setup.c 43 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528
  1. /*
  2. * Copyright 2010 Tilera Corporation. All Rights Reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public License
  6. * as published by the Free Software Foundation, version 2.
  7. *
  8. * This program is distributed in the hope that it will be useful, but
  9. * WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  11. * NON INFRINGEMENT. See the GNU General Public License for
  12. * more details.
  13. */
  14. #include <linux/sched.h>
  15. #include <linux/kernel.h>
  16. #include <linux/mmzone.h>
  17. #include <linux/bootmem.h>
  18. #include <linux/module.h>
  19. #include <linux/node.h>
  20. #include <linux/cpu.h>
  21. #include <linux/ioport.h>
  22. #include <linux/irq.h>
  23. #include <linux/kexec.h>
  24. #include <linux/pci.h>
  25. #include <linux/initrd.h>
  26. #include <linux/io.h>
  27. #include <linux/highmem.h>
  28. #include <linux/smp.h>
  29. #include <linux/timex.h>
  30. #include <asm/setup.h>
  31. #include <asm/sections.h>
  32. #include <asm/cacheflush.h>
  33. #include <asm/pgalloc.h>
  34. #include <asm/mmu_context.h>
  35. #include <hv/hypervisor.h>
  36. #include <arch/interrupts.h>
  37. /* <linux/smp.h> doesn't provide this definition. */
  38. #ifndef CONFIG_SMP
  39. #define setup_max_cpus 1
  40. #endif
  41. static inline int ABS(int x) { return x >= 0 ? x : -x; }
  42. /* Chip information */
  43. char chip_model[64] __write_once;
  44. struct pglist_data node_data[MAX_NUMNODES] __read_mostly;
  45. EXPORT_SYMBOL(node_data);
  46. /* We only create bootmem data on node 0. */
  47. static bootmem_data_t __initdata node0_bdata;
  48. /* Information on the NUMA nodes that we compute early */
  49. unsigned long __cpuinitdata node_start_pfn[MAX_NUMNODES];
  50. unsigned long __cpuinitdata node_end_pfn[MAX_NUMNODES];
  51. unsigned long __initdata node_memmap_pfn[MAX_NUMNODES];
  52. unsigned long __initdata node_percpu_pfn[MAX_NUMNODES];
  53. unsigned long __initdata node_free_pfn[MAX_NUMNODES];
  54. static unsigned long __initdata node_percpu[MAX_NUMNODES];
  55. #ifdef CONFIG_HIGHMEM
  56. /* Page frame index of end of lowmem on each controller. */
  57. unsigned long __cpuinitdata node_lowmem_end_pfn[MAX_NUMNODES];
  58. /* Number of pages that can be mapped into lowmem. */
  59. static unsigned long __initdata mappable_physpages;
  60. #endif
  61. /* Data on which physical memory controller corresponds to which NUMA node */
  62. int node_controller[MAX_NUMNODES] = { [0 ... MAX_NUMNODES-1] = -1 };
  63. #ifdef CONFIG_HIGHMEM
  64. /* Map information from VAs to PAs */
  65. unsigned long pbase_map[1 << (32 - HPAGE_SHIFT)]
  66. __write_once __attribute__((aligned(L2_CACHE_BYTES)));
  67. EXPORT_SYMBOL(pbase_map);
  68. /* Map information from PAs to VAs */
  69. void *vbase_map[NR_PA_HIGHBIT_VALUES]
  70. __write_once __attribute__((aligned(L2_CACHE_BYTES)));
  71. EXPORT_SYMBOL(vbase_map);
  72. #endif
  73. /* Node number as a function of the high PA bits */
  74. int highbits_to_node[NR_PA_HIGHBIT_VALUES] __write_once;
  75. EXPORT_SYMBOL(highbits_to_node);
  76. static unsigned int __initdata maxmem_pfn = -1U;
  77. static unsigned int __initdata maxnodemem_pfn[MAX_NUMNODES] = {
  78. [0 ... MAX_NUMNODES-1] = -1U
  79. };
  80. static nodemask_t __initdata isolnodes;
  81. #ifdef CONFIG_PCI
