boot.c 47 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427
  1. /*P:010
  2. * A hypervisor allows multiple Operating Systems to run on a single machine.
  3. * To quote David Wheeler: "Any problem in computer science can be solved with
  4. * another layer of indirection."
  5. *
  6. * We keep things simple in two ways. First, we start with a normal Linux
  7. * kernel and insert a module (lg.ko) which allows us to run other Linux
  8. * kernels the same way we'd run processes. We call the first kernel the Host,
  9. * and the others the Guests. The program which sets up and configures Guests
  10. * (such as the example in Documentation/virtual/lguest/lguest.c) is called the
  11. * Launcher.
  12. *
  13. * Secondly, we only run specially modified Guests, not normal kernels: setting
  14. * CONFIG_LGUEST_GUEST to "y" compiles this file into the kernel so it knows
  15. * how to be a Guest at boot time. This means that you can use the same kernel
  16. * you boot normally (ie. as a Host) as a Guest.
  17. *
  18. * These Guests know that they cannot do privileged operations, such as disable
  19. * interrupts, and that they have to ask the Host to do such things explicitly.
  20. * This file consists of all the replacements for such low-level native
  21. * hardware operations: these special Guest versions call the Host.
  22. *
  23. * So how does the kernel know it's a Guest? We'll see that later, but let's
  24. * just say that we end up here where we replace the native functions various
  25. * "paravirt" structures with our Guest versions, then boot like normal.
  26. :*/
  27. /*
  28. * Copyright (C) 2006, Rusty Russell <rusty@rustcorp.com.au> IBM Corporation.
  29. *
  30. * This program is free software; you can redistribute it and/or modify
  31. * it under the terms of the GNU General Public License as published by
  32. * the Free Software Foundation; either version 2 of the License, or
  33. * (at your option) any later version.
  34. *
  35. * This program is distributed in the hope that it will be useful, but
  36. * WITHOUT ANY WARRANTY; without even the implied warranty of
  37. * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  38. * NON INFRINGEMENT. See the GNU General Public License for more
  39. * details.
  40. *
  41. * You should have received a copy of the GNU General Public License
  42. * along with this program; if not, write to the Free Software
  43. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  44. */
  45. #include <linux/kernel.h>
  46. #include <linux/start_kernel.h>
  47. #include <linux/string.h>
  48. #include <linux/console.h>
  49. #include <linux/screen_info.h>
  50. #include <linux/irq.h>
  51. #include <linux/interrupt.h>
  52. #include <linux/clocksource.h>
  53. #include <linux/clockchips.h>
  54. #include <linux/lguest.h>
  55. #include <linux/lguest_launcher.h>
  56. #include <linux/virtio_console.h>
  57. #include <linux/pm.h>
  58. #include <asm/apic.h>
  59. #include <asm/lguest.h>
  60. #include <asm/paravirt.h>
  61. #include <asm/param.h>
  62. #include <asm/page.h>
  63. #include <asm/pgtable.h>
  64. #include <asm/desc.h>
  65. #include <asm/setup.h>
  66. #include <asm/e820.h>
  67. #include <asm/mce.h>
  68. #include <asm/io.h>
  69. #include <asm/i387.h>
  70. #include <asm/stackprotector.h>
  71. #include <asm/reboot.h> /* for struct machine_ops */
  72. /*G:010 Welcome to the Guest!
  73. *
  74. * The Guest in our tale is a simple creature: identical to the Host but
  75. * behaving in simplified but equivalent ways. In particular, the Guest is the
  76. * same kernel as the Host (or at least, built from the same source code).
  77. :*/
  78. struct lguest_data lguest_data = {
  79. .hcall_status = { [0 ... LHCALL_RING_SIZE-1] = 0xFF },
  80. .noirq_start = (u32)lguest_noirq_start,
  81. .noirq_end = (u32)lguest_noirq_end,
  82. .kernel_address = PAGE_OFFSET,
  83. .blocked_interrupts = { 1 }, /* Block timer interrupts */
  84. .syscall_vec = SYSCALL_VECTOR,
  85. };
  86. /*G:037
  87. * async_hcall() is pretty simple: I'm quite proud of it really. We have a
  88. * ring buffer of stored hypercalls which the Host will run though next time we
  89. * do a normal hypercall. Each entry in the ring has 5 slots for the hypercall
  90. * arguments, and a "hcall_status" word which is 0 if the call is ready to go,
  91. * and 255 once the Host has finished with it.
  92. *
  93. * If we come around to a slot which hasn't been finished, then the table is
  94. * full and we just make the hypercall directly. This has the nice side
  95. * effect of causing the Host to run all the stored calls in the ring buffer
  96. * which empties it for next time!
  97. */
  98. static void async_hcall(unsigned long call, unsigned long arg1,
  99. unsigned long arg2, unsigned long arg3,
  100. unsigned long arg4)
  101. {
  102. /* Note: This code assumes we're uniprocessor. */
  103. static unsigned int next_call;
  104. unsigned long flags;
  105. /*
  106. * Disable interrupts if not already disabled: we don't want an
  107. * interrupt handler making a hypercall while we're already doing
  108. * one!
  109. */
  110. local_irq_save(flags);
  111. if (lguest_data.hcall_status[next_call] != 0xFF) {
  112. /* Table full, so do normal hcall which will flush table. */
  113. hcall(call, arg1, arg2, arg3, arg4);
  114. } else {
  115. lguest_data.hcalls[next_call].arg0 = call;
  116. lguest_data.hcalls[next_call].arg1 = arg1;
  117. lguest_data.hcalls[next_call].arg2 = arg2;
  118. lguest_data.hcalls[next_call].arg3 = arg3;
  119. lguest_data.hcalls[next_call].arg4 = arg4;
  120. /* Arguments must all be written before we mark it to go */
  121. wmb();
  122. lguest_data.hcall_status[next_call] = 0;
  123. if (++next_call == LHCALL_RING_SIZE)
  124. next_call = 0;
  125. }
  126. local_irq_restore(flags);
  127. }
  128. /*G:035
  129. * Notice the lazy_hcall() above, rather than hcall(). This is our first real
  130. * optimization trick!
  131. *
  132. * When lazy_mode is set, it means we're allowed to defer all hypercalls and do
  133. * them as a batch when lazy_mode is eventually turned off. Because hypercalls
  134. * are reasonably expensive, batching them up makes sense. For example, a
  135. * large munmap might update dozens of page table entries: that code calls
  136. * paravirt_enter_lazy_mmu(), does the dozen updates, then calls
  137. * lguest_leave_lazy_mode().
  138. *
  139. * So, when we're in lazy mode, we call async_hcall() to store the call for
  140. * future processing:
  141. */
  142. static void lazy_hcall1(unsigned long call, unsigned long arg1)
  143. {
  144. if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_NONE)
  145. hcall(call, arg1, 0, 0, 0);
  146. else
  147. async_hcall(call, arg1, 0, 0, 0);
  148. }
  149. /* You can imagine what lazy_hcall2, 3 and 4 look like. :*/
  150. static void lazy_hcall2(unsigned long call,
  151. unsigned long arg1,
  152. unsigned long arg2)
  153. {
  154. if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_NONE)
  155. hcall(call, arg1, arg2, 0, 0);
  156. else
  157. async_hcall(call, arg1, arg2, 0, 0);
  158. }
  159. static void lazy_hcall3(unsigned long call,
  160. unsigned long arg1,
  161. unsigned long arg2,
  162. unsigned long arg3)
  163. {
  164. if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_NONE)
  165. hcall(call, arg1, arg2, arg3, 0);
  166. else
  167. async_hcall(call, arg1, arg2, arg3, 0);
  168. }
  169. #ifdef CONFIG_X86_PAE
  170. static void lazy_hcall4(unsigned long call,
  171. unsigned long arg1,
  172. unsigned long arg2,
  173. unsigned long arg3,
  174. unsigned long arg4)
  175. {
  176. if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_NONE)
  177. hcall(call, arg1, arg2, arg3, arg4);
  178. else
  179. async_hcall(call, arg1, arg2, arg3, arg4);
  180. }
  181. #endif
  182. /*G:036
  183. * When lazy mode is turned off reset the per-cpu lazy mode variable and then
  184. * issue the do-nothing hypercall to flush any stored calls.
