paging_tmpl.h 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  11. *
  12. * Authors:
  13. * Yaniv Kamay <yaniv@qumranet.com>
  14. * Avi Kivity <avi@qumranet.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. /*
  21. * We need the mmu code to access both 32-bit and 64-bit guest ptes,
  22. * so the code in this file is compiled twice, once per pte size.
  23. */
  24. #if PTTYPE == 64
  25. #define pt_element_t u64
  26. #define guest_walker guest_walker64
  27. #define FNAME(name) paging##64_##name
  28. #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
  29. #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
  30. #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
  31. #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
  32. #define PT_LEVEL_BITS PT64_LEVEL_BITS
  33. #ifdef CONFIG_X86_64
  34. #define PT_MAX_FULL_LEVELS 4
  35. #define CMPXCHG cmpxchg
  36. #else
  37. #define CMPXCHG cmpxchg64
  38. #define PT_MAX_FULL_LEVELS 2
  39. #endif
  40. #elif PTTYPE == 32
  41. #define pt_element_t u32
  42. #define guest_walker guest_walker32
  43. #define FNAME(name) paging##32_##name
  44. #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
  45. #define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl)
  46. #define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl)
  47. #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
  48. #define PT_LEVEL_BITS PT32_LEVEL_BITS
  49. #define PT_MAX_FULL_LEVELS 2
  50. #define CMPXCHG cmpxchg
  51. #else
  52. #error Invalid PTTYPE value
  53. #endif
  54. #define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
  55. #define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PT_PAGE_TABLE_LEVEL)
  56. /*
  57. * The guest_walker structure emulates the behavior of the hardware page
  58. * table walker.
  59. */
  60. struct guest_walker {
  61. int level;
  62. gfn_t table_gfn[PT_MAX_FULL_LEVELS];
  63. pt_element_t ptes[PT_MAX_FULL_LEVELS];
  64. pt_element_t prefetch_ptes[PTE_PREFETCH_NUM];
  65. gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
  66. unsigned pt_access;
  67. unsigned pte_access;
  68. gfn_t gfn;
  69. struct x86_exception fault;
  70. };
  71. static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl)
  72. {
  73. return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT;
  74. }
  75. static int FNAME(cmpxchg_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
  76. pt_element_t __user *ptep_user, unsigned index,
  77. pt_element_t orig_pte, pt_element_t new_pte)
  78. {
  79. int npages;
  80. pt_element_t ret;
  81. pt_element_t *table;
  82. struct page *page;
  83. npages = get_user_pages_fast((unsigned long)ptep_user, 1, 1, &page);
  84. /* Check if the user is doing something meaningless. */
  85. if (unlikely(npages != 1))
  86. return -EFAULT;
  87. table = kmap_atomic(page, KM_USER0);
  88. ret = CMPXCHG(&table[index], orig_pte, new_pte);
  89. kunmap_atomic(table, KM_USER0);
  90. kvm_release_page_dirty(page);
  91. return (ret != orig_pte);
  92. }
  93. static unsigned FNAME(gpte_access)(struct kvm_vcpu *vcpu, pt_element_t gpte)
  94. {
  95. unsigned access;
  96. access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
  97. #if PTTYPE == 64
  98. if (vcpu->arch.mmu.nx)
  99. access &= ~(gpte >> PT64_NX_SHIFT);
  100. #endif
  101. return access;
  102. }
  103. /*
  104. * Fetch a guest pte for a guest virtual address
  105. */
  106. static int FNAME(walk_addr_generic)(struct guest_walker *walker,
  107. struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
  108. gva_t addr, u32 access)
  109. {
  110. pt_element_t pte;
  111. pt_element_t __user *uninitialized_var(ptep_user);