  82. enum { DEFAULT_PCI_RESERVE_MB = 64 };
  83. static unsigned int __initdata pci_reserve_mb = DEFAULT_PCI_RESERVE_MB;
  84. unsigned long __initdata pci_reserve_start_pfn = -1U;
  85. unsigned long __initdata pci_reserve_end_pfn = -1U;
  86. #endif
  87. static int __init setup_maxmem(char *str)
  88. {
  89. long maxmem_mb;
  90. if (str == NULL || strict_strtol(str, 0, &maxmem_mb) != 0 ||
  91. maxmem_mb == 0)
  92. return -EINVAL;
  93. maxmem_pfn = (maxmem_mb >> (HPAGE_SHIFT - 20)) <<
  94. (HPAGE_SHIFT - PAGE_SHIFT);
  95. pr_info("Forcing RAM used to no more than %dMB\n",
  96. maxmem_pfn >> (20 - PAGE_SHIFT));
  97. return 0;
  98. }
  99. early_param("maxmem", setup_maxmem);
  100. static int __init setup_maxnodemem(char *str)
  101. {
  102. char *endp;
  103. long maxnodemem_mb, node;
  104. node = str ? simple_strtoul(str, &endp, 0) : INT_MAX;
  105. if (node >= MAX_NUMNODES || *endp != ':' ||
  106. strict_strtol(endp+1, 0, &maxnodemem_mb) != 0)
  107. return -EINVAL;
  108. maxnodemem_pfn[node] = (maxnodemem_mb >> (HPAGE_SHIFT - 20)) <<
  109. (HPAGE_SHIFT - PAGE_SHIFT);
  110. pr_info("Forcing RAM used on node %ld to no more than %dMB\n",
  111. node, maxnodemem_pfn[node] >> (20 - PAGE_SHIFT));
  112. return 0;
  113. }
  114. early_param("maxnodemem", setup_maxnodemem);
  115. static int __init setup_isolnodes(char *str)
  116. {
  117. char buf[MAX_NUMNODES * 5];
  118. if (str == NULL || nodelist_parse(str, isolnodes) != 0)
  119. return -EINVAL;
  120. nodelist_scnprintf(buf, sizeof(buf), isolnodes);
  121. pr_info("Set isolnodes value to '%s'\n", buf);
  122. return 0;
  123. }
  124. early_param("isolnodes", setup_isolnodes);
  125. #ifdef CONFIG_PCI
  126. static int __init setup_pci_reserve(char* str)
  127. {
  128. unsigned long mb;
  129. if (str == NULL || strict_strtoul(str, 0, &mb) != 0 ||
  130. mb > 3 * 1024)
  131. return -EINVAL;
  132. pci_reserve_mb = mb;
  133. pr_info("Reserving %dMB for PCIE root complex mappings\n",
  134. pci_reserve_mb);
  135. return 0;
  136. }
  137. early_param("pci_reserve", setup_pci_reserve);
  138. #endif
  139. #ifndef __tilegx__
  140. /*
  141. * vmalloc=size forces the vmalloc area to be exactly 'size' bytes.
  142. * This can be used to increase (or decrease) the vmalloc area.
  143. */
  144. static int __init parse_vmalloc(char *arg)
  145. {
  146. if (!arg)
  147. return -EINVAL;
  148. VMALLOC_RESERVE = (memparse(arg, &arg) + PGDIR_SIZE - 1) & PGDIR_MASK;
  149. /* See validate_va() for more on this test. */
  150. if ((long)_VMALLOC_START >= 0)
  151. early_panic("\"vmalloc=%#lx\" value too large: maximum %#lx\n",
  152. VMALLOC_RESERVE, _VMALLOC_END - 0x80000000UL);
  153. return 0;
  154. }
  155. early_param("vmalloc", parse_vmalloc);
  156. #endif
  157. #ifdef CONFIG_HIGHMEM
  158. /*
  159. * Determine for each controller where its lowmem is mapped and how much of
  160. * it is mapped there. On controller zero, the first few megabytes are
  161. * already mapped in as code at MEM_SV_INTRPT, so in principle we could
  162. * start our data mappings higher up, but for now we don't bother, to avoid
  163. * additional confusion.
  164. *
  165. * One question is whether, on systems with more than 768 Mb and
  166. * controllers of different sizes, to map in a proportionate amount of
  167. * each one, or to try to map the same amount from each controller.
