e_powersaver.c 8.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368
  1. /*
  2. * Based on documentation provided by Dave Jones. Thanks!
  3. *
  4. * Licensed under the terms of the GNU GPL License version 2.
  5. *
  6. * BIG FAT DISCLAIMER: Work in progress code. Possibly *dangerous*
  7. */
  8. #include <linux/kernel.h>
  9. #include <linux/module.h>
  10. #include <linux/init.h>
  11. #include <linux/cpufreq.h>
  12. #include <linux/ioport.h>
  13. #include <linux/slab.h>
  14. #include <linux/timex.h>
  15. #include <linux/io.h>
  16. #include <linux/delay.h>
  17. #include <asm/msr.h>
  18. #include <asm/tsc.h>
  19. #define EPS_BRAND_C7M 0
  20. #define EPS_BRAND_C7 1
  21. #define EPS_BRAND_EDEN 2
  22. #define EPS_BRAND_C3 3
  23. #define EPS_BRAND_C7D 4
  24. struct eps_cpu_data {
  25. u32 fsb;
  26. struct cpufreq_frequency_table freq_table[];
  27. };
  28. static struct eps_cpu_data *eps_cpu[NR_CPUS];
  29. static unsigned int eps_get(unsigned int cpu)
  30. {
  31. struct eps_cpu_data *centaur;
  32. u32 lo, hi;
  33. if (cpu)
  34. return 0;
  35. centaur = eps_cpu[cpu];
  36. if (centaur == NULL)
  37. return 0;
  38. /* Return current frequency */
  39. rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
  40. return centaur->fsb * ((lo >> 8) & 0xff);
  41. }
  42. static int eps_set_state(struct eps_cpu_data *centaur,
  43. unsigned int cpu,
  44. u32 dest_state)
  45. {
  46. struct cpufreq_freqs freqs;
  47. u32 lo, hi;
  48. int err = 0;
  49. int i;
  50. freqs.old = eps_get(cpu);
  51. freqs.new = centaur->fsb * ((dest_state >> 8) & 0xff);
  52. freqs.cpu = cpu;
  53. cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
  54. /* Wait while CPU is busy */
  55. rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
  56. i = 0;
  57. while (lo & ((1 << 16) | (1 << 17))) {
  58. udelay(16);
  59. rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
  60. i++;
  61. if (unlikely(i > 64)) {
  62. err = -ENODEV;
  63. goto postchange;
  64. }
  65. }
  66. /* Set new multiplier and voltage */
  67. wrmsr(MSR_IA32_PERF_CTL, dest_state & 0xffff, 0);
  68. /* Wait until transition end */
  69. i = 0;
  70. do {
  71. udelay(16);
  72. rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
  73. i++;
  74. if (unlikely(i > 64)) {
  75. err = -ENODEV;
  76. goto postchange;
  77. }
  78. } while (lo & ((1 << 16) | (1 << 17)));
  79. /* Return current frequency */
  80. postchange:
  81. rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
  82. freqs.new = centaur->fsb * ((lo >> 8) & 0xff);
  83. #ifdef DEBUG
  84. {
  85. u8 current_multiplier, current_voltage;
  86. /* Print voltage and multiplier */
  87. rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
  88. current_voltage = lo & 0xff;
  89. printk(KERN_INFO "eps: Current voltage = %dmV\n",
  90. current_voltage * 16 + 700);
  91. current_multiplier = (lo >> 8) & 0xff;
  92. printk(KERN_INFO "eps: Current multiplier = %d\n",
  93. current_multiplier);
  94. }
  95. #endif
  96. cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
  97. return err;
  98. }
  99. static int eps_target(struct cpufreq_policy *policy,
  100. unsigned int target_freq,
  101. unsigned int relation)
  102. {
  103. struct eps_cpu_data *centaur;
  104. unsigned int newstate = 0;
  105. unsigned int cpu = policy->cpu;
  106. unsigned int dest_state;
  107. int ret;
  108. if (unlikely(eps_cpu[cpu] == NULL))
  109. return -ENODEV;
  110. centaur = eps_cpu[cpu];
  111. if (unlikely(cpufreq_frequency_table_target(policy,
  112. &eps_cpu[cpu]->freq_table[0],