  112. gfn_t table_gfn;
  113. unsigned index, pt_access, uninitialized_var(pte_access);
  114. gpa_t pte_gpa;
  115. bool eperm, present, rsvd_fault;
  116. int offset, write_fault, user_fault, fetch_fault;
  117. write_fault = access & PFERR_WRITE_MASK;
  118. user_fault = access & PFERR_USER_MASK;
  119. fetch_fault = access & PFERR_FETCH_MASK;
  120. trace_kvm_mmu_pagetable_walk(addr, write_fault, user_fault,
  121. fetch_fault);
  122. walk:
  123. present = true;
  124. eperm = rsvd_fault = false;
  125. walker->level = mmu->root_level;
  126. pte = mmu->get_cr3(vcpu);
  127. #if PTTYPE == 64
  128. if (walker->level == PT32E_ROOT_LEVEL) {
  129. pte = kvm_pdptr_read_mmu(vcpu, mmu, (addr >> 30) & 3);
  130. trace_kvm_mmu_paging_element(pte, walker->level);
  131. if (!is_present_gpte(pte)) {
  132. present = false;
  133. goto error;
  134. }
  135. --walker->level;
  136. }
  137. #endif
  138. ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) ||
  139. (mmu->get_cr3(vcpu) & CR3_NONPAE_RESERVED_BITS) == 0);
  140. pt_access = ACC_ALL;
  141. for (;;) {
  142. gfn_t real_gfn;
  143. unsigned long host_addr;
  144. index = PT_INDEX(addr, walker->level);
  145. table_gfn = gpte_to_gfn(pte);
  146. offset = index * sizeof(pt_element_t);
  147. pte_gpa = gfn_to_gpa(table_gfn) + offset;
  148. walker->table_gfn[walker->level - 1] = table_gfn;
  149. walker->pte_gpa[walker->level - 1] = pte_gpa;
  150. real_gfn = mmu->translate_gpa(vcpu, gfn_to_gpa(table_gfn),
  151. PFERR_USER_MASK|PFERR_WRITE_MASK);
  152. if (unlikely(real_gfn == UNMAPPED_GVA)) {
  153. present = false;
  154. break;
  155. }
  156. real_gfn = gpa_to_gfn(real_gfn);
  157. host_addr = gfn_to_hva(vcpu->kvm, real_gfn);
  158. if (unlikely(kvm_is_error_hva(host_addr))) {
  159. present = false;
  160. break;
  161. }
  162. ptep_user = (pt_element_t __user *)((void *)host_addr + offset);
  163. if (unlikely(__copy_from_user(&pte, ptep_user, sizeof(pte)))) {
  164. present = false;
  165. break;
  166. }
  167. trace_kvm_mmu_paging_element(pte, walker->level);
  168. if (unlikely(!is_present_gpte(pte))) {
  169. present = false;
  170. break;
  171. }
  172. if (unlikely(is_rsvd_bits_set(&vcpu->arch.mmu, pte,
  173. walker->level))) {
  174. rsvd_fault = true;
  175. break;
  176. }
  177. if (unlikely(write_fault && !is_writable_pte(pte)
  178. && (user_fault || is_write_protection(vcpu))))
  179. eperm = true;
  180. if (unlikely(user_fault && !(pte & PT_USER_MASK)))
  181. eperm = true;
  182. #if PTTYPE == 64
  183. if (unlikely(fetch_fault && (pte & PT64_NX_MASK)))
  184. eperm = true;
  185. #endif
  186. if (!eperm && !rsvd_fault
  187. && unlikely(!(pte & PT_ACCESSED_MASK))) {
  188. int ret;
  189. trace_kvm_mmu_set_accessed_bit(table_gfn, index,
  190. sizeof(pte));
  191. ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index,
  192. pte, pte|PT_ACCESSED_MASK);
  193. if (unlikely(ret < 0)) {
  194. present = false;
  195. break;
  196. } else if (ret)
  197. goto walk;
  198. mark_page_dirty(vcpu->kvm, table_gfn);
  199. pte |= PT_ACCESSED_MASK;
  200. }
  201. pte_access = pt_access & FNAME(gpte_access)(vcpu, pte);
  202. walker->ptes[walker->level - 1] = pte;
  203. if ((walker->level == PT_PAGE_TABLE_LEVEL) ||
  204. ((walker->level == PT_DIRECTORY_LEVEL) &&
  205. is_large_pte(pte) &&
  206. (PTTYPE == 64 || is_pse(vcpu))) ||
  207. ((walker->level == PT_PDPE_LEVEL) &&
  208. is_large_pte(pte) &&
  209. mmu->root_level == PT64_ROOT_LEVEL)) {
  210. int lvl = walker->level;
  211. gpa_t real_gpa;
  212. gfn_t gfn;
  213. u32 ac;
  214. gfn = gpte_to_gfn_lvl(pte, lvl);
  215. gfn += (addr & PT_LVL_OFFSET_MASK(lvl)) >> PAGE_SHIFT;
