perf_event_amd.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600
  1. #ifdef CONFIG_CPU_SUP_AMD
  2. static __initconst const u64 amd_hw_cache_event_ids
  3. [PERF_COUNT_HW_CACHE_MAX]
  4. [PERF_COUNT_HW_CACHE_OP_MAX]
  5. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  6. {
  7. [ C(L1D) ] = {
  8. [ C(OP_READ) ] = {
  9. [ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses */
  10. [ C(RESULT_MISS) ] = 0x0141, /* Data Cache Misses */
  11. },
  12. [ C(OP_WRITE) ] = {
  13. [ C(RESULT_ACCESS) ] = 0x0142, /* Data Cache Refills :system */
  14. [ C(RESULT_MISS) ] = 0,
  15. },
  16. [ C(OP_PREFETCH) ] = {
  17. [ C(RESULT_ACCESS) ] = 0x0267, /* Data Prefetcher :attempts */
  18. [ C(RESULT_MISS) ] = 0x0167, /* Data Prefetcher :cancelled */
  19. },
  20. },
  21. [ C(L1I ) ] = {
  22. [ C(OP_READ) ] = {
  23. [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction cache fetches */
  24. [ C(RESULT_MISS) ] = 0x0081, /* Instruction cache misses */
  25. },
  26. [ C(OP_WRITE) ] = {
  27. [ C(RESULT_ACCESS) ] = -1,
  28. [ C(RESULT_MISS) ] = -1,
  29. },
  30. [ C(OP_PREFETCH) ] = {
  31. [ C(RESULT_ACCESS) ] = 0x014B, /* Prefetch Instructions :Load */
  32. [ C(RESULT_MISS) ] = 0,
  33. },
  34. },
  35. [ C(LL ) ] = {
  36. [ C(OP_READ) ] = {
  37. [ C(RESULT_ACCESS) ] = 0x037D, /* Requests to L2 Cache :IC+DC */
  38. [ C(RESULT_MISS) ] = 0x037E, /* L2 Cache Misses : IC+DC */
  39. },
  40. [ C(OP_WRITE) ] = {
  41. [ C(RESULT_ACCESS) ] = 0x017F, /* L2 Fill/Writeback */
  42. [ C(RESULT_MISS) ] = 0,
  43. },
  44. [ C(OP_PREFETCH) ] = {
  45. [ C(RESULT_ACCESS) ] = 0,
  46. [ C(RESULT_MISS) ] = 0,
  47. },
  48. },
  49. [ C(DTLB) ] = {
  50. [ C(OP_READ) ] = {
  51. [ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses */
  52. [ C(RESULT_MISS) ] = 0x0746, /* L1_DTLB_AND_L2_DLTB_MISS.ALL */
  53. },
  54. [ C(OP_WRITE) ] = {
  55. [ C(RESULT_ACCESS) ] = 0,
  56. [ C(RESULT_MISS) ] = 0,
  57. },
  58. [ C(OP_PREFETCH) ] = {
  59. [ C(RESULT_ACCESS) ] = 0,
  60. [ C(RESULT_MISS) ] = 0,
  61. },
  62. },
  63. [ C(ITLB) ] = {
  64. [ C(OP_READ) ] = {
  65. [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction fecthes */
  66. [ C(RESULT_MISS) ] = 0x0385, /* L1_ITLB_AND_L2_ITLB_MISS.ALL */
  67. },
  68. [ C(OP_WRITE) ] = {
  69. [ C(RESULT_ACCESS) ] = -1,
  70. [ C(RESULT_MISS) ] = -1,
  71. },
  72. [ C(OP_PREFETCH) ] = {
  73. [ C(RESULT_ACCESS) ] = -1,
  74. [ C(RESULT_MISS) ] = -1,
  75. },
  76. },
  77. [ C(BPU ) ] = {
  78. [ C(OP_READ) ] = {
  79. [ C(RESULT_ACCESS) ] = 0x00c2, /* Retired Branch Instr. */
  80. [ C(RESULT_MISS) ] = 0x00c3, /* Retired Mispredicted BI */
  81. },
  82. [ C(OP_WRITE) ] = {
  83. [ C(RESULT_ACCESS) ] = -1,
  84. [ C(RESULT_MISS) ] = -1,
  85. },
  86. [ C(OP_PREFETCH) ] = {
  87. [ C(RESULT_ACCESS) ] = -1,
  88. [ C(RESULT_MISS) ] = -1,
  89. },
  90. },
  91. };
  92. /*
  93. * AMD Performance Monitor K7 and later.
