memory.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676
  1. /*
  2. * drivers/base/memory.c - basic Memory class support
  3. *
  4. * Written by Matt Tolentino <matthew.e.tolentino@intel.com>
  5. * Dave Hansen <haveblue@us.ibm.com>
  6. *
  7. * This file provides the necessary infrastructure to represent
  8. * a SPARSEMEM-memory-model system's physical memory in /sysfs.
  9. * All arch-independent code that assumes MEMORY_HOTPLUG requires
  10. * SPARSEMEM should be contained here, or in mm/memory_hotplug.c.
  11. */
  12. #include <linux/sysdev.h>
  13. #include <linux/module.h>
  14. #include <linux/init.h>
  15. #include <linux/topology.h>
  16. #include <linux/capability.h>
  17. #include <linux/device.h>
  18. #include <linux/memory.h>
  19. #include <linux/kobject.h>
  20. #include <linux/memory_hotplug.h>
  21. #include <linux/mm.h>
  22. #include <linux/mutex.h>
  23. #include <linux/stat.h>
  24. #include <linux/slab.h>
  25. #include <asm/atomic.h>
  26. #include <asm/uaccess.h>
  27. static DEFINE_MUTEX(mem_sysfs_mutex);
  28. #define MEMORY_CLASS_NAME "memory"
  29. static int sections_per_block;
  30. static inline int base_memory_block_id(int section_nr)
  31. {
  32. return section_nr / sections_per_block;
  33. }
  34. static struct sysdev_class memory_sysdev_class = {
  35. .name = MEMORY_CLASS_NAME,
  36. };
  37. static const char *memory_uevent_name(struct kset *kset, struct kobject *kobj)
  38. {
  39. return MEMORY_CLASS_NAME;
  40. }
  41. static int memory_uevent(struct kset *kset, struct kobject *obj,
  42. struct kobj_uevent_env *env)
  43. {
  44. int retval = 0;
  45. return retval;
  46. }
  47. static const struct kset_uevent_ops memory_uevent_ops = {
  48. .name = memory_uevent_name,
  49. .uevent = memory_uevent,
  50. };
  51. static BLOCKING_NOTIFIER_HEAD(memory_chain);
  52. int register_memory_notifier(struct notifier_block *nb)
  53. {
  54. return blocking_notifier_chain_register(&memory_chain, nb);
  55. }
  56. EXPORT_SYMBOL(register_memory_notifier);
  57. void unregister_memory_notifier(struct notifier_block *nb)
  58. {
  59. blocking_notifier_chain_unregister(&memory_chain, nb);
  60. }
  61. EXPORT_SYMBOL(unregister_memory_notifier);
  62. static ATOMIC_NOTIFIER_HEAD(memory_isolate_chain);
  63. int register_memory_isolate_notifier(struct notifier_block *nb)
  64. {
  65. return atomic_notifier_chain_register(&memory_isolate_chain, nb);
  66. }
  67. EXPORT_SYMBOL(register_memory_isolate_notifier);
  68. void unregister_memory_isolate_notifier(struct notifier_block *nb)
  69. {
  70. atomic_notifier_chain_unregister(&memory_isolate_chain, nb);
  71. }
  72. EXPORT_SYMBOL(unregister_memory_isolate_notifier);
  73. /*
  74. * register_memory - Setup a sysfs device for a memory block
  75. */
  76. static
  77. int register_memory(struct memory_block *memory)
  78. {
  79. int error;
  80. memory->sysdev.cls = &memory_sysdev_class;
  81. memory->sysdev.id = memory->start_section_nr / sections_per_block;
  82. error = sysdev_register(&memory->sysdev);
  83. return error;
  84. }
  85. static void
  86. unregister_memory(struct memory_block *memory)
  87. {
  88. BUG_ON(memory->sysdev.cls != &memory_sysdev_class);
  89. /* drop the ref. we got in remove_memory_block() */
  90. kobject_put(&memory->sysdev.kobj);
  91. sysdev_unregister(&memory->sysdev);
  92. }
  93. unsigned long __weak memory_block_size_bytes(void)
  94. {
  95. return MIN_MEMORY_BLOCK_SIZE;
  96. }
  97. static unsigned long get_memory_block_size(void)
  98. {
  99. unsigned long block_sz;
  100. block_sz = memory_block_size_bytes();
  101. /* Validate blk_sz is a power of 2 and not less than section size */
  102. if ((block_sz & (block_sz - 1)) || (block_sz < MIN_MEMORY_BLOCK_SIZE)) {
  103. WARN_ON(1);
  104. block_sz = MIN_MEMORY_BLOCK_SIZE;
  105. }
  106. return block_sz;
  107. }
  108. /*
  109. * use this as the physical section index that this memsection
  110. * uses.