  168. * (E.g. if we have three controllers with 256MB, 1GB, and 256MB
  169. * respectively, do we map 256MB from each, or do we map 128 MB, 512
  170. * MB, and 128 MB respectively?) For now we use a proportionate
  171. * solution like the latter.
  172. *
  173. * The VA/PA mapping demands that we align our decisions at 16 MB
  174. * boundaries so that we can rapidly convert VA to PA.
  175. */
  176. static void *__init setup_pa_va_mapping(void)
  177. {
  178. unsigned long curr_pages = 0;
  179. unsigned long vaddr = PAGE_OFFSET;
  180. nodemask_t highonlynodes = isolnodes;
  181. int i, j;
  182. memset(pbase_map, -1, sizeof(pbase_map));
  183. memset(vbase_map, -1, sizeof(vbase_map));
  184. /* Node zero cannot be isolated for LOWMEM purposes. */
  185. node_clear(0, highonlynodes);
  186. /* Count up the number of pages on non-highonlynodes controllers. */
  187. mappable_physpages = 0;
  188. for_each_online_node(i) {
  189. if (!node_isset(i, highonlynodes))
  190. mappable_physpages +=
  191. node_end_pfn[i] - node_start_pfn[i];
  192. }
  193. for_each_online_node(i) {
  194. unsigned long start = node_start_pfn[i];
  195. unsigned long end = node_end_pfn[i];
  196. unsigned long size = end - start;
  197. unsigned long vaddr_end;
  198. if (node_isset(i, highonlynodes)) {
  199. /* Mark this controller as having no lowmem. */
  200. node_lowmem_end_pfn[i] = start;
  201. continue;
  202. }
  203. curr_pages += size;
  204. if (mappable_physpages > MAXMEM_PFN) {
  205. vaddr_end = PAGE_OFFSET +
  206. (((u64)curr_pages * MAXMEM_PFN /
  207. mappable_physpages)
  208. << PAGE_SHIFT);
  209. } else {
  210. vaddr_end = PAGE_OFFSET + (curr_pages << PAGE_SHIFT);
  211. }
  212. for (j = 0; vaddr < vaddr_end; vaddr += HPAGE_SIZE, ++j) {
  213. unsigned long this_pfn =
  214. start + (j << HUGETLB_PAGE_ORDER);
  215. pbase_map[vaddr >> HPAGE_SHIFT] = this_pfn;
  216. if (vbase_map[__pfn_to_highbits(this_pfn)] ==
  217. (void *)-1)
  218. vbase_map[__pfn_to_highbits(this_pfn)] =
  219. (void *)(vaddr & HPAGE_MASK);
  220. }
  221. node_lowmem_end_pfn[i] = start + (j << HUGETLB_PAGE_ORDER);
  222. BUG_ON(node_lowmem_end_pfn[i] > end);
  223. }
  224. /* Return highest address of any mapped memory. */
  225. return (void *)vaddr;
  226. }
  227. #endif /* CONFIG_HIGHMEM */
  228. /*
  229. * Register our most important memory mappings with the debug stub.
  230. *
  231. * This is up to 4 mappings for lowmem, one mapping per memory
  232. * controller, plus one for our text segment.
  233. */
  234. static void __cpuinit store_permanent_mappings(void)
  235. {
  236. int i;
  237. for_each_online_node(i) {
  238. HV_PhysAddr pa = ((HV_PhysAddr)node_start_pfn[i]) << PAGE_SHIFT;
  239. #ifdef CONFIG_HIGHMEM
  240. HV_PhysAddr high_mapped_pa = node_lowmem_end_pfn[i];
  241. #else
  242. HV_PhysAddr high_mapped_pa = node_end_pfn[i];
  243. #endif
  244. unsigned long pages = high_mapped_pa - node_start_pfn[i];
  245. HV_VirtAddr addr = (HV_VirtAddr) __va(pa);
  246. hv_store_mapping(addr, pages << PAGE_SHIFT, pa);
  247. }
  248. hv_store_mapping((HV_VirtAddr)_stext,
  249. (uint32_t)(_einittext - _stext), 0);
  250. }
  251. /*
  252. * Use hv_inquire_physical() to populate node_{start,end}_pfn[]
  253. * and node_online_map, doing suitable sanity-checking.
  254. * Also set min_low_pfn, max_low_pfn, and max_pfn.