  94. */
  95. static const u64 amd_perfmon_event_map[] =
  96. {
  97. [PERF_COUNT_HW_CPU_CYCLES] = 0x0076,
  98. [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
  99. [PERF_COUNT_HW_CACHE_REFERENCES] = 0x0080,
  100. [PERF_COUNT_HW_CACHE_MISSES] = 0x0081,
  101. [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c2,
  102. [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c3,
  103. [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x00d0, /* "Decoder empty" event */
  104. [PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 0x00d1, /* "Dispatch stalls" event */
  105. };
  106. static u64 amd_pmu_event_map(int hw_event)
  107. {
  108. return amd_perfmon_event_map[hw_event];
  109. }
  110. static int amd_pmu_hw_config(struct perf_event *event)
  111. {
  112. int ret = x86_pmu_hw_config(event);
  113. if (ret)
  114. return ret;
  115. if (event->attr.type != PERF_TYPE_RAW)
  116. return 0;
  117. event->hw.config |= event->attr.config & AMD64_RAW_EVENT_MASK;
  118. return 0;
  119. }
  120. /*
  121. * AMD64 events are detected based on their event codes.
  122. */
  123. static inline unsigned int amd_get_event_code(struct hw_perf_event *hwc)
  124. {
  125. return ((hwc->config >> 24) & 0x0f00) | (hwc->config & 0x00ff);
  126. }
  127. static inline int amd_is_nb_event(struct hw_perf_event *hwc)
  128. {
  129. return (hwc->config & 0xe0) == 0xe0;
  130. }
  131. static inline int amd_has_nb(struct cpu_hw_events *cpuc)
  132. {
  133. struct amd_nb *nb = cpuc->amd_nb;
  134. return nb && nb->nb_id != -1;
  135. }
  136. static void amd_put_event_constraints(struct cpu_hw_events *cpuc,
  137. struct perf_event *event)
  138. {
  139. struct hw_perf_event *hwc = &event->hw;
  140. struct amd_nb *nb = cpuc->amd_nb;
  141. int i;
  142. /*
  143. * only care about NB events
  144. */
  145. if (!(amd_has_nb(cpuc) && amd_is_nb_event(hwc)))
  146. return;
  147. /*
  148. * need to scan whole list because event may not have
  149. * been assigned during scheduling
  150. *
  151. * no race condition possible because event can only
  152. * be removed on one CPU at a time AND PMU is disabled
  153. * when we come here
  154. */
  155. for (i = 0; i < x86_pmu.num_counters; i++) {
  156. if (nb->owners[i] == event) {
  157. cmpxchg(nb->owners+i, event, NULL);
  158. break;
  159. }
  160. }
  161. }
  162. /*
  163. * AMD64 NorthBridge events need special treatment because
  164. * counter access needs to be synchronized across all cores
  165. * of a package. Refer to BKDG section 3.12
  166. *
  167. * NB events are events measuring L3 cache, Hypertransport
  168. * traffic. They are identified by an event code >= 0xe00.
  169. * They measure events on the NorthBride which is shared
  170. * by all cores on a package. NB events are counted on a
  171. * shared set of counters. When a NB event is programmed
  172. * in a counter, the data actually comes from a shared
  173. * counter. Thus, access to those counters needs to be
  174. * synchronized.
  175. *
  176. * We implement the synchronization such that no two cores
  177. * can be measuring NB events using the same counters. Thus,
  178. * we maintain a per-NB allocation table. The available slot
  179. * is propagated using the event_constraint structure.