  111. */
  112. static ssize_t show_mem_start_phys_index(struct sys_device *dev,
  113. struct sysdev_attribute *attr, char *buf)
  114. {
  115. struct memory_block *mem =
  116. container_of(dev, struct memory_block, sysdev);
  117. unsigned long phys_index;
  118. phys_index = mem->start_section_nr / sections_per_block;
  119. return sprintf(buf, "%08lx\n", phys_index);
  120. }
  121. static ssize_t show_mem_end_phys_index(struct sys_device *dev,
  122. struct sysdev_attribute *attr, char *buf)
  123. {
  124. struct memory_block *mem =
  125. container_of(dev, struct memory_block, sysdev);
  126. unsigned long phys_index;
  127. phys_index = mem->end_section_nr / sections_per_block;
  128. return sprintf(buf, "%08lx\n", phys_index);
  129. }
  130. /*
  131. * Show whether the section of memory is likely to be hot-removable
  132. */
  133. static ssize_t show_mem_removable(struct sys_device *dev,
  134. struct sysdev_attribute *attr, char *buf)
  135. {
  136. unsigned long i, pfn;
  137. int ret = 1;
  138. struct memory_block *mem =
  139. container_of(dev, struct memory_block, sysdev);
  140. for (i = 0; i < sections_per_block; i++) {
  141. pfn = section_nr_to_pfn(mem->start_section_nr + i);
  142. ret &= is_mem_section_removable(pfn, PAGES_PER_SECTION);
  143. }
  144. return sprintf(buf, "%d\n", ret);
  145. }
  146. /*
  147. * online, offline, going offline, etc.
  148. */
  149. static ssize_t show_mem_state(struct sys_device *dev,
  150. struct sysdev_attribute *attr, char *buf)
  151. {
  152. struct memory_block *mem =
  153. container_of(dev, struct memory_block, sysdev);
  154. ssize_t len = 0;
  155. /*
  156. * We can probably put these states in a nice little array
  157. * so that they're not open-coded
  158. */
  159. switch (mem->state) {
  160. case MEM_ONLINE:
  161. len = sprintf(buf, "online\n");
  162. break;
  163. case MEM_OFFLINE:
  164. len = sprintf(buf, "offline\n");
  165. break;
  166. case MEM_GOING_OFFLINE:
  167. len = sprintf(buf, "going-offline\n");
  168. break;
  169. default:
  170. len = sprintf(buf, "ERROR-UNKNOWN-%ld\n",
  171. mem->state);
  172. WARN_ON(1);
  173. break;
  174. }
  175. return len;
  176. }
  177. int memory_notify(unsigned long val, void *v)
  178. {
  179. return blocking_notifier_call_chain(&memory_chain, val, v);
  180. }
  181. int memory_isolate_notify(unsigned long val, void *v)
  182. {
  183. return atomic_notifier_call_chain(&memory_isolate_chain, val, v);
  184. }
  185. /*
  186. * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is
  187. * OK to have direct references to sparsemem variables in here.
  188. */
  189. static int
  190. memory_block_action(unsigned long phys_index, unsigned long action)
  191. {
  192. int i;
  193. unsigned long start_pfn, start_paddr;
  194. unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
  195. struct page *first_page;
  196. int ret;
  197. first_page = pfn_to_page(phys_index << PFN_SECTION_SHIFT);
  198. /*
  199. * The probe routines leave the pages reserved, just
  200. * as the bootmem code does. Make sure they're still
  201. * that way.