  255. */
  256. static void __init setup_memory(void)
  257. {
  258. int i, j;
  259. int highbits_seen[NR_PA_HIGHBIT_VALUES] = { 0 };
  260. #ifdef CONFIG_HIGHMEM
  261. long highmem_pages;
  262. #endif
  263. #ifndef __tilegx__
  264. int cap;
  265. #endif
  266. #if defined(CONFIG_HIGHMEM) || defined(__tilegx__)
  267. long lowmem_pages;
  268. #endif
  269. /* We are using a char to hold the cpu_2_node[] mapping */
  270. BUILD_BUG_ON(MAX_NUMNODES > 127);
  271. /* Discover the ranges of memory available to us */
  272. for (i = 0; ; ++i) {
  273. unsigned long start, size, end, highbits;
  274. HV_PhysAddrRange range = hv_inquire_physical(i);
  275. if (range.size == 0)
  276. break;
  277. #ifdef CONFIG_FLATMEM
  278. if (i > 0) {
  279. pr_err("Can't use discontiguous PAs: %#llx..%#llx\n",
  280. range.size, range.start + range.size);
  281. continue;
  282. }
  283. #endif
  284. #ifndef __tilegx__
  285. if ((unsigned long)range.start) {
  286. pr_err("Range not at 4GB multiple: %#llx..%#llx\n",
  287. range.start, range.start + range.size);
  288. continue;
  289. }
  290. #endif
  291. if ((range.start & (HPAGE_SIZE-1)) != 0 ||
  292. (range.size & (HPAGE_SIZE-1)) != 0) {
  293. unsigned long long start_pa = range.start;
  294. unsigned long long orig_size = range.size;
  295. range.start = (start_pa + HPAGE_SIZE - 1) & HPAGE_MASK;
  296. range.size -= (range.start - start_pa);
  297. range.size &= HPAGE_MASK;
  298. pr_err("Range not hugepage-aligned: %#llx..%#llx:"
  299. " now %#llx-%#llx\n",
  300. start_pa, start_pa + orig_size,
  301. range.start, range.start + range.size);
  302. }
  303. highbits = __pa_to_highbits(range.start);
  304. if (highbits >= NR_PA_HIGHBIT_VALUES) {
  305. pr_err("PA high bits too high: %#llx..%#llx\n",
  306. range.start, range.start + range.size);
  307. continue;
  308. }
  309. if (highbits_seen[highbits]) {
  310. pr_err("Range overlaps in high bits: %#llx..%#llx\n",
  311. range.start, range.start + range.size);
  312. continue;
  313. }
  314. highbits_seen[highbits] = 1;
  315. if (PFN_DOWN(range.size) > maxnodemem_pfn[i]) {
  316. int max_size = maxnodemem_pfn[i];
  317. if (max_size > 0) {
  318. pr_err("Maxnodemem reduced node %d to"
  319. " %d pages\n", i, max_size);
  320. range.size = PFN_PHYS(max_size);
  321. } else {
  322. pr_err("Maxnodemem disabled node %d\n", i);
  323. continue;
  324. }
  325. }
  326. if (num_physpages + PFN_DOWN(range.size) > maxmem_pfn) {
  327. int max_size = maxmem_pfn - num_physpages;
  328. if (max_size > 0) {
  329. pr_err("Maxmem reduced node %d to %d pages\n",
  330. i, max_size);
  331. range.size = PFN_PHYS(max_size);
  332. } else {
  333. pr_err("Maxmem disabled node %d\n", i);
  334. continue;
  335. }
  336. }
  337. if (i >= MAX_NUMNODES) {
  338. pr_err("Too many PA nodes (#%d): %#llx...%#llx\n",
  339. i, range.size, range.size + range.start);
  340. continue;
  341. }
  342. start = range.start >> PAGE_SHIFT;
  343. size = range.size >> PAGE_SHIFT;
  344. end = start + size;
  345. #ifndef __tilegx__
  346. if (((HV_PhysAddr)end << PAGE_SHIFT) !=
  347. (range.start + range.size)) {
  348. pr_err("PAs too high to represent: %#llx..%#llx\n",
  349. range.start, range.start + range.size);
  350. continue;
  351. }
  352. #endif
  353. #ifdef CONFIG_PCI
  354. /*
  355. * Blocks that overlap the pci reserved region must
  356. * have enough space to hold the maximum percpu data
  357. * region at the top of the range. If there isn't
  358. * enough space above the reserved region, just
  359. * truncate the node.