  180. *
  181. * We provide only one choice for each NB event based on
  182. * the fact that only NB events have restrictions. Consequently,
  183. * if a counter is available, there is a guarantee the NB event
  184. * will be assigned to it. If no slot is available, an empty
  185. * constraint is returned and scheduling will eventually fail
  186. * for this event.
  187. *
  188. * Note that all cores attached the same NB compete for the same
  189. * counters to host NB events, this is why we use atomic ops. Some
  190. * multi-chip CPUs may have more than one NB.
  191. *
  192. * Given that resources are allocated (cmpxchg), they must be
  193. * eventually freed for others to use. This is accomplished by
  194. * calling amd_put_event_constraints().
  195. *
  196. * Non NB events are not impacted by this restriction.
  197. */
  198. static struct event_constraint *
  199. amd_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
  200. {
  201. struct hw_perf_event *hwc = &event->hw;
  202. struct amd_nb *nb = cpuc->amd_nb;
  203. struct perf_event *old = NULL;
  204. int max = x86_pmu.num_counters;
  205. int i, j, k = -1;
  206. /*
  207. * if not NB event or no NB, then no constraints
  208. */
  209. if (!(amd_has_nb(cpuc) && amd_is_nb_event(hwc)))
  210. return &unconstrained;
  211. /*
  212. * detect if already present, if so reuse
  213. *
  214. * cannot merge with actual allocation
  215. * because of possible holes
  216. *
  217. * event can already be present yet not assigned (in hwc->idx)
  218. * because of successive calls to x86_schedule_events() from
  219. * hw_perf_group_sched_in() without hw_perf_enable()
  220. */
  221. for (i = 0; i < max; i++) {
  222. /*
  223. * keep track of first free slot
  224. */
  225. if (k == -1 && !nb->owners[i])
  226. k = i;
  227. /* already present, reuse */
  228. if (nb->owners[i] == event)
  229. goto done;
  230. }
  231. /*
  232. * not present, so grab a new slot
  233. * starting either at:
  234. */
  235. if (hwc->idx != -1) {
  236. /* previous assignment */
  237. i = hwc->idx;
  238. } else if (k != -1) {
  239. /* start from free slot found */
  240. i = k;
  241. } else {
  242. /*
  243. * event not found, no slot found in
  244. * first pass, try again from the
  245. * beginning
  246. */
  247. i = 0;
  248. }
  249. j = i;
  250. do {
  251. old = cmpxchg(nb->owners+i, NULL, event);
  252. if (!old)
  253. break;
  254. if (++i == max)
  255. i = 0;
  256. } while (i != j);
  257. done:
  258. if (!old)
  259. return &nb->event_constraints[i];
  260. return &emptyconstraint;
  261. }
  262. static struct amd_nb *amd_alloc_nb(int cpu)
  263. {
  264. struct amd_nb *nb;
  265. int i;
  266. nb = kmalloc_node(sizeof(struct amd_nb), GFP_KERNEL | __GFP_ZERO,
  267. cpu_to_node(cpu));
  268. if (!nb)
  269. return NULL;
  270. nb->nb_id = -1;
  271. /*
  272. * initialize all possible NB constraints