  113. target_freq,
  114. relation,
  115. &newstate))) {
  116. return -EINVAL;
  117. }
  118. /* Make frequency transition */
  119. dest_state = centaur->freq_table[newstate].index & 0xffff;
  120. ret = eps_set_state(centaur, cpu, dest_state);
  121. if (ret)
  122. printk(KERN_ERR "eps: Timeout!\n");
  123. return ret;
  124. }
  125. static int eps_verify(struct cpufreq_policy *policy)
  126. {
  127. return cpufreq_frequency_table_verify(policy,
  128. &eps_cpu[policy->cpu]->freq_table[0]);
  129. }
  130. static int eps_cpu_init(struct cpufreq_policy *policy)
  131. {
  132. unsigned int i;
  133. u32 lo, hi;
  134. u64 val;
  135. u8 current_multiplier, current_voltage;
  136. u8 max_multiplier, max_voltage;
  137. u8 min_multiplier, min_voltage;
  138. u8 brand = 0;
  139. u32 fsb;
  140. struct eps_cpu_data *centaur;
  141. struct cpuinfo_x86 *c = &cpu_data(0);
  142. struct cpufreq_frequency_table *f_table;
  143. int k, step, voltage;
  144. int ret;
  145. int states;
  146. if (policy->cpu != 0)
  147. return -ENODEV;
  148. /* Check brand */
  149. printk(KERN_INFO "eps: Detected VIA ");
  150. switch (c->x86_model) {
  151. case 10:
  152. rdmsr(0x1153, lo, hi);
  153. brand = (((lo >> 2) ^ lo) >> 18) & 3;
  154. printk(KERN_CONT "Model A ");
  155. break;
  156. case 13:
  157. rdmsr(0x1154, lo, hi);
  158. brand = (((lo >> 4) ^ (lo >> 2))) & 0x000000ff;
  159. printk(KERN_CONT "Model D ");
  160. break;
  161. }
  162. switch (brand) {
  163. case EPS_BRAND_C7M:
  164. printk(KERN_CONT "C7-M\n");
  165. break;
  166. case EPS_BRAND_C7:
  167. printk(KERN_CONT "C7\n");
  168. break;
  169. case EPS_BRAND_EDEN:
  170. printk(KERN_CONT "Eden\n");
  171. break;
  172. case EPS_BRAND_C7D:
  173. printk(KERN_CONT "C7-D\n");
  174. break;
  175. case EPS_BRAND_C3:
  176. printk(KERN_CONT "C3\n");
  177. return -ENODEV;
  178. break;
  179. }
  180. /* Enable Enhanced PowerSaver */
  181. rdmsrl(MSR_IA32_MISC_ENABLE, val);
  182. if (!(val & MSR_IA32_MISC_ENABLE_ENHANCED_SPEEDSTEP)) {
  183. val |= MSR_IA32_MISC_ENABLE_ENHANCED_SPEEDSTEP;
  184. wrmsrl(MSR_IA32_MISC_ENABLE, val);
  185. /* Can be locked at 0 */
  186. rdmsrl(MSR_IA32_MISC_ENABLE, val);
  187. if (!(val & MSR_IA32_MISC_ENABLE_ENHANCED_SPEEDSTEP)) {
  188. printk(KERN_INFO "eps: Can't enable Enhanced PowerSaver\n");
  189. return -ENODEV;
  190. }
  191. }
  192. /* Print voltage and multiplier */
  193. rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
  194. current_voltage = lo & 0xff;
  195. printk(KERN_INFO "eps: Current voltage = %dmV\n",
  196. current_voltage * 16 + 700);
  197. current_multiplier = (lo >> 8) & 0xff;
  198. printk(KERN_INFO "eps: Current multiplier = %d\n", current_multiplier);
  199. /* Print limits */
  200. max_voltage = hi & 0xff;
  201. printk(KERN_INFO "eps: Highest voltage = %dmV\n",
  202. max_voltage * 16 + 700);
  203. max_multiplier = (hi >> 8) & 0xff;
  204. printk(KERN_INFO "eps: Highest multiplier = %d\n", max_multiplier);
  205. min_voltage = (hi >> 16) & 0xff;
  206. printk(KERN_INFO "eps: Lowest voltage = %dmV\n",
  207. min_voltage * 16 + 700);
  208. min_multiplier = (hi >> 24) & 0xff;
  209. printk(KERN_INFO "eps: Lowest multiplier = %d\n", min_multiplier);
  210. /* Sanity checks */
  211. if (current_multiplier == 0 || max_multiplier == 0
  212. || min_multiplier == 0)
  213. return -EINVAL;
  214. if (current_multiplier > max_multiplier
  215. || max_multiplier <= min_multiplier)
  216. return -EINVAL;
  217. if (current_voltage > 0x1f || max_voltage > 0x1f)
  218. return -EINVAL;
  219. if (max_voltage < min_voltage)