  360. */
  361. if (start <= pci_reserve_start_pfn &&
  362. end > pci_reserve_start_pfn) {
  363. unsigned int per_cpu_size =
  364. __per_cpu_end - __per_cpu_start;
  365. unsigned int percpu_pages =
  366. NR_CPUS * (PFN_UP(per_cpu_size) >> PAGE_SHIFT);
  367. if (end < pci_reserve_end_pfn + percpu_pages) {
  368. end = pci_reserve_start_pfn;
  369. pr_err("PCI mapping region reduced node %d to"
  370. " %ld pages\n", i, end - start);
  371. }
  372. }
  373. #endif
  374. for (j = __pfn_to_highbits(start);
  375. j <= __pfn_to_highbits(end - 1); j++)
  376. highbits_to_node[j] = i;
  377. node_start_pfn[i] = start;
  378. node_end_pfn[i] = end;
  379. node_controller[i] = range.controller;
  380. num_physpages += size;
  381. max_pfn = end;
  382. /* Mark node as online */
  383. node_set(i, node_online_map);
  384. node_set(i, node_possible_map);
  385. }
  386. #ifndef __tilegx__
  387. /*
  388. * For 4KB pages, mem_map "struct page" data is 1% of the size
  389. * of the physical memory, so can be quite big (640 MB for
  390. * four 16G zones). These structures must be mapped in
  391. * lowmem, and since we currently cap out at about 768 MB,
  392. * it's impractical to try to use this much address space.
  393. * For now, arbitrarily cap the amount of physical memory
  394. * we're willing to use at 8 million pages (32GB of 4KB pages).
  395. */
  396. cap = 8 * 1024 * 1024; /* 8 million pages */
  397. if (num_physpages > cap) {
  398. int num_nodes = num_online_nodes();
  399. int cap_each = cap / num_nodes;
  400. unsigned long dropped_pages = 0;
  401. for (i = 0; i < num_nodes; ++i) {
  402. int size = node_end_pfn[i] - node_start_pfn[i];
  403. if (size > cap_each) {
  404. dropped_pages += (size - cap_each);
  405. node_end_pfn[i] = node_start_pfn[i] + cap_each;
  406. }
  407. }
  408. num_physpages -= dropped_pages;
  409. pr_warning("Only using %ldMB memory;"
  410. " ignoring %ldMB.\n",
  411. num_physpages >> (20 - PAGE_SHIFT),
  412. dropped_pages >> (20 - PAGE_SHIFT));
  413. pr_warning("Consider using a larger page size.\n");
  414. }
  415. #endif
  416. /* Heap starts just above the last loaded address. */
  417. min_low_pfn = PFN_UP((unsigned long)_end - PAGE_OFFSET);
  418. #ifdef CONFIG_HIGHMEM
  419. /* Find where we map lowmem from each controller. */
  420. high_memory = setup_pa_va_mapping();
  421. /* Set max_low_pfn based on what node 0 can directly address. */
  422. max_low_pfn = node_lowmem_end_pfn[0];
  423. lowmem_pages = (mappable_physpages > MAXMEM_PFN) ?