  273. */
  274. for (i = 0; i < x86_pmu.num_counters; i++) {
  275. __set_bit(i, nb->event_constraints[i].idxmsk);
  276. nb->event_constraints[i].weight = 1;
  277. }
  278. return nb;
  279. }
  280. static int amd_pmu_cpu_prepare(int cpu)
  281. {
  282. struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
  283. WARN_ON_ONCE(cpuc->amd_nb);
  284. if (boot_cpu_data.x86_max_cores < 2)
  285. return NOTIFY_OK;
  286. cpuc->amd_nb = amd_alloc_nb(cpu);
  287. if (!cpuc->amd_nb)
  288. return NOTIFY_BAD;
  289. return NOTIFY_OK;
  290. }
  291. static void amd_pmu_cpu_starting(int cpu)
  292. {
  293. struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
  294. struct amd_nb *nb;
  295. int i, nb_id;
  296. if (boot_cpu_data.x86_max_cores < 2)
  297. return;
  298. nb_id = amd_get_nb_id(cpu);
  299. WARN_ON_ONCE(nb_id == BAD_APICID);
  300. for_each_online_cpu(i) {
  301. nb = per_cpu(cpu_hw_events, i).amd_nb;
  302. if (WARN_ON_ONCE(!nb))
  303. continue;
  304. if (nb->nb_id == nb_id) {
  305. kfree(cpuc->amd_nb);
  306. cpuc->amd_nb = nb;
  307. break;
  308. }
  309. }
  310. cpuc->amd_nb->nb_id = nb_id;
  311. cpuc->amd_nb->refcnt++;
  312. }
  313. static void amd_pmu_cpu_dead(int cpu)
  314. {
  315. struct cpu_hw_events *cpuhw;
  316. if (boot_cpu_data.x86_max_cores < 2)
  317. return;
  318. cpuhw = &per_cpu(cpu_hw_events, cpu);
  319. if (cpuhw->amd_nb) {
  320. struct amd_nb *nb = cpuhw->amd_nb;
  321. if (nb->nb_id == -1 || --nb->refcnt == 0)
  322. kfree(nb);
  323. cpuhw->amd_nb = NULL;
  324. }
  325. }
  326. static __initconst const struct x86_pmu amd_pmu = {
  327. .name = "AMD",
  328. .handle_irq = x86_pmu_handle_irq,
  329. .disable_all = x86_pmu_disable_all,
  330. .enable_all = x86_pmu_enable_all,
  331. .enable = x86_pmu_enable_event,
  332. .disable = x86_pmu_disable_event,
  333. .hw_config = amd_pmu_hw_config,
  334. .schedule_events = x86_schedule_events,
  335. .eventsel = MSR_K7_EVNTSEL0,
  336. .perfctr = MSR_K7_PERFCTR0,
  337. .event_map = amd_pmu_event_map,
  338. .max_events = ARRAY_SIZE(amd_perfmon_event_map),
  339. .num_counters = 4,
  340. .cntval_bits = 48,
  341. .cntval_mask = (1ULL << 48) - 1,
  342. .apic = 1,
  343. /* use highest bit to detect overflow */
  344. .max_period = (1ULL << 47) - 1,
  345. .get_event_constraints = amd_get_event_constraints,
  346. .put_event_constraints = amd_put_event_constraints,
  347. .cpu_prepare = amd_pmu_cpu_prepare,
  348. .cpu_starting = amd_pmu_cpu_starting,
  349. .cpu_dead = amd_pmu_cpu_dead,
  350. };
  351. /* AMD Family 15h */
  352. #define AMD_EVENT_TYPE_MASK 0x000000F0ULL
  353. #define AMD_EVENT_FP 0x00000000ULL ... 0x00000010ULL
  354. #define AMD_EVENT_LS 0x00000020ULL ... 0x00000030ULL
  355. #define AMD_EVENT_DC 0x00000040ULL ... 0x00000050ULL
  356. #define AMD_EVENT_CU 0x00000060ULL ... 0x00000070ULL
  357. #define AMD_EVENT_IC_DE 0x00000080ULL ... 0x00000090ULL