  185. :*/
  186. static void lguest_leave_lazy_mmu_mode(void)
  187. {
  188. hcall(LHCALL_FLUSH_ASYNC, 0, 0, 0, 0);
  189. paravirt_leave_lazy_mmu();
  190. }
  191. static void lguest_end_context_switch(struct task_struct *next)
  192. {
  193. hcall(LHCALL_FLUSH_ASYNC, 0, 0, 0, 0);
  194. paravirt_end_context_switch(next);
  195. }
  196. /*G:032
  197. * After that diversion we return to our first native-instruction
  198. * replacements: four functions for interrupt control.
  199. *
  200. * The simplest way of implementing these would be to have "turn interrupts
  201. * off" and "turn interrupts on" hypercalls. Unfortunately, this is too slow:
  202. * these are by far the most commonly called functions of those we override.
  203. *
  204. * So instead we keep an "irq_enabled" field inside our "struct lguest_data",
  205. * which the Guest can update with a single instruction. The Host knows to
  206. * check there before it tries to deliver an interrupt.
  207. */
  208. /*
  209. * save_flags() is expected to return the processor state (ie. "flags"). The
  210. * flags word contains all kind of stuff, but in practice Linux only cares
  211. * about the interrupt flag. Our "save_flags()" just returns that.
  212. */
  213. static unsigned long save_fl(void)
  214. {
  215. return lguest_data.irq_enabled;
  216. }
  217. /* Interrupts go off... */
  218. static void irq_disable(void)
  219. {
  220. lguest_data.irq_enabled = 0;
  221. }
  222. /*
  223. * Let's pause a moment. Remember how I said these are called so often?
  224. * Jeremy Fitzhardinge optimized them so hard early in 2009 that he had to
  225. * break some rules. In particular, these functions are assumed to save their
  226. * own registers if they need to: normal C functions assume they can trash the
  227. * eax register. To use normal C functions, we use
  228. * PV_CALLEE_SAVE_REGS_THUNK(), which pushes %eax onto the stack, calls the
  229. * C function, then restores it.
  230. */
  231. PV_CALLEE_SAVE_REGS_THUNK(save_fl);
  232. PV_CALLEE_SAVE_REGS_THUNK(irq_disable);
  233. /*:*/
  234. /* These are in i386_head.S */
  235. extern void lg_irq_enable(void);
  236. extern void lg_restore_fl(unsigned long flags);
  237. /*M:003
  238. * We could be more efficient in our checking of outstanding interrupts, rather
  239. * than using a branch. One way would be to put the "irq_enabled" field in a
  240. * page by itself, and have the Host write-protect it when an interrupt comes
  241. * in when irqs are disabled. There will then be a page fault as soon as
  242. * interrupts are re-enabled.
  243. *
  244. * A better method is to implement soft interrupt disable generally for x86:
  245. * instead of disabling interrupts, we set a flag. If an interrupt does come
  246. * in, we then disable them for real. This is uncommon, so we could simply use
  247. * a hypercall for interrupt control and not worry about efficiency.
  248. :*/
  249. /*G:034
  250. * The Interrupt Descriptor Table (IDT).
  251. *
  252. * The IDT tells the processor what to do when an interrupt comes in. Each
  253. * entry in the table is a 64-bit descriptor: this holds the privilege level,
  254. * address of the handler, and... well, who cares? The Guest just asks the
  255. * Host to make the change anyway, because the Host controls the real IDT.
  256. */
  257. static void lguest_write_idt_entry(gate_desc *dt,
  258. int entrynum, const gate_desc *g)
  259. {
  260. /*
  261. * The gate_desc structure is 8 bytes long: we hand it to the Host in
  262. * two 32-bit chunks. The whole 32-bit kernel used to hand descriptors
  263. * around like this; typesafety wasn't a big concern in Linux's early
  264. * years.
  265. */
  266. u32 *desc = (u32 *)g;
  267. /* Keep the local copy up to date. */
  268. native_write_idt_entry(dt, entrynum, g);
  269. /* Tell Host about this new entry. */
  270. hcall(LHCALL_LOAD_IDT_ENTRY, entrynum, desc[0], desc[1], 0);
  271. }
  272. /*
  273. * Changing to a different IDT is very rare: we keep the IDT up-to-date every
  274. * time it is written, so we can simply loop through all entries and tell the
  275. * Host about them.
  276. */
  277. static void lguest_load_idt(const struct desc_ptr *desc)
  278. {
  279. unsigned int i;
  280. struct desc_struct *idt = (void *)desc->address;
  281. for (i = 0; i < (desc->size+1)/8; i++)
  282. hcall(LHCALL_LOAD_IDT_ENTRY, i, idt[i].a, idt[i].b, 0);
  283. }
  284. /*
  285. * The Global Descriptor Table.
  286. *
  287. * The Intel architecture defines another table, called the Global Descriptor
  288. * Table (GDT). You tell the CPU where it is (and its size) using the "lgdt"
  289. * instruction, and then several other instructions refer to entries in the
  290. * table. There are three entries which the Switcher needs, so the Host simply
  291. * controls the entire thing and the Guest asks it to make changes using the
  292. * LOAD_GDT hypercall.
  293. *
  294. * This is the exactly like the IDT code.
  295. */
  296. static void lguest_load_gdt(const struct desc_ptr *desc)
  297. {
  298. unsigned int i;
  299. struct desc_struct *gdt = (void *)desc->address;
  300. for (i = 0; i < (desc->size+1)/8; i++)
  301. hcall(LHCALL_LOAD_GDT_ENTRY, i, gdt[i].a, gdt[i].b, 0);
  302. }
  303. /*
  304. * For a single GDT entry which changes, we simply change our copy and
  305. * then tell the host about it.
  306. */
  307. static void lguest_write_gdt_entry(struct desc_struct *dt, int entrynum,
  308. const void *desc, int type)
  309. {
  310. native_write_gdt_entry(dt, entrynum, desc, type);
  311. /* Tell Host about this new entry. */
  312. hcall(LHCALL_LOAD_GDT_ENTRY, entrynum,
  313. dt[entrynum].a, dt[entrynum].b, 0);
  314. }
  315. /*
  316. * There are three "thread local storage" GDT entries which change
  317. * on every context switch (these three entries are how glibc implements
  318. * __thread variables). As an optimization, we have a hypercall
  319. * specifically for this case.
  320. *
  321. * Wouldn't it be nicer to have a general LOAD_GDT_ENTRIES hypercall
  322. * which took a range of entries?
  323. */
  324. static void lguest_load_tls(struct thread_struct *t, unsigned int cpu)
  325. {
  326. /*
  327. * There's one problem which normal hardware doesn't have: the Host
  328. * can't handle us removing entries we're currently using. So we clear
  329. * the GS register here: if it's needed it'll be reloaded anyway.