  424. MAXMEM_PFN : mappable_physpages;
  425. highmem_pages = (long) (num_physpages - lowmem_pages);
  426. pr_notice("%ldMB HIGHMEM available.\n",
  427. pages_to_mb(highmem_pages > 0 ? highmem_pages : 0));
  428. pr_notice("%ldMB LOWMEM available.\n",
  429. pages_to_mb(lowmem_pages));
  430. #else
  431. /* Set max_low_pfn based on what node 0 can directly address. */
  432. max_low_pfn = node_end_pfn[0];
  433. #ifndef __tilegx__
  434. if (node_end_pfn[0] > MAXMEM_PFN) {
  435. pr_warning("Only using %ldMB LOWMEM.\n",
  436. MAXMEM>>20);
  437. pr_warning("Use a HIGHMEM enabled kernel.\n");
  438. max_low_pfn = MAXMEM_PFN;
  439. max_pfn = MAXMEM_PFN;
  440. num_physpages = MAXMEM_PFN;
  441. node_end_pfn[0] = MAXMEM_PFN;
  442. } else {
  443. pr_notice("%ldMB memory available.\n",
  444. pages_to_mb(node_end_pfn[0]));
  445. }
  446. for (i = 1; i < MAX_NUMNODES; ++i) {
  447. node_start_pfn[i] = 0;
  448. node_end_pfn[i] = 0;
  449. }
  450. high_memory = __va(node_end_pfn[0]);
  451. #else
  452. lowmem_pages = 0;
  453. for (i = 0; i < MAX_NUMNODES; ++i) {
  454. int pages = node_end_pfn[i] - node_start_pfn[i];
  455. lowmem_pages += pages;
  456. if (pages)
  457. high_memory = pfn_to_kaddr(node_end_pfn[i]);
  458. }
  459. pr_notice("%ldMB memory available.\n",
  460. pages_to_mb(lowmem_pages));
  461. #endif
  462. #endif
  463. }
  464. static void __init setup_bootmem_allocator(void)
  465. {
  466. unsigned long bootmap_size, first_alloc_pfn, last_alloc_pfn;
  467. /* Provide a node 0 bdata. */
  468. NODE_DATA(0)->bdata = &node0_bdata;
  469. #ifdef CONFIG_PCI
  470. /* Don't let boot memory alias the PCI region. */
  471. last_alloc_pfn = min(max_low_pfn, pci_reserve_start_pfn);
  472. #else
  473. last_alloc_pfn = max_low_pfn;
  474. #endif
  475. /*
  476. * Initialize the boot-time allocator (with low memory only):
  477. * The first argument says where to put the bitmap, and the
  478. * second says where the end of allocatable memory is.
  479. */
  480. bootmap_size = init_bootmem(min_low_pfn, last_alloc_pfn);
  481. /*
  482. * Let the bootmem allocator use all the space we've given it
  483. * except for its own bitmap.
  484. */
  485. first_alloc_pfn = min_low_pfn + PFN_UP(bootmap_size);
  486. if (first_alloc_pfn >= last_alloc_pfn)
  487. early_panic("Not enough memory on controller 0 for bootmem\n");
  488. free_bootmem(PFN_PHYS(first_alloc_pfn),
  489. PFN_PHYS(last_alloc_pfn - first_alloc_pfn));
  490. #ifdef CONFIG_KEXEC
  491. if (crashk_res.start != crashk_res.end)
  492. reserve_bootmem(crashk_res.start,
  493. crashk_res.end - crashk_res.start + 1, 0);
  494. #endif
  495. }
  496. void *__init alloc_remap(int nid, unsigned long size)
  497. {
  498. int pages = node_end_pfn[nid] - node_start_pfn[nid];
  499. void *map = pfn_to_kaddr(node_memmap_pfn[nid]);
  500. BUG_ON(size != pages * sizeof(struct page));
  501. memset(map, 0, size);
  502. return map;
  503. }
  504. static int __init percpu_size(void)
  505. {
  506. int size = __per_cpu_end - __per_cpu_start;
  507. size += PERCPU_MODULE_RESERVE;
  508. size += PERCPU_DYNAMIC_EARLY_SIZE;
  509. if (size < PCPU_MIN_UNIT_SIZE)
  510. size = PCPU_MIN_UNIT_SIZE;
  511. size = roundup(size, PAGE_SIZE);
  512. /* In several places we assume the per-cpu data fits on a huge page. */
  513. BUG_ON(kdata_huge && size > HPAGE_SIZE);
  514. return size;
  515. }
  516. static inline unsigned long alloc_bootmem_pfn(int size, unsigned long goal)
  517. {
  518. void *kva = __alloc_bootmem(size, PAGE_SIZE, goal);
  519. unsigned long pfn = kaddr_to_pfn(kva);
  520. BUG_ON(goal && PFN_PHYS(pfn) != goal);
  521. return pfn;
  522. }
  523. static void __init zone_sizes_init(void)
  524. {
  525. unsigned long zones_size[MAX_NR_ZONES] = { 0 };
  526. int size = percpu_size();
  527. int num_cpus = smp_height * smp_width;
  528. int i;
  529. for (i = 0; i < num_cpus; ++i)
  530. node_percpu[cpu_to_node(i)] += size;
  531. for_each_online_node(i) {
  532. unsigned long start = node_start_pfn[i];
  533. unsigned long end = node_end_pfn[i];
  534. #ifdef CONFIG_HIGHMEM
  535. unsigned long lowmem_end = node_lowmem_end_pfn[i];
  536. #else
  537. unsigned long lowmem_end = end;
  538. #endif
  539. int memmap_size = (end - start) * sizeof(struct page);
  540. node_free_pfn[i] = start;
  541. /*
  542. * Set aside pages for per-cpu data and the mem_map array.