  358. #define AMD_EVENT_EX_LS 0x000000C0ULL
  359. #define AMD_EVENT_DE 0x000000D0ULL
  360. #define AMD_EVENT_NB 0x000000E0ULL ... 0x000000F0ULL
  361. /*
  362. * AMD family 15h event code/PMC mappings:
  363. *
  364. * type = event_code & 0x0F0:
  365. *
  366. * 0x000 FP PERF_CTL[5:3]
  367. * 0x010 FP PERF_CTL[5:3]
  368. * 0x020 LS PERF_CTL[5:0]
  369. * 0x030 LS PERF_CTL[5:0]
  370. * 0x040 DC PERF_CTL[5:0]
  371. * 0x050 DC PERF_CTL[5:0]
  372. * 0x060 CU PERF_CTL[2:0]
  373. * 0x070 CU PERF_CTL[2:0]
  374. * 0x080 IC/DE PERF_CTL[2:0]
  375. * 0x090 IC/DE PERF_CTL[2:0]
  376. * 0x0A0 ---
  377. * 0x0B0 ---
  378. * 0x0C0 EX/LS PERF_CTL[5:0]
  379. * 0x0D0 DE PERF_CTL[2:0]
  380. * 0x0E0 NB NB_PERF_CTL[3:0]
  381. * 0x0F0 NB NB_PERF_CTL[3:0]
  382. *
  383. * Exceptions:
  384. *
  385. * 0x000 FP PERF_CTL[3], PERF_CTL[5:3] (*)
  386. * 0x003 FP PERF_CTL[3]
  387. * 0x004 FP PERF_CTL[3], PERF_CTL[5:3] (*)
  388. * 0x00B FP PERF_CTL[3]
  389. * 0x00D FP PERF_CTL[3]
  390. * 0x023 DE PERF_CTL[2:0]
  391. * 0x02D LS PERF_CTL[3]
  392. * 0x02E LS PERF_CTL[3,0]
  393. * 0x043 CU PERF_CTL[2:0]
  394. * 0x045 CU PERF_CTL[2:0]
  395. * 0x046 CU PERF_CTL[2:0]
  396. * 0x054 CU PERF_CTL[2:0]
  397. * 0x055 CU PERF_CTL[2:0]
  398. * 0x08F IC PERF_CTL[0]
  399. * 0x187 DE PERF_CTL[0]
  400. * 0x188 DE PERF_CTL[0]
  401. * 0x0DB EX PERF_CTL[5:0]
  402. * 0x0DC LS PERF_CTL[5:0]
  403. * 0x0DD LS PERF_CTL[5:0]
  404. * 0x0DE LS PERF_CTL[5:0]
  405. * 0x0DF LS PERF_CTL[5:0]
  406. * 0x1D6 EX PERF_CTL[5:0]
  407. * 0x1D8 EX PERF_CTL[5:0]
  408. *
  409. * (*) depending on the umask all FPU counters may be used
  410. */
  411. static struct event_constraint amd_f15_PMC0 = EVENT_CONSTRAINT(0, 0x01, 0);
  412. static struct event_constraint amd_f15_PMC20 = EVENT_CONSTRAINT(0, 0x07, 0);
  413. static struct event_constraint amd_f15_PMC3 = EVENT_CONSTRAINT(0, 0x08, 0);
  414. static struct event_constraint amd_f15_PMC30 = EVENT_CONSTRAINT(0, 0x09, 0);
  415. static struct event_constraint amd_f15_PMC50 = EVENT_CONSTRAINT(0, 0x3F, 0);
  416. static struct event_constraint amd_f15_PMC53 = EVENT_CONSTRAINT(0, 0x38, 0);
  417. static struct event_constraint *
  418. amd_get_event_constraints_f15h(struct cpu_hw_events *cpuc, struct perf_event *event)
  419. {
  420. struct hw_perf_event *hwc = &event->hw;
  421. unsigned int event_code = amd_get_event_code(hwc);
  422. switch (event_code & AMD_EVENT_TYPE_MASK) {
  423. case AMD_EVENT_FP:
  424. switch (event_code) {
  425. case 0x000:
  426. if (!(hwc->config & 0x0000F000ULL))
  427. break;
  428. if (!(hwc->config & 0x00000F00ULL))
  429. break;
  430. return &amd_f15_PMC3;
  431. case 0x004:
  432. if (hweight_long(hwc->config & ARCH_PERFMON_EVENTSEL_UMASK) <= 1)
  433. break;
  434. return &amd_f15_PMC3;
  435. case 0x003:
  436. case 0x00B:
  437. case 0x00D:
  438. return &amd_f15_PMC3;
  439. }