  202. */
  203. if (action == MEM_ONLINE) {
  204. for (i = 0; i < nr_pages; i++) {
  205. if (PageReserved(first_page+i))
  206. continue;
  207. printk(KERN_WARNING "section number %ld page number %d "
  208. "not reserved, was it already online?\n",
  209. phys_index, i);
  210. return -EBUSY;
  211. }
  212. }
  213. switch (action) {
  214. case MEM_ONLINE:
  215. start_pfn = page_to_pfn(first_page);
  216. ret = online_pages(start_pfn, nr_pages);
  217. break;
  218. case MEM_OFFLINE:
  219. start_paddr = page_to_pfn(first_page) << PAGE_SHIFT;
  220. ret = remove_memory(start_paddr,
  221. nr_pages << PAGE_SHIFT);
  222. break;
  223. default:
  224. WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: "
  225. "%ld\n", __func__, phys_index, action, action);
  226. ret = -EINVAL;
  227. }
  228. return ret;
  229. }
  230. static int memory_block_change_state(struct memory_block *mem,
  231. unsigned long to_state, unsigned long from_state_req)
  232. {
  233. int ret = 0;
  234. mutex_lock(&mem->state_mutex);
  235. if (mem->state != from_state_req) {
  236. ret = -EINVAL;
  237. goto out;
  238. }
  239. if (to_state == MEM_OFFLINE)
  240. mem->state = MEM_GOING_OFFLINE;
  241. ret = memory_block_action(mem->start_section_nr, to_state);
  242. if (ret)
  243. mem->state = from_state_req;
  244. else
  245. mem->state = to_state;
  246. out:
  247. mutex_unlock(&mem->state_mutex);
  248. return ret;
  249. }
  250. static ssize_t
  251. store_mem_state(struct sys_device *dev,
  252. struct sysdev_attribute *attr, const char *buf, size_t count)
  253. {
  254. struct memory_block *mem;
  255. int ret = -EINVAL;
  256. mem = container_of(dev, struct memory_block, sysdev);
  257. if (!strncmp(buf, "online", min((int)count, 6)))
  258. ret = memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE);
  259. else if(!strncmp(buf, "offline", min((int)count, 7)))
  260. ret = memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE);
  261. if (ret)
  262. return ret;
  263. return count;
  264. }
  265. /*
  266. * phys_device is a bad name for this. What I really want
  267. * is a way to differentiate between memory ranges that
  268. * are part of physical devices that constitute
  269. * a complete removable unit or fru.
  270. * i.e. do these ranges belong to the same physical device,
  271. * s.t. if I offline all of these sections I can then
  272. * remove the physical device?
  273. */
  274. static ssize_t show_phys_device(struct sys_device *dev,
  275. struct sysdev_attribute *attr, char *buf)
  276. {
  277. struct memory_block *mem =
  278. container_of(dev, struct memory_block, sysdev);
  279. return sprintf(buf, "%d\n", mem->phys_device);
  280. }
  281. static SYSDEV_ATTR(phys_index, 0444, show_mem_start_phys_index, NULL);
  282. static SYSDEV_ATTR(end_phys_index, 0444, show_mem_end_phys_index, NULL);
  283. static SYSDEV_ATTR(state, 0644, show_mem_state, store_mem_state);
  284. static SYSDEV_ATTR(phys_device, 0444, show_phys_device, NULL);
  285. static SYSDEV_ATTR(removable, 0444, show_mem_removable, NULL);
  286. #define mem_create_simple_file(mem, attr_name) \
  287. sysdev_create_file(&mem->sysdev, &attr_##attr_name)
  288. #define mem_remove_simple_file(mem, attr_name) \
  289. sysdev_remove_file(&mem->sysdev, &attr_##attr_name)
  290. /*
  291. * Block size attribute stuff
  292. */
  293. static ssize_t
  294. print_block_size(struct sysdev_class *class, struct sysdev_class_attribute *attr,
  295. char *buf)
  296. {
  297. return sprintf(buf, "%lx\n", get_memory_block_size());
  298. }
  299. static SYSDEV_CLASS_ATTR(block_size_bytes, 0444, print_block_size, NULL);
  300. static int block_size_init(void)
  301. {
  302. return sysfs_create_file(&memory_sysdev_class.kset.kobj,
  303. &attr_block_size_bytes.attr);
  304. }
  305. /*
  306. * Some architectures will have custom drivers to do this, and
  307. * will not need to do it from userspace. The fake hot-add code
  308. * as well as ppc64 will do all of their discovery in userspace
  309. * and will require this interface.