  543. *
  544. * Since the per-cpu data requires special homecaching,
  545. * if we are in kdata_huge mode, we put it at the end of
  546. * the lowmem region. If we're not in kdata_huge mode,
  547. * we take the per-cpu pages from the bottom of the
  548. * controller, since that avoids fragmenting a huge page
  549. * that users might want. We always take the memmap
  550. * from the bottom of the controller, since with
  551. * kdata_huge that lets it be under a huge TLB entry.
  552. *
  553. * If the user has requested isolnodes for a controller,
  554. * though, there'll be no lowmem, so we just alloc_bootmem
  555. * the memmap. There will be no percpu memory either.
  556. */
  557. if (__pfn_to_highbits(start) == 0) {
  558. /* In low PAs, allocate via bootmem. */
  559. unsigned long goal = 0;
  560. node_memmap_pfn[i] =
  561. alloc_bootmem_pfn(memmap_size, goal);
  562. if (kdata_huge)
  563. goal = PFN_PHYS(lowmem_end) - node_percpu[i];
  564. if (node_percpu[i])
  565. node_percpu_pfn[i] =
  566. alloc_bootmem_pfn(node_percpu[i], goal);
  567. } else if (cpu_isset(i, isolnodes)) {
  568. node_memmap_pfn[i] = alloc_bootmem_pfn(memmap_size, 0);
  569. BUG_ON(node_percpu[i] != 0);
  570. } else {
  571. /* In high PAs, just reserve some pages. */
  572. node_memmap_pfn[i] = node_free_pfn[i];
  573. node_free_pfn[i] += PFN_UP(memmap_size);
  574. if (!kdata_huge) {
  575. node_percpu_pfn[i] = node_free_pfn[i];
  576. node_free_pfn[i] += PFN_UP(node_percpu[i]);
  577. } else {
  578. node_percpu_pfn[i] =
  579. lowmem_end - PFN_UP(node_percpu[i]);
  580. }
  581. }
  582. #ifdef CONFIG_HIGHMEM
  583. if (start > lowmem_end) {
  584. zones_size[ZONE_NORMAL] = 0;
  585. zones_size[ZONE_HIGHMEM] = end - start;
  586. } else {
  587. zones_size[ZONE_NORMAL] = lowmem_end - start;
  588. zones_size[ZONE_HIGHMEM] = end - lowmem_end;
  589. }
  590. #else
  591. zones_size[ZONE_NORMAL] = end - start;
  592. #endif
  593. /*
  594. * Everyone shares node 0's bootmem allocator, but
  595. * we use alloc_remap(), above, to put the actual
  596. * struct page array on the individual controllers,
  597. * which is most of the data that we actually care about.
  598. * We can't place bootmem allocators on the other
  599. * controllers since the bootmem allocator can only
  600. * operate on 32-bit physical addresses.