  440. return &amd_f15_PMC53;
  441. case AMD_EVENT_LS:
  442. case AMD_EVENT_DC:
  443. case AMD_EVENT_EX_LS:
  444. switch (event_code) {
  445. case 0x023:
  446. case 0x043:
  447. case 0x045:
  448. case 0x046:
  449. case 0x054:
  450. case 0x055:
  451. return &amd_f15_PMC20;
  452. case 0x02D:
  453. return &amd_f15_PMC3;
  454. case 0x02E:
  455. return &amd_f15_PMC30;
  456. default:
  457. return &amd_f15_PMC50;
  458. }
  459. case AMD_EVENT_CU:
  460. case AMD_EVENT_IC_DE:
  461. case AMD_EVENT_DE:
  462. switch (event_code) {
  463. case 0x08F:
  464. case 0x187:
  465. case 0x188:
  466. return &amd_f15_PMC0;
  467. case 0x0DB ... 0x0DF:
  468. case 0x1D6:
  469. case 0x1D8:
  470. return &amd_f15_PMC50;
  471. default:
  472. return &amd_f15_PMC20;
  473. }
  474. case AMD_EVENT_NB:
  475. /* not yet implemented */
  476. return &emptyconstraint;
  477. default:
  478. return &emptyconstraint;
  479. }
  480. }
  481. static __initconst const struct x86_pmu amd_pmu_f15h = {
  482. .name = "AMD Family 15h",
  483. .handle_irq = x86_pmu_handle_irq,
  484. .disable_all = x86_pmu_disable_all,
  485. .enable_all = x86_pmu_enable_all,
  486. .enable = x86_pmu_enable_event,
  487. .disable = x86_pmu_disable_event,
  488. .hw_config = amd_pmu_hw_config,
  489. .schedule_events = x86_schedule_events,
  490. .eventsel = MSR_F15H_PERF_CTL,
  491. .perfctr = MSR_F15H_PERF_CTR,
  492. .event_map = amd_pmu_event_map,
  493. .max_events = ARRAY_SIZE(amd_perfmon_event_map),
  494. .num_counters = 6,
  495. .cntval_bits = 48,
  496. .cntval_mask = (1ULL << 48) - 1,
  497. .apic = 1,
  498. /* use highest bit to detect overflow */
  499. .max_period = (1ULL << 47) - 1,
  500. .get_event_constraints = amd_get_event_constraints_f15h,
  501. /* nortbridge counters not yet implemented: */
  502. #if 0
  503. .put_event_constraints = amd_put_event_constraints,
  504. .cpu_prepare = amd_pmu_cpu_prepare,
  505. .cpu_starting = amd_pmu_cpu_starting,
  506. .cpu_dead = amd_pmu_cpu_dead,
  507. #endif
  508. };
  509. static __init int amd_pmu_init(void)
  510. {
  511. /* Performance-monitoring supported from K7 and later: */
  512. if (boot_cpu_data.x86 < 6)
  513. return -ENODEV;
  514. /*
  515. * If core performance counter extensions exists, it must be
  516. * family 15h, otherwise fail. See x86_pmu_addr_offset().
  517. */
  518. switch (boot_cpu_data.x86) {
  519. case 0x15:
  520. if (!cpu_has_perfctr_core)
  521. return -ENODEV;
  522. x86_pmu = amd_pmu_f15h;
  523. break;
  524. default:
  525. if (cpu_has_perfctr_core)
  526. return -ENODEV;
  527. x86_pmu = amd_pmu;
  528. break;
  529. }
  530. /* Events are common for all AMDs */
  531. memcpy(hw_cache_event_ids, amd_hw_cache_event_ids,
  532. sizeof(hw_cache_event_ids));
  533. return 0;
  534. }
  535. #else /* CONFIG_CPU_SUP_AMD */
  536. static int amd_pmu_init(void)
  537. {
  538. return 0;
  539. }
  540. #endif