  330. */
  331. lazy_load_gs(0);
  332. lazy_hcall2(LHCALL_LOAD_TLS, __pa(&t->tls_array), cpu);
  333. }
  334. /*G:038
  335. * That's enough excitement for now, back to ploughing through each of the
  336. * different pv_ops structures (we're about 1/3 of the way through).
  337. *
  338. * This is the Local Descriptor Table, another weird Intel thingy. Linux only
  339. * uses this for some strange applications like Wine. We don't do anything
  340. * here, so they'll get an informative and friendly Segmentation Fault.
  341. */
  342. static void lguest_set_ldt(const void *addr, unsigned entries)
  343. {
  344. }
  345. /*
  346. * This loads a GDT entry into the "Task Register": that entry points to a
  347. * structure called the Task State Segment. Some comments scattered though the
  348. * kernel code indicate that this used for task switching in ages past, along
  349. * with blood sacrifice and astrology.
  350. *
  351. * Now there's nothing interesting in here that we don't get told elsewhere.
  352. * But the native version uses the "ltr" instruction, which makes the Host
  353. * complain to the Guest about a Segmentation Fault and it'll oops. So we
  354. * override the native version with a do-nothing version.
  355. */
  356. static void lguest_load_tr_desc(void)
  357. {
  358. }
  359. /*
  360. * The "cpuid" instruction is a way of querying both the CPU identity
  361. * (manufacturer, model, etc) and its features. It was introduced before the
  362. * Pentium in 1993 and keeps getting extended by both Intel, AMD and others.
  363. * As you might imagine, after a decade and a half this treatment, it is now a
  364. * giant ball of hair. Its entry in the current Intel manual runs to 28 pages.
  365. *
  366. * This instruction even it has its own Wikipedia entry. The Wikipedia entry
  367. * has been translated into 5 languages. I am not making this up!
  368. *
  369. * We could get funky here and identify ourselves as "GenuineLguest", but
  370. * instead we just use the real "cpuid" instruction. Then I pretty much turned
  371. * off feature bits until the Guest booted. (Don't say that: you'll damage
  372. * lguest sales!) Shut up, inner voice! (Hey, just pointing out that this is
  373. * hardly future proof.) No one's listening! They don't like you anyway,
  374. * parenthetic weirdo!
  375. *
  376. * Replacing the cpuid so we can turn features off is great for the kernel, but
  377. * anyone (including userspace) can just use the raw "cpuid" instruction and
  378. * the Host won't even notice since it isn't privileged. So we try not to get
  379. * too worked up about it.
  380. */
  381. static void lguest_cpuid(unsigned int *ax, unsigned int *bx,
  382. unsigned int *cx, unsigned int *dx)
  383. {
  384. int function = *ax;
  385. native_cpuid(ax, bx, cx, dx);
  386. switch (function) {
  387. /*
  388. * CPUID 0 gives the highest legal CPUID number (and the ID string).
  389. * We futureproof our code a little by sticking to known CPUID values.
  390. */
  391. case 0:
  392. if (*ax > 5)
  393. *ax = 5;
  394. break;
  395. /*
  396. * CPUID 1 is a basic feature request.
  397. *
  398. * CX: we only allow kernel to see SSE3, CMPXCHG16B and SSSE3
  399. * DX: SSE, SSE2, FXSR, MMX, CMOV, CMPXCHG8B, TSC, FPU and PAE.
  400. */
  401. case 1:
  402. *cx &= 0x00002201;
  403. *dx &= 0x07808151;
  404. /*
  405. * The Host can do a nice optimization if it knows that the
  406. * kernel mappings (addresses above 0xC0000000 or whatever
  407. * PAGE_OFFSET is set to) haven't changed. But Linux calls
  408. * flush_tlb_user() for both user and kernel mappings unless
  409. * the Page Global Enable (PGE) feature bit is set.
  410. */
  411. *dx |= 0x00002000;
  412. /*
  413. * We also lie, and say we're family id 5. 6 or greater
  414. * leads to a rdmsr in early_init_intel which we can't handle.
  415. * Family ID is returned as bits 8-12 in ax.
  416. */
  417. *ax &= 0xFFFFF0FF;
  418. *ax |= 0x00000500;
  419. break;
  420. /*
  421. * 0x80000000 returns the highest Extended Function, so we futureproof
  422. * like we do above by limiting it to known fields.
  423. */
  424. case 0x80000000:
  425. if (*ax > 0x80000008)
  426. *ax = 0x80000008;
  427. break;
  428. /*
  429. * PAE systems can mark pages as non-executable. Linux calls this the
  430. * NX bit. Intel calls it XD (eXecute Disable), AMD EVP (Enhanced
  431. * Virus Protection). We just switch turn if off here, since we don't
  432. * support it.
  433. */
  434. case 0x80000001:
  435. *dx &= ~(1 << 20);
  436. break;
  437. }
  438. }
  439. /*
  440. * Intel has four control registers, imaginatively named cr0, cr2, cr3 and cr4.
  441. * I assume there's a cr1, but it hasn't bothered us yet, so we'll not bother
  442. * it. The Host needs to know when the Guest wants to change them, so we have
  443. * a whole series of functions like read_cr0() and write_cr0().
  444. *
  445. * We start with cr0. cr0 allows you to turn on and off all kinds of basic
  446. * features, but Linux only really cares about one: the horrifically-named Task
  447. * Switched (TS) bit at bit 3 (ie. 8)
  448. *
  449. * What does the TS bit do? Well, it causes the CPU to trap (interrupt 7) if
  450. * the floating point unit is used. Which allows us to restore FPU state
  451. * lazily after a task switch, and Linux uses that gratefully, but wouldn't a
  452. * name like "FPUTRAP bit" be a little less cryptic?
  453. *
  454. * We store cr0 locally because the Host never changes it. The Guest sometimes
  455. * wants to read it and we'd prefer not to bother the Host unnecessarily.
  456. */
  457. static unsigned long current_cr0;
  458. static void lguest_write_cr0(unsigned long val)
  459. {
  460. lazy_hcall1(LHCALL_TS, val & X86_CR0_TS);
  461. current_cr0 = val;
  462. }
  463. static unsigned long lguest_read_cr0(void)
  464. {
  465. return current_cr0;
  466. }
  467. /*
  468. * Intel provided a special instruction to clear the TS bit for people too cool
  469. * to use write_cr0() to do it. This "clts" instruction is faster, because all
  470. * the vowels have been optimized out.
  471. */
  472. static void lguest_clts(void)
  473. {
  474. lazy_hcall1(LHCALL_TS, 0);
  475. current_cr0 &= ~X86_CR0_TS;
  476. }
  477. /*
  478. * cr2 is the virtual address of the last page fault, which the Guest only ever
  479. * reads. The Host kindly writes this into our "struct lguest_data", so we
  480. * just read it out of there.
  481. */
  482. static unsigned long lguest_read_cr2(void)
  483. {
  484. return lguest_data.cr2;
  485. }
  486. /* See lguest_set_pte() below. */
  487. static bool cr3_changed = false;
  488. /*
  489. * cr3 is the current toplevel pagetable page: the principle is the same as
  490. * cr0. Keep a local copy, and tell the Host when it changes. The only
  491. * difference is that our local copy is in lguest_data because the Host needs
  492. * to set it upon our initial hypercall.