  216. if (PTTYPE == 32 &&
  217. walker->level == PT_DIRECTORY_LEVEL &&
  218. is_cpuid_PSE36())
  219. gfn += pse36_gfn_delta(pte);
  220. ac = write_fault | fetch_fault | user_fault;
  221. real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(gfn),
  222. ac);
  223. if (real_gpa == UNMAPPED_GVA)
  224. return 0;
  225. walker->gfn = real_gpa >> PAGE_SHIFT;
  226. break;
  227. }
  228. pt_access = pte_access;
  229. --walker->level;
  230. }
  231. if (unlikely(!present || eperm || rsvd_fault))
  232. goto error;
  233. if (write_fault && unlikely(!is_dirty_gpte(pte))) {
  234. int ret;
  235. trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
  236. ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index,
  237. pte, pte|PT_DIRTY_MASK);
  238. if (unlikely(ret < 0)) {
  239. present = false;
  240. goto error;
  241. } else if (ret)
  242. goto walk;
  243. mark_page_dirty(vcpu->kvm, table_gfn);
  244. pte |= PT_DIRTY_MASK;
  245. walker->ptes[walker->level - 1] = pte;
  246. }
  247. walker->pt_access = pt_access;
  248. walker->pte_access = pte_access;
  249. pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
  250. __func__, (u64)pte, pte_access, pt_access);
  251. return 1;
  252. error:
  253. walker->fault.vector = PF_VECTOR;
  254. walker->fault.error_code_valid = true;
  255. walker->fault.error_code = 0;
  256. if (present)
  257. walker->fault.error_code |= PFERR_PRESENT_MASK;
  258. walker->fault.error_code |= write_fault | user_fault;
  259. if (fetch_fault && mmu->nx)
  260. walker->fault.error_code |= PFERR_FETCH_MASK;
  261. if (rsvd_fault)
  262. walker->fault.error_code |= PFERR_RSVD_MASK;
  263. walker->fault.address = addr;
  264. walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu;
  265. trace_kvm_mmu_walker_error(walker->fault.error_code);
  266. return 0;
  267. }
  268. static int FNAME(walk_addr)(struct guest_walker *walker,
  269. struct kvm_vcpu *vcpu, gva_t addr, u32 access)
  270. {
  271. return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.mmu, addr,
  272. access);
  273. }
  274. static int FNAME(walk_addr_nested)(struct guest_walker *walker,
  275. struct kvm_vcpu *vcpu, gva_t addr,
  276. u32 access)
  277. {
  278. return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.nested_mmu,
  279. addr, access);
  280. }
  281. static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu,
  282. struct kvm_mmu_page *sp, u64 *spte,
  283. pt_element_t gpte)
  284. {
  285. u64 nonpresent = shadow_trap_nonpresent_pte;
  286. if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
  287. goto no_present;
  288. if (!is_present_gpte(gpte)) {
  289. if (!sp->unsync)
  290. nonpresent = shadow_notrap_nonpresent_pte;
  291. goto no_present;
  292. }
  293. if (!(gpte & PT_ACCESSED_MASK))
  294. goto no_present;
  295. return false;
  296. no_present:
  297. drop_spte(vcpu->kvm, spte, nonpresent);
  298. return true;
  299. }
  300. static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  301. u64 *spte, const void *pte)
  302. {
  303. pt_element_t gpte;
  304. unsigned pte_access;
  305. pfn_t pfn;
  306. gpte = *(const pt_element_t *)pte;
  307. if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
  308. return;
  309. pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
  310. pte_access = sp->role.access & FNAME(gpte_access)(vcpu, gpte);
  311. pfn = gfn_to_pfn_atomic(vcpu->kvm, gpte_to_gfn(gpte));
  312. if (is_error_pfn(pfn)) {
  313. kvm_release_pfn_clean(pfn);
  314. return;
  315. }
  316. /*
  317. * we call mmu_set_spte() with host_writable = true because that
  318. * vcpu->arch.update_pte.pfn was fetched from get_user_pages(write = 1).