  310. */
  311. #ifdef CONFIG_ARCH_MEMORY_PROBE
  312. static ssize_t
  313. memory_probe_store(struct class *class, struct class_attribute *attr,
  314. const char *buf, size_t count)
  315. {
  316. u64 phys_addr;
  317. int nid;
  318. int i, ret;
  319. phys_addr = simple_strtoull(buf, NULL, 0);
  320. for (i = 0; i < sections_per_block; i++) {
  321. nid = memory_add_physaddr_to_nid(phys_addr);
  322. ret = add_memory(nid, phys_addr,
  323. PAGES_PER_SECTION << PAGE_SHIFT);
  324. if (ret)
  325. goto out;
  326. phys_addr += MIN_MEMORY_BLOCK_SIZE;
  327. }
  328. ret = count;
  329. out:
  330. return ret;
  331. }
  332. static CLASS_ATTR(probe, S_IWUSR, NULL, memory_probe_store);
  333. static int memory_probe_init(void)
  334. {
  335. return sysfs_create_file(&memory_sysdev_class.kset.kobj,
  336. &class_attr_probe.attr);
  337. }
  338. #else
  339. static inline int memory_probe_init(void)
  340. {
  341. return 0;
  342. }
  343. #endif
  344. #ifdef CONFIG_MEMORY_FAILURE
  345. /*
  346. * Support for offlining pages of memory
  347. */
  348. /* Soft offline a page */
  349. static ssize_t
  350. store_soft_offline_page(struct class *class,
  351. struct class_attribute *attr,
  352. const char *buf, size_t count)
  353. {
  354. int ret;
  355. u64 pfn;
  356. if (!capable(CAP_SYS_ADMIN))
  357. return -EPERM;
  358. if (strict_strtoull(buf, 0, &pfn) < 0)
  359. return -EINVAL;
  360. pfn >>= PAGE_SHIFT;
  361. if (!pfn_valid(pfn))
  362. return -ENXIO;
  363. ret = soft_offline_page(pfn_to_page(pfn), 0);
  364. return ret == 0 ? count : ret;
  365. }
  366. /* Forcibly offline a page, including killing processes. */
  367. static ssize_t
  368. store_hard_offline_page(struct class *class,
  369. struct class_attribute *attr,
  370. const char *buf, size_t count)
  371. {
  372. int ret;
  373. u64 pfn;
  374. if (!capable(CAP_SYS_ADMIN))
  375. return -EPERM;
  376. if (strict_strtoull(buf, 0, &pfn) < 0)
  377. return -EINVAL;
  378. pfn >>= PAGE_SHIFT;
  379. ret = __memory_failure(pfn, 0, 0);
  380. return ret ? ret : count;
  381. }
  382. static CLASS_ATTR(soft_offline_page, 0644, NULL, store_soft_offline_page);
  383. static CLASS_ATTR(hard_offline_page, 0644, NULL, store_hard_offline_page);
  384. static __init int memory_fail_init(void)
  385. {
  386. int err;
  387. err = sysfs_create_file(&memory_sysdev_class.kset.kobj,
  388. &class_attr_soft_offline_page.attr);
  389. if (!err)
  390. err = sysfs_create_file(&memory_sysdev_class.kset.kobj,
  391. &class_attr_hard_offline_page.attr);
  392. return err;
  393. }
  394. #else
  395. static inline int memory_fail_init(void)
  396. {
  397. return 0;
  398. }
  399. #endif
  400. /*
  401. * Note that phys_device is optional. It is here to allow for
  402. * differentiation between which *physical* devices each
  403. * section belongs to...
  404. */
  405. int __weak arch_get_memory_phys_device(unsigned long start_pfn)
  406. {
  407. return 0;
  408. }
  409. struct memory_block *find_memory_block_hinted(struct mem_section *section,
  410. struct memory_block *hint)
  411. {
  412. struct kobject *kobj;
  413. struct sys_device *sysdev;
  414. struct memory_block *mem;
  415. char name[sizeof(MEMORY_CLASS_NAME) + 9 + 1];
  416. int block_id = base_memory_block_id(__section_nr(section));
  417. kobj = hint ? &hint->sysdev.kobj : NULL;
  418. /*
  419. * This only works because we know that section == sysdev->id
  420. * slightly redundant with sysdev_register()
  421. */
  422. sprintf(&name[0], "%s%d", MEMORY_CLASS_NAME, block_id);
  423. kobj = kset_find_obj_hinted(&memory_sysdev_class.kset, name, kobj);
  424. if (!kobj)
  425. return NULL;
  426. sysdev = container_of(kobj, struct sys_device, kobj);
  427. mem = container_of(sysdev, struct memory_block, sysdev);
  428. return mem;
  429. }
  430. /*
  431. * For now, we have a linear search to go find the appropriate
  432. * memory_block corresponding to a particular phys_index. If
  433. * this gets to be a real problem, we can always use a radix
  434. * tree or something here.
  435. *
  436. * This could be made generic for all sysdev classes.