  493. */
  494. static void lguest_write_cr3(unsigned long cr3)
  495. {
  496. lguest_data.pgdir = cr3;
  497. lazy_hcall1(LHCALL_NEW_PGTABLE, cr3);
  498. /* These two page tables are simple, linear, and used during boot */
  499. if (cr3 != __pa(swapper_pg_dir) && cr3 != __pa(initial_page_table))
  500. cr3_changed = true;
  501. }
  502. static unsigned long lguest_read_cr3(void)
  503. {
  504. return lguest_data.pgdir;
  505. }
  506. /* cr4 is used to enable and disable PGE, but we don't care. */
  507. static unsigned long lguest_read_cr4(void)
  508. {
  509. return 0;
  510. }
  511. static void lguest_write_cr4(unsigned long val)
  512. {
  513. }
  514. /*
  515. * Page Table Handling.
  516. *
  517. * Now would be a good time to take a rest and grab a coffee or similarly
  518. * relaxing stimulant. The easy parts are behind us, and the trek gradually
  519. * winds uphill from here.
  520. *
  521. * Quick refresher: memory is divided into "pages" of 4096 bytes each. The CPU
  522. * maps virtual addresses to physical addresses using "page tables". We could
  523. * use one huge index of 1 million entries: each address is 4 bytes, so that's
  524. * 1024 pages just to hold the page tables. But since most virtual addresses
  525. * are unused, we use a two level index which saves space. The cr3 register
  526. * contains the physical address of the top level "page directory" page, which
  527. * contains physical addresses of up to 1024 second-level pages. Each of these
  528. * second level pages contains up to 1024 physical addresses of actual pages,
  529. * or Page Table Entries (PTEs).
  530. *
  531. * Here's a diagram, where arrows indicate physical addresses:
  532. *
  533. * cr3 ---> +---------+
  534. * | --------->+---------+
  535. * | | | PADDR1 |
  536. * Mid-level | | PADDR2 |
  537. * (PMD) page | | |
  538. * | | Lower-level |
  539. * | | (PTE) page |
  540. * | | | |
  541. * .... ....
  542. *
  543. * So to convert a virtual address to a physical address, we look up the top
  544. * level, which points us to the second level, which gives us the physical
  545. * address of that page. If the top level entry was not present, or the second
  546. * level entry was not present, then the virtual address is invalid (we
  547. * say "the page was not mapped").
  548. *
  549. * Put another way, a 32-bit virtual address is divided up like so:
  550. *
  551. * 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
  552. * |<---- 10 bits ---->|<---- 10 bits ---->|<------ 12 bits ------>|
  553. * Index into top Index into second Offset within page
  554. * page directory page pagetable page
  555. *
  556. * Now, unfortunately, this isn't the whole story: Intel added Physical Address
  557. * Extension (PAE) to allow 32 bit systems to use 64GB of memory (ie. 36 bits).
  558. * These are held in 64-bit page table entries, so we can now only fit 512
  559. * entries in a page, and the neat three-level tree breaks down.
  560. *
  561. * The result is a four level page table:
  562. *
  563. * cr3 --> [ 4 Upper ]
  564. * [ Level ]
  565. * [ Entries ]
  566. * [(PUD Page)]---> +---------+
  567. * | --------->+---------+
  568. * | | | PADDR1 |
  569. * Mid-level | | PADDR2 |
  570. * (PMD) page | | |
  571. * | | Lower-level |
  572. * | | (PTE) page |
  573. * | | | |
  574. * .... ....
  575. *
  576. *
  577. * And the virtual address is decoded as:
  578. *
  579. * 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
  580. * |<-2->|<--- 9 bits ---->|<---- 9 bits --->|<------ 12 bits ------>|
  581. * Index into Index into mid Index into lower Offset within page
  582. * top entries directory page pagetable page
  583. *
  584. * It's too hard to switch between these two formats at runtime, so Linux only
  585. * supports one or the other depending on whether CONFIG_X86_PAE is set. Many
  586. * distributions turn it on, and not just for people with silly amounts of
  587. * memory: the larger PTE entries allow room for the NX bit, which lets the
  588. * kernel disable execution of pages and increase security.
  589. *
  590. * This was a problem for lguest, which couldn't run on these distributions;
  591. * then Matias Zabaljauregui figured it all out and implemented it, and only a
  592. * handful of puppies were crushed in the process!
  593. *
  594. * Back to our point: the kernel spends a lot of time changing both the
  595. * top-level page directory and lower-level pagetable pages. The Guest doesn't
  596. * know physical addresses, so while it maintains these page tables exactly
  597. * like normal, it also needs to keep the Host informed whenever it makes a
  598. * change: the Host will create the real page tables based on the Guests'.
  599. */
  600. /*
  601. * The Guest calls this after it has set a second-level entry (pte), ie. to map
  602. * a page into a process' address space. Wetell the Host the toplevel and
  603. * address this corresponds to. The Guest uses one pagetable per process, so
  604. * we need to tell the Host which one we're changing (mm->pgd).
  605. */
  606. static void lguest_pte_update(struct mm_struct *mm, unsigned long addr,
  607. pte_t *ptep)
  608. {
  609. #ifdef CONFIG_X86_PAE
  610. /* PAE needs to hand a 64 bit page table entry, so it uses two args. */
  611. lazy_hcall4(LHCALL_SET_PTE, __pa(mm->pgd), addr,
  612. ptep->pte_low, ptep->pte_high);
  613. #else
  614. lazy_hcall3(LHCALL_SET_PTE, __pa(mm->pgd), addr, ptep->pte_low);
  615. #endif
  616. }
  617. /* This is the "set and update" combo-meal-deal version. */
  618. static void lguest_set_pte_at(struct mm_struct *mm, unsigned long addr,
  619. pte_t *ptep, pte_t pteval)
  620. {
  621. native_set_pte(ptep, pteval);
  622. lguest_pte_update(mm, addr, ptep);
  623. }
  624. /*
  625. * The Guest calls lguest_set_pud to set a top-level entry and lguest_set_pmd
  626. * to set a middle-level entry when PAE is activated.
  627. *
  628. * Again, we set the entry then tell the Host which page we changed,
  629. * and the index of the entry we changed.
  630. */
  631. #ifdef CONFIG_X86_PAE
  632. static void lguest_set_pud(pud_t *pudp, pud_t pudval)
  633. {
  634. native_set_pud(pudp, pudval);
  635. /* 32 bytes aligned pdpt address and the index. */
  636. lazy_hcall2(LHCALL_SET_PGD, __pa(pudp) & 0xFFFFFFE0,
  637. (__pa(pudp) & 0x1F) / sizeof(pud_t));
  638. }
  639. static void lguest_set_pmd(pmd_t *pmdp, pmd_t pmdval)
  640. {
  641. native_set_pmd(pmdp, pmdval);
  642. lazy_hcall2(LHCALL_SET_PMD, __pa(pmdp) & PAGE_MASK,
  643. (__pa(pmdp) & (PAGE_SIZE - 1)) / sizeof(pmd_t));
  644. }
  645. #else
  646. /* The Guest calls lguest_set_pmd to set a top-level entry when !PAE. */
  647. static void lguest_set_pmd(pmd_t *pmdp, pmd_t pmdval)
  648. {
  649. native_set_pmd(pmdp, pmdval);
  650. lazy_hcall2(LHCALL_SET_PGD, __pa(pmdp) & PAGE_MASK,
  651. (__pa(pmdp) & (PAGE_SIZE - 1)) / sizeof(pmd_t));
  652. }
  653. #endif
  654. /*
  655. * There are a couple of legacy places where the kernel sets a PTE, but we
  656. * don't know the top level any more. This is useless for us, since we don't
  657. * know which pagetable is changing or what address, so we just tell the Host
  658. * to forget all of them. Fortunately, this is very rare.