  319. */
  320. mmu_set_spte(vcpu, spte, sp->role.access, pte_access, 0, 0,
  321. is_dirty_gpte(gpte), NULL, PT_PAGE_TABLE_LEVEL,
  322. gpte_to_gfn(gpte), pfn, true, true);
  323. }
  324. static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu,
  325. struct guest_walker *gw, int level)
  326. {
  327. pt_element_t curr_pte;
  328. gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1];
  329. u64 mask;
  330. int r, index;
  331. if (level == PT_PAGE_TABLE_LEVEL) {
  332. mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1;
  333. base_gpa = pte_gpa & ~mask;
  334. index = (pte_gpa - base_gpa) / sizeof(pt_element_t);
  335. r = kvm_read_guest_atomic(vcpu->kvm, base_gpa,
  336. gw->prefetch_ptes, sizeof(gw->prefetch_ptes));
  337. curr_pte = gw->prefetch_ptes[index];
  338. } else
  339. r = kvm_read_guest_atomic(vcpu->kvm, pte_gpa,
  340. &curr_pte, sizeof(curr_pte));
  341. return r || curr_pte != gw->ptes[level - 1];
  342. }
  343. static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
  344. u64 *sptep)
  345. {
  346. struct kvm_mmu_page *sp;
  347. pt_element_t *gptep = gw->prefetch_ptes;
  348. u64 *spte;
  349. int i;
  350. sp = page_header(__pa(sptep));
  351. if (sp->role.level > PT_PAGE_TABLE_LEVEL)
  352. return;
  353. if (sp->role.direct)
  354. return __direct_pte_prefetch(vcpu, sp, sptep);
  355. i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
  356. spte = sp->spt + i;
  357. for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
  358. pt_element_t gpte;
  359. unsigned pte_access;
  360. gfn_t gfn;
  361. pfn_t pfn;
  362. bool dirty;
  363. if (spte == sptep)
  364. continue;
  365. if (*spte != shadow_trap_nonpresent_pte)
  366. continue;
  367. gpte = gptep[i];
  368. if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
  369. continue;
  370. pte_access = sp->role.access & FNAME(gpte_access)(vcpu, gpte);
  371. gfn = gpte_to_gfn(gpte);
  372. dirty = is_dirty_gpte(gpte);
  373. pfn = pte_prefetch_gfn_to_pfn(vcpu, gfn,
  374. (pte_access & ACC_WRITE_MASK) && dirty);
  375. if (is_error_pfn(pfn)) {
  376. kvm_release_pfn_clean(pfn);
  377. break;
  378. }
  379. mmu_set_spte(vcpu, spte, sp->role.access, pte_access, 0, 0,
  380. dirty, NULL, PT_PAGE_TABLE_LEVEL, gfn,
  381. pfn, true, true);
  382. }
  383. }
  384. /*
  385. * Fetch a shadow pte for a specific level in the paging hierarchy.
  386. */
  387. static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
  388. struct guest_walker *gw,
  389. int user_fault, int write_fault, int hlevel,
  390. int *ptwrite, pfn_t pfn, bool map_writable,
  391. bool prefault)
  392. {
  393. unsigned access = gw->pt_access;
  394. struct kvm_mmu_page *sp = NULL;
  395. bool dirty = is_dirty_gpte(gw->ptes[gw->level - 1]);
  396. int top_level;
  397. unsigned direct_access;
  398. struct kvm_shadow_walk_iterator it;
  399. if (!is_present_gpte(gw->ptes[gw->level - 1]))
  400. return NULL;
  401. direct_access = gw->pt_access & gw->pte_access;
  402. if (!dirty)
  403. direct_access &= ~ACC_WRITE_MASK;
  404. top_level = vcpu->arch.mmu.root_level;
  405. if (top_level == PT32E_ROOT_LEVEL)
  406. top_level = PT32_ROOT_LEVEL;
  407. /*
  408. * Verify that the top-level gpte is still there. Since the page
  409. * is a root page, it is either write protected (and cannot be
  410. * changed from now on) or it is invalid (in which case, we don't
  411. * really care if it changes underneath us after this point).
  412. */
  413. if (FNAME(gpte_changed)(vcpu, gw, top_level))
  414. goto out_gpte_changed;
  415. for (shadow_walk_init(&it, vcpu, addr);
  416. shadow_walk_okay(&it) && it.level > gw->level;
  417. shadow_walk_next(&it)) {
  418. gfn_t table_gfn;
  419. drop_large_spte(vcpu, it.sptep);
  420. sp = NULL;
  421. if (!is_shadow_present_pte(*it.sptep)) {
  422. table_gfn = gw->table_gfn[it.level - 2];
  423. sp = kvm_mmu_get_page(vcpu, table_gfn, addr, it.level-1,
  424. false, access, it.sptep);
  425. }
  426. /*
  427. * Verify that the gpte in the page we've just write
  428. * protected is still there.