  437. */
  438. struct memory_block *find_memory_block(struct mem_section *section)
  439. {
  440. return find_memory_block_hinted(section, NULL);
  441. }
  442. static int init_memory_block(struct memory_block **memory,
  443. struct mem_section *section, unsigned long state)
  444. {
  445. struct memory_block *mem;
  446. unsigned long start_pfn;
  447. int scn_nr;
  448. int ret = 0;
  449. mem = kzalloc(sizeof(*mem), GFP_KERNEL);
  450. if (!mem)
  451. return -ENOMEM;
  452. scn_nr = __section_nr(section);
  453. mem->start_section_nr =
  454. base_memory_block_id(scn_nr) * sections_per_block;
  455. mem->end_section_nr = mem->start_section_nr + sections_per_block - 1;
  456. mem->state = state;
  457. mem->section_count++;
  458. mutex_init(&mem->state_mutex);
  459. start_pfn = section_nr_to_pfn(mem->start_section_nr);
  460. mem->phys_device = arch_get_memory_phys_device(start_pfn);
  461. ret = register_memory(mem);
  462. if (!ret)
  463. ret = mem_create_simple_file(mem, phys_index);
  464. if (!ret)
  465. ret = mem_create_simple_file(mem, end_phys_index);
  466. if (!ret)
  467. ret = mem_create_simple_file(mem, state);
  468. if (!ret)
  469. ret = mem_create_simple_file(mem, phys_device);
  470. if (!ret)
  471. ret = mem_create_simple_file(mem, removable);
  472. *memory = mem;
  473. return ret;
  474. }
  475. static int add_memory_section(int nid, struct mem_section *section,
  476. unsigned long state, enum mem_add_context context)
  477. {
  478. struct memory_block *mem;
  479. int ret = 0;
  480. mutex_lock(&mem_sysfs_mutex);
  481. mem = find_memory_block(section);
  482. if (mem) {
  483. mem->section_count++;
  484. kobject_put(&mem->sysdev.kobj);
  485. } else
  486. ret = init_memory_block(&mem, section, state);
  487. if (!ret) {
  488. if (context == HOTPLUG &&
  489. mem->section_count == sections_per_block)
  490. ret = register_mem_sect_under_node(mem, nid);
  491. }
  492. mutex_unlock(&mem_sysfs_mutex);
  493. return ret;
  494. }
  495. int remove_memory_block(unsigned long node_id, struct mem_section *section,
  496. int phys_device)
  497. {
  498. struct memory_block *mem;
  499. mutex_lock(&mem_sysfs_mutex);
  500. mem = find_memory_block(section);
  501. unregister_mem_sect_under_nodes(mem, __section_nr(section));
  502. mem->section_count--;
  503. if (mem->section_count == 0) {
  504. mem_remove_simple_file(mem, phys_index);
  505. mem_remove_simple_file(mem, end_phys_index);
  506. mem_remove_simple_file(mem, state);
  507. mem_remove_simple_file(mem, phys_device);
  508. mem_remove_simple_file(mem, removable);
  509. unregister_memory(mem);
  510. kfree(mem);
  511. } else
  512. kobject_put(&mem->sysdev.kobj);
  513. mutex_unlock(&mem_sysfs_mutex);
  514. return 0;
  515. }
  516. /*
  517. * need an interface for the VM to add new memory regions,
  518. * but without onlining it.
  519. */
  520. int register_new_memory(int nid, struct mem_section *section)
  521. {
  522. return add_memory_section(nid, section, MEM_OFFLINE, HOTPLUG);
  523. }
  524. int unregister_memory_section(struct mem_section *section)
  525. {
  526. if (!present_section(section))
  527. return -EINVAL;
  528. return remove_memory_block(0, section, 0);
  529. }
  530. /*
  531. * Initialize the sysfs support for memory devices...
  532. */
  533. int __init memory_dev_init(void)
  534. {
  535. unsigned int i;
  536. int ret;
  537. int err;
  538. unsigned long block_sz;
  539. memory_sysdev_class.kset.uevent_ops = &memory_uevent_ops;
  540. ret = sysdev_class_register(&memory_sysdev_class);
  541. if (ret)
  542. goto out;
  543. block_sz = get_memory_block_size();
  544. sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE;
  545. /*
  546. * Create entries for memory sections that were found
  547. * during boot and have been initialized
  548. */
  549. for (i = 0; i < NR_MEM_SECTIONS; i++) {
  550. if (!present_section_nr(i))
  551. continue;
  552. err = add_memory_section(0, __nr_to_section(i), MEM_ONLINE,
  553. BOOT);
  554. if (!ret)
  555. ret = err;
  556. }
  557. err = memory_probe_init();
  558. if (!ret)
  559. ret = err;
  560. err = memory_fail_init();
  561. if (!ret)
  562. ret = err;
  563. err = block_size_init();
  564. if (!ret)
  565. ret = err;
  566. out:
  567. if (ret)
  568. printk(KERN_ERR "%s() failed: %d\n", __func__, ret);
  569. return ret;
  570. }