  659. *
  660. * ... except in early boot when the kernel sets up the initial pagetables,
  661. * which makes booting astonishingly slow: 48 seconds! So we don't even tell
  662. * the Host anything changed until we've done the first real page table switch,
  663. * which brings boot back to 4.3 seconds.
  664. */
  665. static void lguest_set_pte(pte_t *ptep, pte_t pteval)
  666. {
  667. native_set_pte(ptep, pteval);
  668. if (cr3_changed)
  669. lazy_hcall1(LHCALL_FLUSH_TLB, 1);
  670. }
  671. #ifdef CONFIG_X86_PAE
  672. /*
  673. * With 64-bit PTE values, we need to be careful setting them: if we set 32
  674. * bits at a time, the hardware could see a weird half-set entry. These
  675. * versions ensure we update all 64 bits at once.
  676. */
  677. static void lguest_set_pte_atomic(pte_t *ptep, pte_t pte)
  678. {
  679. native_set_pte_atomic(ptep, pte);
  680. if (cr3_changed)
  681. lazy_hcall1(LHCALL_FLUSH_TLB, 1);
  682. }
  683. static void lguest_pte_clear(struct mm_struct *mm, unsigned long addr,
  684. pte_t *ptep)
  685. {
  686. native_pte_clear(mm, addr, ptep);
  687. lguest_pte_update(mm, addr, ptep);
  688. }
  689. static void lguest_pmd_clear(pmd_t *pmdp)
  690. {
  691. lguest_set_pmd(pmdp, __pmd(0));
  692. }
  693. #endif
  694. /*
  695. * Unfortunately for Lguest, the pv_mmu_ops for page tables were based on
  696. * native page table operations. On native hardware you can set a new page
  697. * table entry whenever you want, but if you want to remove one you have to do
  698. * a TLB flush (a TLB is a little cache of page table entries kept by the CPU).
  699. *
  700. * So the lguest_set_pte_at() and lguest_set_pmd() functions above are only
  701. * called when a valid entry is written, not when it's removed (ie. marked not
  702. * present). Instead, this is where we come when the Guest wants to remove a
  703. * page table entry: we tell the Host to set that entry to 0 (ie. the present
  704. * bit is zero).
  705. */
  706. static void lguest_flush_tlb_single(unsigned long addr)
  707. {
  708. /* Simply set it to zero: if it was not, it will fault back in. */
  709. lazy_hcall3(LHCALL_SET_PTE, lguest_data.pgdir, addr, 0);
  710. }
  711. /*
  712. * This is what happens after the Guest has removed a large number of entries.
  713. * This tells the Host that any of the page table entries for userspace might
  714. * have changed, ie. virtual addresses below PAGE_OFFSET.
  715. */
  716. static void lguest_flush_tlb_user(void)
  717. {
  718. lazy_hcall1(LHCALL_FLUSH_TLB, 0);
  719. }
  720. /*
  721. * This is called when the kernel page tables have changed. That's not very
  722. * common (unless the Guest is using highmem, which makes the Guest extremely
  723. * slow), so it's worth separating this from the user flushing above.
  724. */
  725. static void lguest_flush_tlb_kernel(void)
  726. {
  727. lazy_hcall1(LHCALL_FLUSH_TLB, 1);
  728. }
  729. /*
  730. * The Unadvanced Programmable Interrupt Controller.
  731. *
  732. * This is an attempt to implement the simplest possible interrupt controller.
  733. * I spent some time looking though routines like set_irq_chip_and_handler,
  734. * set_irq_chip_and_handler_name, set_irq_chip_data and set_phasers_to_stun and
  735. * I *think* this is as simple as it gets.
  736. *
  737. * We can tell the Host what interrupts we want blocked ready for using the
  738. * lguest_data.interrupts bitmap, so disabling (aka "masking") them is as
  739. * simple as setting a bit. We don't actually "ack" interrupts as such, we
  740. * just mask and unmask them. I wonder if we should be cleverer?
  741. */
  742. static void disable_lguest_irq(struct irq_data *data)
  743. {
  744. set_bit(data->irq, lguest_data.blocked_interrupts);
  745. }
  746. static void enable_lguest_irq(struct irq_data *data)
  747. {
  748. clear_bit(data->irq, lguest_data.blocked_interrupts);
  749. }
  750. /* This structure describes the lguest IRQ controller. */
  751. static struct irq_chip lguest_irq_controller = {
  752. .name = "lguest",
  753. .irq_mask = disable_lguest_irq,
  754. .irq_mask_ack = disable_lguest_irq,
  755. .irq_unmask = enable_lguest_irq,
  756. };
  757. /*
  758. * This sets up the Interrupt Descriptor Table (IDT) entry for each hardware
  759. * interrupt (except 128, which is used for system calls), and then tells the
  760. * Linux infrastructure that each interrupt is controlled by our level-based
  761. * lguest interrupt controller.
  762. */
  763. static void __init lguest_init_IRQ(void)
  764. {
  765. unsigned int i;
  766. for (i = FIRST_EXTERNAL_VECTOR; i < NR_VECTORS; i++) {
  767. /* Some systems map "vectors" to interrupts weirdly. Not us! */
  768. __this_cpu_write(vector_irq[i], i - FIRST_EXTERNAL_VECTOR);
  769. if (i != SYSCALL_VECTOR)
  770. set_intr_gate(i, interrupt[i - FIRST_EXTERNAL_VECTOR]);
  771. }
  772. /*
  773. * This call is required to set up for 4k stacks, where we have
  774. * separate stacks for hard and soft interrupts.
  775. */
  776. irq_ctx_init(smp_processor_id());
  777. }
  778. /*
  779. * With CONFIG_SPARSE_IRQ, interrupt descriptors are allocated as-needed, so
  780. * rather than set them in lguest_init_IRQ we are called here every time an
  781. * lguest device needs an interrupt.
  782. *
  783. * FIXME: irq_alloc_desc_at() can fail due to lack of memory, we should
  784. * pass that up!
  785. */
  786. void lguest_setup_irq(unsigned int irq)
  787. {
  788. irq_alloc_desc_at(irq, 0);
  789. irq_set_chip_and_handler_name(irq, &lguest_irq_controller,
  790. handle_level_irq, "level");
  791. }
  792. /*
  793. * Time.
  794. *
  795. * It would be far better for everyone if the Guest had its own clock, but
  796. * until then the Host gives us the time on every interrupt.
  797. */
  798. static unsigned long lguest_get_wallclock(void)
  799. {
  800. return lguest_data.time.tv_sec;
  801. }
  802. /*
  803. * The TSC is an Intel thing called the Time Stamp Counter. The Host tells us
  804. * what speed it runs at, or 0 if it's unusable as a reliable clock source.
  805. * This matches what we want here: if we return 0 from this function, the x86
  806. * TSC clock will give up and not register itself.
  807. */
  808. static unsigned long lguest_tsc_khz(void)
  809. {
  810. return lguest_data.tsc_khz;
  811. }
  812. /*
  813. * If we can't use the TSC, the kernel falls back to our lower-priority
  814. * "lguest_clock", where we read the time value given to us by the Host.
  815. */
  816. static cycle_t lguest_clock_read(struct clocksource *cs)
  817. {
  818. unsigned long sec, nsec;
  819. /*
  820. * Since the time is in two parts (seconds and nanoseconds), we risk
  821. * reading it just as it's changing from 99 & 0.999999999 to 100 and 0,
  822. * and getting 99 and 0. As Linux tends to come apart under the stress
  823. * of time travel, we must be careful:
  824. */
  825. do {
  826. /* First we read the seconds part. */
  827. sec = lguest_data.time.tv_sec;
  828. /*
  829. * This read memory barrier tells the compiler and the CPU that
  830. * this can't be reordered: we have to complete the above
  831. * before going on.