  429. */
  430. if (FNAME(gpte_changed)(vcpu, gw, it.level - 1))
  431. goto out_gpte_changed;
  432. if (sp)
  433. link_shadow_page(it.sptep, sp);
  434. }
  435. for (;
  436. shadow_walk_okay(&it) && it.level > hlevel;
  437. shadow_walk_next(&it)) {
  438. gfn_t direct_gfn;
  439. validate_direct_spte(vcpu, it.sptep, direct_access);
  440. drop_large_spte(vcpu, it.sptep);
  441. if (is_shadow_present_pte(*it.sptep))
  442. continue;
  443. direct_gfn = gw->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
  444. sp = kvm_mmu_get_page(vcpu, direct_gfn, addr, it.level-1,
  445. true, direct_access, it.sptep);
  446. link_shadow_page(it.sptep, sp);
  447. }
  448. mmu_set_spte(vcpu, it.sptep, access, gw->pte_access & access,
  449. user_fault, write_fault, dirty, ptwrite, it.level,
  450. gw->gfn, pfn, prefault, map_writable);
  451. FNAME(pte_prefetch)(vcpu, gw, it.sptep);
  452. return it.sptep;
  453. out_gpte_changed:
  454. if (sp)
  455. kvm_mmu_put_page(sp, it.sptep);
  456. kvm_release_pfn_clean(pfn);
  457. return NULL;
  458. }
  459. /*
  460. * Page fault handler. There are several causes for a page fault:
  461. * - there is no shadow pte for the guest pte
  462. * - write access through a shadow pte marked read only so that we can set
  463. * the dirty bit
  464. * - write access to a shadow pte marked read only so we can update the page
  465. * dirty bitmap, when userspace requests it
  466. * - mmio access; in this case we will never install a present shadow pte
  467. * - normal guest page fault due to the guest pte marked not present, not
  468. * writable, or not executable
  469. *
  470. * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
  471. * a negative value on error.
  472. */
  473. static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr, u32 error_code,
  474. bool prefault)
  475. {
  476. int write_fault = error_code & PFERR_WRITE_MASK;
  477. int user_fault = error_code & PFERR_USER_MASK;
  478. struct guest_walker walker;
  479. u64 *sptep;
  480. int write_pt = 0;
  481. int r;
  482. pfn_t pfn;
  483. int level = PT_PAGE_TABLE_LEVEL;
  484. int force_pt_level;
  485. unsigned long mmu_seq;
  486. bool map_writable;
  487. pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code);
  488. r = mmu_topup_memory_caches(vcpu);
  489. if (r)
  490. return r;
  491. /*
  492. * Look up the guest pte for the faulting address.
  493. */
  494. r = FNAME(walk_addr)(&walker, vcpu, addr, error_code);
  495. /*
  496. * The page is not mapped by the guest. Let the guest handle it.
  497. */
  498. if (!r) {
  499. pgprintk("%s: guest page fault\n", __func__);
  500. if (!prefault) {
  501. inject_page_fault(vcpu, &walker.fault);
  502. /* reset fork detector */
  503. vcpu->arch.last_pt_write_count = 0;
  504. }
  505. return 0;
  506. }
  507. if (walker.level >= PT_DIRECTORY_LEVEL)
  508. force_pt_level = mapping_level_dirty_bitmap(vcpu, walker.gfn);
  509. else
  510. force_pt_level = 1;
  511. if (!force_pt_level) {
  512. level = min(walker.level, mapping_level(vcpu, walker.gfn));
  513. walker.gfn = walker.gfn & ~(KVM_PAGES_PER_HPAGE(level) - 1);
  514. }
  515. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  516. smp_rmb();
  517. if (try_async_pf(vcpu, prefault, walker.gfn, addr, &pfn, write_fault,
  518. &map_writable))
  519. return 0;
  520. /* mmio */
  521. if (is_error_pfn(pfn))
  522. return kvm_handle_bad_page(vcpu->kvm, walker.gfn, pfn);
