_aes_encrypt,
  353. .decrypt = ecb_aes_decrypt,
  354. }
  355. }
  356. };
  357. static int cbc_aes_encrypt(struct blkcipher_desc *desc,
  358. struct scatterlist *dst, struct scatterlist *src,
  359. unsigned int nbytes)
  360. {
  361. struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
  362. struct blkcipher_walk walk;
  363. int err;
  364. int ts_state;
  365. padlock_reset_key(&ctx->cword.encrypt);
  366. blkcipher_walk_init(&walk, dst, src, nbytes);
  367. err = blkcipher_walk_virt(desc, &walk);
  368. ts_state = irq_ts_save();
  369. while ((nbytes = walk.nbytes)) {
  370. u8 *iv = padlock_xcrypt_cbc(walk.src.virt.addr,
  371. walk.dst.virt.addr, ctx->E,
  372. walk.iv, &ctx->cword.encrypt,
  373. nbytes / AES_BLOCK_SIZE);
  374. memcpy(walk.iv, iv, AES_BLOCK_SIZE);
  375. nbytes &= AES_BLOCK_SIZE - 1;
  376. err = blkcipher_walk_done(desc, &walk, nbytes);
  377. }
  378. irq_ts_restore(ts_state);
  379. padlock_store_cword(&ctx->cword.decrypt);
  380. return err;
  381. }
  382. static int cbc_aes_decrypt(struct blkcipher_desc *desc,
  383. struct scatterlist *dst, struct scatterlist *src,
  384. unsigned int nbytes)
  385. {
  386. struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
  387. struct blkcipher_walk walk;
  388. int err;
  389. int ts_state;
  390. padlock_reset_key(&ctx->cword.encrypt);
  391. blkcipher_walk_init(&walk, dst, src, nbytes);
  392. err = blkcipher_walk_virt(desc, &walk);
  393. ts_state = irq_ts_save();
  394. while ((nbytes = walk.nbytes)) {
  395. padlock_xcrypt_cbc(walk.src.virt.addr, walk.dst.virt.addr,
  396. ctx->D, walk.iv, &ctx->cword.decrypt,
  397. nbytes / AES_BLOCK_SIZE);
  398. nbytes &= AES_BLOCK_SIZE - 1;
  399. err = blkcipher_walk_done(desc, &walk, nbytes);
  400. }
  401. irq_ts_restore(ts_state);
  402. padlock_store_cword(&ctx->cword.encrypt);
  403. return err;
  404. }
  405. static struct crypto_alg cbc_aes_alg = {
  406. .cra_name = "cbc(aes)",
  407. .cra_driver_name = "cbc-aes-padlock",
  408. .cra_priority = PADLOCK_COMPOSITE_PRIORITY,
  409. .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
  410. .cra_blocksize = AES_BLOCK_SIZE,
  411. .cra_ctxsize = sizeof(struct aes_ctx),
  412. .cra_alignmask = PADLOCK_ALIGNMENT - 1,
  413. .cra_type = &crypto_blkcipher_type,
  414. .cra_module = THIS_MODULE,
  415. .cra_list = LIST_HEAD_INIT(cbc_aes_alg.cra_list),
  416. .cra_u = {
  417. .blkcipher = {
  418. .min_keysize = AES_MIN_KEY_SIZE,
  419. .max_keysize = AES_MAX_KEY_SIZE,
  420. .ivsize = AES_BLOCK_SIZE,
  421. .setkey = aes_set_key,
  422. .encrypt = cbc_aes_encrypt,
  423. .decrypt = cbc_aes_decrypt,
  424. }
  425. }
  426. };
  427. static int __init padlock_init(void)
  428. {
  429. int ret;
  430. struct cpuinfo_x86 *c = &cpu_data(0);
  431. if (!cpu_has_xcrypt) {
  432. printk(KERN_NOTICE PFX "VIA PadLock not detected.\n");
  433. return -ENODEV;
  434. }
  435. if (!cpu_has_xcrypt_enabled) {
  436. printk(KERN_NOTICE PFX "VIA PadLock detected, but not enabled. Hmm, strange...\n");
  437. return -ENODEV;
  438. }
  439. if ((ret = crypto_register_alg(&aes_alg)))
  440. goto aes_err;
  441. if ((ret = crypto_register_alg(&ecb_aes_alg)))
  442. goto ecb_aes_err;
  443. if ((ret = crypto_register_alg(&cbc_aes_alg)))
  444. goto cbc_aes_err;
  445. printk(KERN_NOTICE PFX "Using VIA PadLock ACE for AES algorithm.\n");
  446. if (c->x86 == 6 && c->x86_model == 15 && c->x86_mask == 2) {
  447. ecb_fetch_blocks = MAX_ECB_FETCH_BLOCKS;
  448. cbc_fetch_blocks = MAX_CBC_FETCH_BLOCKS;
  449. printk(KERN_NOTICE PFX "VIA Nano stepping 2 detected: enabling workaround.\n");
  450. }
  451. out:
  452. return ret;
  453. cbc_aes_err:
  454. crypto_unregister_alg(&ecb_aes_alg);
  455. ecb_aes_err:
  456. crypto_unregister_alg(&aes_alg);
  457. aes_err:
  458. printk(KERN_ERR PFX "VIA PadLock AES initialization failed.\n");
  459. goto out;
  460. }
  461. static void __exit padlock_fini(void)
  462. {
  463. crypto_unregister_alg(&cbc_aes_alg);
  464. crypto_unregister_alg(&ecb_aes_alg);
  465. crypto_unregister_alg(&aes_alg);
  466. }
  467. module_init(padlock_init);
  468. module_exit(padlock_fini);
  469. MODULE_DESCRIPTION("VIA PadLock AES algorithm support");
  470. MODULE_LICENSE("GPL");
  471. MODULE_AUTHOR("Michal Ludvig");
  472. MODULE_ALIAS("aes");