  832. */
  833. rmb();
  834. /* Now we read the nanoseconds part. */
  835. nsec = lguest_data.time.tv_nsec;
  836. /* Make sure we've done that. */
  837. rmb();
  838. /* Now if the seconds part has changed, try again. */
  839. } while (unlikely(lguest_data.time.tv_sec != sec));
  840. /* Our lguest clock is in real nanoseconds. */
  841. return sec*1000000000ULL + nsec;
  842. }
  843. /* This is the fallback clocksource: lower priority than the TSC clocksource. */
  844. static struct clocksource lguest_clock = {
  845. .name = "lguest",
  846. .rating = 200,
  847. .read = lguest_clock_read,
  848. .mask = CLOCKSOURCE_MASK(64),
  849. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  850. };
  851. /*
  852. * We also need a "struct clock_event_device": Linux asks us to set it to go
  853. * off some time in the future. Actually, James Morris figured all this out, I
  854. * just applied the patch.
  855. */
  856. static int lguest_clockevent_set_next_event(unsigned long delta,
  857. struct clock_event_device *evt)
  858. {
  859. /* FIXME: I don't think this can ever happen, but James tells me he had
  860. * to put this code in. Maybe we should remove it now. Anyone? */
  861. if (delta < LG_CLOCK_MIN_DELTA) {
  862. if (printk_ratelimit())
  863. printk(KERN_DEBUG "%s: small delta %lu ns\n",
  864. __func__, delta);
  865. return -ETIME;
  866. }
  867. /* Please wake us this far in the future. */
  868. hcall(LHCALL_SET_CLOCKEVENT, delta, 0, 0, 0);
  869. return 0;
  870. }
  871. static void lguest_clockevent_set_mode(enum clock_event_mode mode,
  872. struct clock_event_device *evt)
  873. {
  874. switch (mode) {
  875. case CLOCK_EVT_MODE_UNUSED:
  876. case CLOCK_EVT_MODE_SHUTDOWN:
  877. /* A 0 argument shuts the clock down. */
  878. hcall(LHCALL_SET_CLOCKEVENT, 0, 0, 0, 0);
  879. break;
  880. case CLOCK_EVT_MODE_ONESHOT:
  881. /* This is what we expect. */
  882. break;
  883. case CLOCK_EVT_MODE_PERIODIC:
  884. BUG();
  885. case CLOCK_EVT_MODE_RESUME:
  886. break;
  887. }
  888. }
  889. /* This describes our primitive timer chip. */
  890. static struct clock_event_device lguest_clockevent = {
  891. .name = "lguest",
  892. .features = CLOCK_EVT_FEAT_ONESHOT,
  893. .set_next_event = lguest_clockevent_set_next_event,
  894. .set_mode = lguest_clockevent_set_mode,
  895. .rating = INT_MAX,
  896. .mult = 1,
  897. .shift = 0,
  898. .min_delta_ns = LG_CLOCK_MIN_DELTA,
  899. .max_delta_ns = LG_CLOCK_MAX_DELTA,
  900. };
  901. /*
  902. * This is the Guest timer interrupt handler (hardware interrupt 0). We just
  903. * call the clockevent infrastructure and it does whatever needs doing.
  904. */
  905. static void lguest_time_irq(unsigned int irq, struct irq_desc *desc)
  906. {
  907. unsigned long flags;
  908. /* Don't interrupt us while this is running. */
  909. local_irq_save(flags);
  910. lguest_clockevent.event_handler(&lguest_clockevent);
  911. local_irq_restore(flags);
  912. }
  913. /*
  914. * At some point in the boot process, we get asked to set up our timing
  915. * infrastructure. The kernel doesn't expect timer interrupts before this, but
  916. * we cleverly initialized the "blocked_interrupts" field of "struct
  917. * lguest_data" so that timer interrupts were blocked until now.
  918. */
  919. static void lguest_time_init(void)
  920. {
  921. /* Set up the timer interrupt (0) to go to our simple timer routine */
  922. lguest_setup_irq(0);
  923. irq_set_handler(0, lguest_time_irq);
  924. clocksource_register_hz(&lguest_clock, NSEC_PER_SEC);
  925. /* We can't set cpumask in the initializer: damn C limitations! Set it
  926. * here and register our timer device. */
  927. lguest_clockevent.cpumask = cpumask_of(0);
  928. clockevents_register_device(&lguest_clockevent);
  929. /* Finally, we unblock the timer interrupt. */
  930. clear_bit(0, lguest_data.blocked_interrupts);
  931. }
  932. /*
  933. * Miscellaneous bits and pieces.
  934. *
  935. * Here is an oddball collection of functions which the Guest needs for things
  936. * to work. They're pretty simple.
  937. */
  938. /*
  939. * The Guest needs to tell the Host what stack it expects traps to use. For
  940. * native hardware, this is part of the Task State Segment mentioned above in
  941. * lguest_load_tr_desc(), but to help hypervisors there's this special call.
  942. *
  943. * We tell the Host the segment we want to use (__KERNEL_DS is the kernel data
  944. * segment), the privilege level (we're privilege level 1, the Host is 0 and
  945. * will not tolerate us trying to use that), the stack pointer, and the number
  946. * of pages in the stack.
  947. */
  948. static void lguest_load_sp0(struct tss_struct *tss,
  949. struct thread_struct *thread)
  950. {
  951. lazy_hcall3(LHCALL_SET_STACK, __KERNEL_DS | 0x1, thread->sp0,
  952. THREAD_SIZE / PAGE_SIZE);
  953. }
  954. /* Let's just say, I wouldn't do debugging under a Guest. */
  955. static void lguest_set_debugreg(int regno, unsigned long value)
  956. {
  957. /* FIXME: Implement */
  958. }
  959. /*
  960. * There are times when the kernel wants to make sure that no memory writes are
  961. * caught in the cache (that they've all reached real hardware devices). This
  962. * doesn't matter for the Guest which has virtual hardware.
  963. *
  964. * On the Pentium 4 and above, cpuid() indicates that the Cache Line Flush
  965. * (clflush) instruction is available and the kernel uses that. Otherwise, it
  966. * uses the older "Write Back and Invalidate Cache" (wbinvd) instruction.
  967. * Unlike clflush, wbinvd can only be run at privilege level 0. So we can
  968. * ignore clflush, but replace wbinvd.
  969. */
  970. static void lguest_wbinvd(void)
  971. {
  972. }
  973. /*
  974. * If the Guest expects to have an Advanced Programmable Interrupt Controller,
  975. * we play dumb by ignoring writes and returning 0 for reads. So it's no
  976. * longer Programmable nor Controlling anything, and I don't think 8 lines of
  977. * code qualifies for Advanced. It will also never interrupt anything. It
  978. * does, however, allow us to get through the Linux boot code.