  523. spin_lock(&vcpu->kvm->mmu_lock);
  524. if (mmu_notifier_retry(vcpu, mmu_seq))
  525. goto out_unlock;
  526. trace_kvm_mmu_audit(vcpu, AUDIT_PRE_PAGE_FAULT);
  527. kvm_mmu_free_some_pages(vcpu);
  528. if (!force_pt_level)
  529. transparent_hugepage_adjust(vcpu, &walker.gfn, &pfn, &level);
  530. sptep = FNAME(fetch)(vcpu, addr, &walker, user_fault, write_fault,
  531. level, &write_pt, pfn, map_writable, prefault);
  532. (void)sptep;
  533. pgprintk("%s: shadow pte %p %llx ptwrite %d\n", __func__,
  534. sptep, *sptep, write_pt);
  535. if (!write_pt)
  536. vcpu->arch.last_pt_write_count = 0; /* reset fork detector */
  537. ++vcpu->stat.pf_fixed;
  538. trace_kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT);
  539. spin_unlock(&vcpu->kvm->mmu_lock);
  540. return write_pt;
  541. out_unlock:
  542. spin_unlock(&vcpu->kvm->mmu_lock);
  543. kvm_release_pfn_clean(pfn);
  544. return 0;
  545. }
  546. static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva)
  547. {
  548. struct kvm_shadow_walk_iterator iterator;
  549. struct kvm_mmu_page *sp;
  550. gpa_t pte_gpa = -1;
  551. int level;
  552. u64 *sptep;
  553. int need_flush = 0;
  554. spin_lock(&vcpu->kvm->mmu_lock);
  555. for_each_shadow_entry(vcpu, gva, iterator) {
  556. level = iterator.level;
  557. sptep = iterator.sptep;
  558. sp = page_header(__pa(sptep));
  559. if (is_last_spte(*sptep, level)) {
  560. int offset, shift;
  561. if (!sp->unsync)
  562. break;
  563. shift = PAGE_SHIFT -
  564. (PT_LEVEL_BITS - PT64_LEVEL_BITS) * level;
  565. offset = sp->role.quadrant << shift;
  566. pte_gpa = (sp->gfn << PAGE_SHIFT) + offset;
  567. pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t);
  568. if (is_shadow_present_pte(*sptep)) {
  569. if (is_large_pte(*sptep))
  570. --vcpu->kvm->stat.lpages;
  571. drop_spte(vcpu->kvm, sptep,
  572. shadow_trap_nonpresent_pte);
  573. need_flush = 1;
  574. } else
  575. __set_spte(sptep, shadow_trap_nonpresent_pte);
  576. break;
  577. }
  578. if (!is_shadow_present_pte(*sptep) || !sp->unsync_children)
  579. break;
  580. }
  581. if (need_flush)
  582. kvm_flush_remote_tlbs(vcpu->kvm);
  583. atomic_inc(&vcpu->kvm->arch.invlpg_counter);
  584. spin_unlock(&vcpu->kvm->mmu_lock);
  585. if (pte_gpa == -1)
  586. return;
  587. if (mmu_topup_memory_caches(vcpu))
  588. return;
  589. kvm_mmu_pte_write(vcpu, pte_gpa, NULL, sizeof(pt_element_t), 0);
  590. }
  591. static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr, u32 access,
  592. struct x86_exception *exception)
  593. {
  594. struct guest_walker walker;
  595. gpa_t gpa = UNMAPPED_GVA;
  596. int r;
  597. r = FNAME(walk_addr)(&walker, vcpu, vaddr, access);
  598. if (r) {
  599. gpa = gfn_to_gpa(walker.gfn);
  600. gpa |= vaddr & ~PAGE_MASK;
  601. } else if (exception)
  602. *exception = walker.fault;
  603. return gpa;
  604. }
  605. static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gva_t vaddr,
  606. u32 access,
  607. struct x86_exception *exception)
  608. {
  609. struct guest_walker walker;
  610. gpa_t gpa = UNMAPPED_GVA;
  611. int r;
  612. r = FNAME(walk_addr_nested)(&walker, vcpu, vaddr, access);
  613. if (r) {
  614. gpa = gfn_to_gpa(walker.gfn);
  615. gpa |= vaddr & ~PAGE_MASK;
  616. } else if (exception)
  617. *exception = walker.fault;
  618. return gpa;
  619. }
  620. static void FNAME(prefetch_page)(struct kvm_vcpu *vcpu,