  220. return -EINVAL;
  221. /* Calc FSB speed */
  222. fsb = cpu_khz / current_multiplier;
  223. /* Calc number of p-states supported */
  224. if (brand == EPS_BRAND_C7M)
  225. states = max_multiplier - min_multiplier + 1;
  226. else
  227. states = 2;
  228. /* Allocate private data and frequency table for current cpu */
  229. centaur = kzalloc(sizeof(struct eps_cpu_data)
  230. + (states + 1) * sizeof(struct cpufreq_frequency_table),
  231. GFP_KERNEL);
  232. if (!centaur)
  233. return -ENOMEM;
  234. eps_cpu[0] = centaur;
  235. /* Copy basic values */
  236. centaur->fsb = fsb;
  237. /* Fill frequency and MSR value table */
  238. f_table = &centaur->freq_table[0];
  239. if (brand != EPS_BRAND_C7M) {
  240. f_table[0].frequency = fsb * min_multiplier;
  241. f_table[0].index = (min_multiplier << 8) | min_voltage;
  242. f_table[1].frequency = fsb * max_multiplier;
  243. f_table[1].index = (max_multiplier << 8) | max_voltage;
  244. f_table[2].frequency = CPUFREQ_TABLE_END;
  245. } else {
  246. k = 0;
  247. step = ((max_voltage - min_voltage) * 256)
  248. / (max_multiplier - min_multiplier);
  249. for (i = min_multiplier; i <= max_multiplier; i++) {
  250. voltage = (k * step) / 256 + min_voltage;
  251. f_table[k].frequency = fsb * i;
  252. f_table[k].index = (i << 8) | voltage;
  253. k++;
  254. }
  255. f_table[k].frequency = CPUFREQ_TABLE_END;
  256. }
  257. policy->cpuinfo.transition_latency = 140000; /* 844mV -> 700mV in ns */
  258. policy->cur = fsb * current_multiplier;
  259. ret = cpufreq_frequency_table_cpuinfo(policy, &centaur->freq_table[0]);
  260. if (ret) {
  261. kfree(centaur);
  262. return ret;
  263. }
  264. cpufreq_frequency_table_get_attr(&centaur->freq_table[0], policy->cpu);
  265. return 0;
  266. }
  267. static int eps_cpu_exit(struct cpufreq_policy *policy)
  268. {
  269. unsigned int cpu = policy->cpu;
  270. struct eps_cpu_data *centaur;
  271. u32 lo, hi;
  272. if (eps_cpu[cpu] == NULL)
  273. return -ENODEV;
  274. centaur = eps_cpu[cpu];
  275. /* Get max frequency */
  276. rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
  277. /* Set max frequency */
  278. eps_set_state(centaur, cpu, hi & 0xffff);
  279. /* Bye */
  280. cpufreq_frequency_table_put_attr(policy->cpu);
  281. kfree(eps_cpu[cpu]);
  282. eps_cpu[cpu] = NULL;
  283. return 0;
  284. }
  285. static struct freq_attr *eps_attr[] = {
  286. &cpufreq_freq_attr_scaling_available_freqs,
  287. NULL,
  288. };
  289. static struct cpufreq_driver eps_driver = {
  290. .verify = eps_verify,
  291. .target = eps_target,
  292. .init = eps_cpu_init,
  293. .exit = eps_cpu_exit,
  294. .get = eps_get,
  295. .name = "e_powersaver",
  296. .owner = THIS_MODULE,
  297. .attr = eps_attr,
  298. };
  299. static int __init eps_init(void)
  300. {
  301. struct cpuinfo_x86 *c = &cpu_data(0);
  302. /* This driver will work only on Centaur C7 processors with
  303. * Enhanced SpeedStep/PowerSaver registers */
  304. if (c->x86_vendor != X86_VENDOR_CENTAUR
  305. || c->x86 != 6 || c->x86_model < 10)
  306. return -ENODEV;
  307. if (!cpu_has(c, X86_FEATURE_EST))
  308. return -ENODEV;
  309. if (cpufreq_register_driver(&eps_driver))
  310. return -EINVAL;
  311. return 0;
  312. }
  313. static void __exit eps_exit(void)
  314. {
  315. cpufreq_unregister_driver(&eps_driver);
  316. }
  317. MODULE_AUTHOR("Rafal Bilski <rafalbilski@interia.pl>");
  318. MODULE_DESCRIPTION("Enhanced PowerSaver driver for VIA C7 CPU's.");
  319. MODULE_LICENSE("GPL");
  320. module_init(eps_init);
  321. module_exit(eps_exit);