  979. */
  980. #ifdef CONFIG_X86_LOCAL_APIC
  981. static void lguest_apic_write(u32 reg, u32 v)
  982. {
  983. }
  984. static u32 lguest_apic_read(u32 reg)
  985. {
  986. return 0;
  987. }
  988. static u64 lguest_apic_icr_read(void)
  989. {
  990. return 0;
  991. }
  992. static void lguest_apic_icr_write(u32 low, u32 id)
  993. {
  994. /* Warn to see if there's any stray references */
  995. WARN_ON(1);
  996. }
  997. static void lguest_apic_wait_icr_idle(void)
  998. {
  999. return;
  1000. }
  1001. static u32 lguest_apic_safe_wait_icr_idle(void)
  1002. {
  1003. return 0;
  1004. }
  1005. static void set_lguest_basic_apic_ops(void)
  1006. {
  1007. apic->read = lguest_apic_read;
  1008. apic->write = lguest_apic_write;
  1009. apic->icr_read = lguest_apic_icr_read;
  1010. apic->icr_write = lguest_apic_icr_write;
  1011. apic->wait_icr_idle = lguest_apic_wait_icr_idle;
  1012. apic->safe_wait_icr_idle = lguest_apic_safe_wait_icr_idle;
  1013. };
  1014. #endif
  1015. /* STOP! Until an interrupt comes in. */
  1016. static void lguest_safe_halt(void)
  1017. {
  1018. hcall(LHCALL_HALT, 0, 0, 0, 0);
  1019. }
  1020. /*
  1021. * The SHUTDOWN hypercall takes a string to describe what's happening, and
  1022. * an argument which says whether this to restart (reboot) the Guest or not.
  1023. *
  1024. * Note that the Host always prefers that the Guest speak in physical addresses
  1025. * rather than virtual addresses, so we use __pa() here.
  1026. */
  1027. static void lguest_power_off(void)
  1028. {
  1029. hcall(LHCALL_SHUTDOWN, __pa("Power down"),
  1030. LGUEST_SHUTDOWN_POWEROFF, 0, 0);
  1031. }
  1032. /*
  1033. * Panicing.
  1034. *
  1035. * Don't. But if you did, this is what happens.
  1036. */
  1037. static int lguest_panic(struct notifier_block *nb, unsigned long l, void *p)
  1038. {
  1039. hcall(LHCALL_SHUTDOWN, __pa(p), LGUEST_SHUTDOWN_POWEROFF, 0, 0);
  1040. /* The hcall won't return, but to keep gcc happy, we're "done". */
  1041. return NOTIFY_DONE;
  1042. }
  1043. static struct notifier_block paniced = {
  1044. .notifier_call = lguest_panic
  1045. };
  1046. /* Setting up memory is fairly easy. */
  1047. static __init char *lguest_memory_setup(void)
  1048. {
  1049. /*
  1050. *The Linux bootloader header contains an "e820" memory map: the
  1051. * Launcher populated the first entry with our memory limit.
  1052. */
  1053. e820_add_region(boot_params.e820_map[0].addr,
  1054. boot_params.e820_map[0].size,
  1055. boot_params.e820_map[0].type);
  1056. /* This string is for the boot messages. */
  1057. return "LGUEST";
  1058. }
  1059. /*
  1060. * We will eventually use the virtio console device to produce console output,
  1061. * but before that is set up we use LHCALL_NOTIFY on normal memory to produce
  1062. * console output.
  1063. */
  1064. static __init int early_put_chars(u32 vtermno, const char *buf, int count)
  1065. {
  1066. char scratch[17];
  1067. unsigned int len = count;
  1068. /* We use a nul-terminated string, so we make a copy. Icky, huh? */
  1069. if (len > sizeof(scratch) - 1)
  1070. len = sizeof(scratch) - 1;
  1071. scratch[len] = '\0';
  1072. memcpy(scratch, buf, len);
  1073. hcall(LHCALL_NOTIFY, __pa(scratch), 0, 0, 0);
  1074. /* This routine returns the number of bytes actually written. */
  1075. return len;
  1076. }
  1077. /*
  1078. * Rebooting also tells the Host we're finished, but the RESTART flag tells the
  1079. * Launcher to reboot us.
  1080. */
  1081. static void lguest_restart(char *reason)
  1082. {
  1083. hcall(LHCALL_SHUTDOWN, __pa(reason), LGUEST_SHUTDOWN_RESTART, 0, 0);
  1084. }
  1085. /*G:050
  1086. * Patching (Powerfully Placating Performance Pedants)
  1087. *
  1088. * We have already seen that pv_ops structures let us replace simple native
  1089. * instructions with calls to the appropriate back end all throughout the
  1090. * kernel. This allows the same kernel to run as a Guest and as a native
  1091. * kernel, but it's slow because of all the indirect branches.
  1092. *
  1093. * Remember that David Wheeler quote about "Any problem in computer science can
  1094. * be solved with another layer of indirection"? The rest of that quote is
  1095. * "... But that usually will create another problem." This is the first of
  1096. * those problems.
  1097. *
  1098. * Our current solution is to allow the paravirt back end to optionally patch
  1099. * over the indirect calls to replace them with something more efficient. We
  1100. * patch two of the simplest of the most commonly called functions: disable
  1101. * interrupts and save interrupts. We usually have 6 or 10 bytes to patch
  1102. * into: the Guest versions of these operations are small enough that we can
  1103. * fit comfortably.
  1104. *
  1105. * First we need assembly templates of each of the patchable Guest operations,
  1106. * and these are in i386_head.S.
  1107. */
  1108. /*G:060 We construct a table from the assembler templates: */
  1109. static const struct lguest_insns
  1110. {
  1111. const char *start, *end;
  1112. } lguest_insns[] = {
  1113. [PARAVIRT_PATCH(pv_irq_ops.irq_disable)] = { lgstart_cli, lgend_cli },
  1114. [PARAVIRT_PATCH(pv_irq_ops.save_fl)] = { lgstart_pushf, lgend_pushf },
  1115. };
  1116. /*
  1117. * Now our patch routine is fairly simple (based on the native one in
  1118. * paravirt.c). If we have a replacement, we copy it in and return how much of
  1119. * the available space we used.
  1120. */
  1121. static unsigned lguest_patch(u8 type, u16 clobber, void *ibuf,
  1122. unsigned long addr, unsigned len)
  1123. {
  1124. unsigned int insn_len;
  1125. /* Don't do anything special if we don't have a replacement */
  1126. if (type >= ARRAY_SIZE(lguest_insns) || !lguest_insns[type].start)
  1127. return paravirt_patch_default(type, clobber, ibuf, addr, len);
  1128. insn_len = lguest_insns[type].end - lguest_insns[type].start;
  1129. /* Similarly if it can't fit (doesn't happen, but let's be thorough). */
  1130. if (len < insn_len)
  1131. return paravirt_patch_default(type, clobber, ibuf, addr, len);
  1132. /* Copy in our instructions. */
  1133. memcpy(ibuf, lguest_insns[type].start, insn_len);
  1134. return insn_len;
  1135. }
  1136. /*G:029
  1137. * Once we get to lguest_init(), we know we're a Guest. The various
  1138. * pv_ops structures in the kernel provide points for (almost) every routine we
  1139. * have to override to avoid privileged instructions.
  1140. */
  1141. __init void lguest_init(void)
  1142. {
  1143. /* We're under lguest. */
  1144. pv_info.name = "lguest";
  1145. /* Paravirt is enabled. */
  1146. pv_info.paravirt_enabled = 1;
  1147. /* We're running at privilege level 1, not 0 as normal. */
  1148. pv_info.kernel_rpl = 1;
  1149. /* Everyone except Xen runs with this set. */
  1150. pv_info.shared_kernel_pmd = 1;
  1151. /*
  1152. * We set up all the lguest overrides for sensitive operations. These
  1153. * are detailed with the operations themselves.