  621. struct kvm_mmu_page *sp)
  622. {
  623. int i, j, offset, r;
  624. pt_element_t pt[256 / sizeof(pt_element_t)];
  625. gpa_t pte_gpa;
  626. if (sp->role.direct
  627. || (PTTYPE == 32 && sp->role.level > PT_PAGE_TABLE_LEVEL)) {
  628. nonpaging_prefetch_page(vcpu, sp);
  629. return;
  630. }
  631. pte_gpa = gfn_to_gpa(sp->gfn);
  632. if (PTTYPE == 32) {
  633. offset = sp->role.quadrant << PT64_LEVEL_BITS;
  634. pte_gpa += offset * sizeof(pt_element_t);
  635. }
  636. for (i = 0; i < PT64_ENT_PER_PAGE; i += ARRAY_SIZE(pt)) {
  637. r = kvm_read_guest_atomic(vcpu->kvm, pte_gpa, pt, sizeof pt);
  638. pte_gpa += ARRAY_SIZE(pt) * sizeof(pt_element_t);
  639. for (j = 0; j < ARRAY_SIZE(pt); ++j)
  640. if (r || is_present_gpte(pt[j]))
  641. sp->spt[i+j] = shadow_trap_nonpresent_pte;
  642. else
  643. sp->spt[i+j] = shadow_notrap_nonpresent_pte;
  644. }
  645. }
  646. /*
  647. * Using the cached information from sp->gfns is safe because:
  648. * - The spte has a reference to the struct page, so the pfn for a given gfn
  649. * can't change unless all sptes pointing to it are nuked first.
  650. *
  651. * Note:
  652. * We should flush all tlbs if spte is dropped even though guest is
  653. * responsible for it. Since if we don't, kvm_mmu_notifier_invalidate_page
  654. * and kvm_mmu_notifier_invalidate_range_start detect the mapping page isn't
  655. * used by guest then tlbs are not flushed, so guest is allowed to access the
  656. * freed pages.
  657. * And we increase kvm->tlbs_dirty to delay tlbs flush in this case.
  658. */
  659. static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  660. {
  661. int i, offset, nr_present;
  662. bool host_writable;
  663. gpa_t first_pte_gpa;
  664. offset = nr_present = 0;
  665. /* direct kvm_mmu_page can not be unsync. */
  666. BUG_ON(sp->role.direct);
  667. if (PTTYPE == 32)
  668. offset = sp->role.quadrant << PT64_LEVEL_BITS;
  669. first_pte_gpa = gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t);
  670. for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
  671. unsigned pte_access;
  672. pt_element_t gpte;
  673. gpa_t pte_gpa;
  674. gfn_t gfn;
  675. if (!is_shadow_present_pte(sp->spt[i]))
  676. continue;
  677. pte_gpa = first_pte_gpa + i * sizeof(pt_element_t);
  678. if (kvm_read_guest_atomic(vcpu->kvm, pte_gpa, &gpte,
  679. sizeof(pt_element_t)))
  680. return -EINVAL;
  681. gfn = gpte_to_gfn(gpte);
  682. if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) {
  683. vcpu->kvm->tlbs_dirty++;
  684. continue;
  685. }
  686. if (gfn != sp->gfns[i]) {
  687. drop_spte(vcpu->kvm, &sp->spt[i],
  688. shadow_trap_nonpresent_pte);
  689. vcpu->kvm->tlbs_dirty++;
  690. continue;
  691. }
  692. nr_present++;
  693. pte_access = sp->role.access & FNAME(gpte_access)(vcpu, gpte);
  694. host_writable = sp->spt[i] & SPTE_HOST_WRITEABLE;
  695. set_spte(vcpu, &sp->spt[i], pte_access, 0, 0,
  696. is_dirty_gpte(gpte), PT_PAGE_TABLE_LEVEL, gfn,
  697. spte_to_pfn(sp->spt[i]), true, false,
  698. host_writable);
  699. }
  700. return !nr_present;
  701. }
  702. #undef pt_element_t
  703. #undef guest_walker
  704. #undef FNAME
  705. #undef PT_BASE_ADDR_MASK
  706. #undef PT_INDEX
  707. #undef PT_LVL_ADDR_MASK
  708. #undef PT_LVL_OFFSET_MASK
  709. #undef PT_LEVEL_BITS
  710. #undef PT_MAX_FULL_LEVELS
  711. #undef gpte_to_gfn
  712. #undef gpte_to_gfn_lvl
  713. #undef CMPXCHG