  1154. */
  1155. /* Interrupt-related operations */
  1156. pv_irq_ops.save_fl = PV_CALLEE_SAVE(save_fl);
  1157. pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(lg_restore_fl);
  1158. pv_irq_ops.irq_disable = PV_CALLEE_SAVE(irq_disable);
  1159. pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(lg_irq_enable);
  1160. pv_irq_ops.safe_halt = lguest_safe_halt;
  1161. /* Setup operations */
  1162. pv_init_ops.patch = lguest_patch;
  1163. /* Intercepts of various CPU instructions */
  1164. pv_cpu_ops.load_gdt = lguest_load_gdt;
  1165. pv_cpu_ops.cpuid = lguest_cpuid;
  1166. pv_cpu_ops.load_idt = lguest_load_idt;
  1167. pv_cpu_ops.iret = lguest_iret;
  1168. pv_cpu_ops.load_sp0 = lguest_load_sp0;
  1169. pv_cpu_ops.load_tr_desc = lguest_load_tr_desc;
  1170. pv_cpu_ops.set_ldt = lguest_set_ldt;
  1171. pv_cpu_ops.load_tls = lguest_load_tls;
  1172. pv_cpu_ops.set_debugreg = lguest_set_debugreg;
  1173. pv_cpu_ops.clts = lguest_clts;
  1174. pv_cpu_ops.read_cr0 = lguest_read_cr0;
  1175. pv_cpu_ops.write_cr0 = lguest_write_cr0;
  1176. pv_cpu_ops.read_cr4 = lguest_read_cr4;
  1177. pv_cpu_ops.write_cr4 = lguest_write_cr4;
  1178. pv_cpu_ops.write_gdt_entry = lguest_write_gdt_entry;
  1179. pv_cpu_ops.write_idt_entry = lguest_write_idt_entry;
  1180. pv_cpu_ops.wbinvd = lguest_wbinvd;
  1181. pv_cpu_ops.start_context_switch = paravirt_start_context_switch;
  1182. pv_cpu_ops.end_context_switch = lguest_end_context_switch;
  1183. /* Pagetable management */
  1184. pv_mmu_ops.write_cr3 = lguest_write_cr3;
  1185. pv_mmu_ops.flush_tlb_user = lguest_flush_tlb_user;
  1186. pv_mmu_ops.flush_tlb_single = lguest_flush_tlb_single;
  1187. pv_mmu_ops.flush_tlb_kernel = lguest_flush_tlb_kernel;
  1188. pv_mmu_ops.set_pte = lguest_set_pte;
  1189. pv_mmu_ops.set_pte_at = lguest_set_pte_at;
  1190. pv_mmu_ops.set_pmd = lguest_set_pmd;
  1191. #ifdef CONFIG_X86_PAE
  1192. pv_mmu_ops.set_pte_atomic = lguest_set_pte_atomic;
  1193. pv_mmu_ops.pte_clear = lguest_pte_clear;
  1194. pv_mmu_ops.pmd_clear = lguest_pmd_clear;
  1195. pv_mmu_ops.set_pud = lguest_set_pud;
  1196. #endif
  1197. pv_mmu_ops.read_cr2 = lguest_read_cr2;
  1198. pv_mmu_ops.read_cr3 = lguest_read_cr3;
  1199. pv_mmu_ops.lazy_mode.enter = paravirt_enter_lazy_mmu;
  1200. pv_mmu_ops.lazy_mode.leave = lguest_leave_lazy_mmu_mode;
  1201. pv_mmu_ops.pte_update = lguest_pte_update;
  1202. pv_mmu_ops.pte_update_defer = lguest_pte_update;
  1203. #ifdef CONFIG_X86_LOCAL_APIC
  1204. /* APIC read/write intercepts */
  1205. set_lguest_basic_apic_ops();
  1206. #endif
  1207. x86_init.resources.memory_setup = lguest_memory_setup;
  1208. x86_init.irqs.intr_init = lguest_init_IRQ;
  1209. x86_init.timers.timer_init = lguest_time_init;
  1210. x86_platform.calibrate_tsc = lguest_tsc_khz;
  1211. x86_platform.get_wallclock = lguest_get_wallclock;
  1212. /*
  1213. * Now is a good time to look at the implementations of these functions
  1214. * before returning to the rest of lguest_init().
  1215. */
  1216. /*G:070
  1217. * Now we've seen all the paravirt_ops, we return to
  1218. * lguest_init() where the rest of the fairly chaotic boot setup
  1219. * occurs.
  1220. */
  1221. /*
  1222. * The stack protector is a weird thing where gcc places a canary
  1223. * value on the stack and then checks it on return. This file is
  1224. * compiled with -fno-stack-protector it, so we got this far without
  1225. * problems. The value of the canary is kept at offset 20 from the
  1226. * %gs register, so we need to set that up before calling C functions
  1227. * in other files.
  1228. */
  1229. setup_stack_canary_segment(0);
  1230. /*
  1231. * We could just call load_stack_canary_segment(), but we might as well
  1232. * call switch_to_new_gdt() which loads the whole table and sets up the
  1233. * per-cpu segment descriptor register %fs as well.
  1234. */
  1235. switch_to_new_gdt(0);
  1236. /*
  1237. * The Host<->Guest Switcher lives at the top of our address space, and
  1238. * the Host told us how big it is when we made LGUEST_INIT hypercall:
  1239. * it put the answer in lguest_data.reserve_mem
  1240. */
  1241. reserve_top_address(lguest_data.reserve_mem);
  1242. /*
  1243. * If we don't initialize the lock dependency checker now, it crashes
  1244. * atomic_notifier_chain_register, then paravirt_disable_iospace.
  1245. */
  1246. lockdep_init();
  1247. /* Hook in our special panic hypercall code. */
  1248. atomic_notifier_chain_register(&panic_notifier_list, &paniced);
  1249. /*
  1250. * The IDE code spends about 3 seconds probing for disks: if we reserve
  1251. * all the I/O ports up front it can't get them and so doesn't probe.
  1252. * Other device drivers are similar (but less severe). This cuts the
  1253. * kernel boot time on my machine from 4.1 seconds to 0.45 seconds.
  1254. */
  1255. paravirt_disable_iospace();
  1256. /*
  1257. * This is messy CPU setup stuff which the native boot code does before
  1258. * start_kernel, so we have to do, too:
  1259. */
  1260. cpu_detect(&new_cpu_data);
  1261. /* head.S usually sets up the first capability word, so do it here. */
  1262. new_cpu_data.x86_capability[0] = cpuid_edx(1);
  1263. /* Math is always hard! */
  1264. new_cpu_data.hard_math = 1;
  1265. /* We don't have features. We have puppies! Puppies! */
  1266. #ifdef CONFIG_X86_MCE
  1267. mce_disabled = 1;
  1268. #endif
  1269. #ifdef CONFIG_ACPI
  1270. acpi_disabled = 1;
  1271. #endif
  1272. /*
  1273. * We set the preferred console to "hvc". This is the "hypervisor
  1274. * virtual console" driver written by the PowerPC people, which we also
  1275. * adapted for lguest's use.
  1276. */
  1277. add_preferred_console("hvc", 0, NULL);
  1278. /* Register our very early console. */
  1279. virtio_cons_early_init(early_put_chars);
  1280. /*
  1281. * Last of all, we set the power management poweroff hook to point to
  1282. * the Guest routine to power off, and the reboot hook to our restart
  1283. * routine.
  1284. */
  1285. pm_power_off = lguest_power_off;
  1286. machine_ops.restart = lguest_restart;
  1287. /*
  1288. * Now we're set up, call i386_start_kernel() in head32.c and we proceed
  1289. * to boot as normal. It never returns.
  1290. */
  1291. i386_start_kernel();
  1292. }
  1293. /*
  1294. * This marks the end of stage II of our journey, The Guest.
  1295. *
  1296. * It is now time for us to explore the layer of virtual drivers and complete
  1297. * our understanding of the Guest in "make Drivers".
  1298. */