  601. */
  602. NODE_DATA(i)->bdata = NODE_DATA(0)->bdata;
  603. free_area_init_node(i, zones_size, start, NULL);
  604. printk(KERN_DEBUG " Normal zone: %ld per-cpu pages\n",
  605. PFN_UP(node_percpu[i]));
  606. /* Track the type of memory on each node */
  607. if (zones_size[ZONE_NORMAL])
  608. node_set_state(i, N_NORMAL_MEMORY);
  609. #ifdef CONFIG_HIGHMEM
  610. if (end != start)
  611. node_set_state(i, N_HIGH_MEMORY);
  612. #endif
  613. node_set_online(i);
  614. }
  615. }
  616. #ifdef CONFIG_NUMA
  617. /* which logical CPUs are on which nodes */
  618. struct cpumask node_2_cpu_mask[MAX_NUMNODES] __write_once;
  619. EXPORT_SYMBOL(node_2_cpu_mask);
  620. /* which node each logical CPU is on */
  621. char cpu_2_node[NR_CPUS] __write_once __attribute__((aligned(L2_CACHE_BYTES)));
  622. EXPORT_SYMBOL(cpu_2_node);
  623. /* Return cpu_to_node() except for cpus not yet assigned, which return -1 */
  624. static int __init cpu_to_bound_node(int cpu, struct cpumask* unbound_cpus)
  625. {
  626. if (!cpu_possible(cpu) || cpumask_test_cpu(cpu, unbound_cpus))
  627. return -1;
  628. else
  629. return cpu_to_node(cpu);
  630. }
  631. /* Return number of immediately-adjacent tiles sharing the same NUMA node. */
  632. static int __init node_neighbors(int node, int cpu,
  633. struct cpumask *unbound_cpus)
  634. {
  635. int neighbors = 0;
  636. int w = smp_width;
  637. int h = smp_height;
  638. int x = cpu % w;
  639. int y = cpu / w;
  640. if (x > 0 && cpu_to_bound_node(cpu-1, unbound_cpus) == node)
  641. ++neighbors;
  642. if (x < w-1 && cpu_to_bound_node(cpu+1, unbound_cpus) == node)
  643. ++neighbors;
  644. if (y > 0 && cpu_to_bound_node(cpu-w, unbound_cpus) == node)
  645. ++neighbors;
  646. if (y < h-1 && cpu_to_bound_node(cpu+w, unbound_cpus) == node)
  647. ++neighbors;
  648. return neighbors;
  649. }
  650. static void __init setup_numa_mapping(void)
  651. {
  652. int distance[MAX_NUMNODES][NR_CPUS];
  653. HV_Coord coord;
  654. int cpu, node, cpus, i, x, y;
  655. int num_nodes = num_online_nodes();
  656. struct cpumask unbound_cpus;
  657. nodemask_t default_nodes;
  658. cpumask_clear(&unbound_cpus);
  659. /* Get set of nodes we will use for defaults */
  660. nodes_andnot(default_nodes, node_online_map, isolnodes);
  661. if (nodes_empty(default_nodes)) {
  662. BUG_ON(!node_isset(0, node_online_map));
  663. pr_err("Forcing NUMA node zero available as a default node\n");
  664. node_set(0, default_nodes);
  665. }
  666. /* Populate the distance[] array */
  667. memset(distance, -1, sizeof(distance));
  668. cpu = 0;
  669. for (coord.y = 0; coord.y < smp_height; ++coord.y) {
  670. for (coord.x = 0; coord.x < smp_width;
  671. ++coord.x, ++cpu) {
  672. BUG_ON(cpu >= nr_cpu_ids);
  673. if (!cpu_possible(cpu)) {
  674. cpu_2_node[cpu] = -1;
  675. continue;
  676. }
  677. for_each_node_mask(node, default_nodes) {
  678. HV_MemoryControllerInfo info =
  679. hv_inquire_memory_controller(
  680. coord, node_controller[node]);
  681. distance[node][cpu] =
  682. ABS(info.coord.x) + ABS(info.coord.y);
  683. }
  684. cpumask_set_cpu(cpu, &unbound_cpus);
  685. }
  686. }
  687. cpus = cpu;
  688. /*
  689. * Round-robin through the NUMA nodes until all the cpus are
  690. * assigned. We could be more clever here (e.g. create four
  691. * sorted linked lists on the same set of cpu nodes, and pull
  692. * off them in round-robin sequence, removing from all four
  693. * lists each time) but given the relatively small numbers
  694. * involved, O(n^2) seem OK for a one-time cost.
  695. */
  696. node = first_node(default_nodes);
  697. while (!cpumask_empty(&unbound_cpus)) {
  698. int best_cpu = -1;
  699. int best_distance = INT_MAX;
  700. for (cpu = 0; cpu < cpus; ++cpu) {
  701. if (cpumask_test_cpu(cpu, &unbound_cpus)) {
  702. /*
  703. * Compute metric, which is how much
  704. * closer the cpu is to this memory
  705. * controller than the others, shifted
  706. * up, and then the number of
  707. * neighbors already in the node as an
  708. * epsilon adjustment to try to keep
  709. * the nodes compact.
  710. */
  711. int d = distance[node][cpu] * num_nodes;
  712. for_each_node_mask(i, default_nodes) {
  713. if (i != node)
  714. d -= distance[i][cpu];
  715. }
  716. d *= 8; /* allow space for epsilon */
  717. d -= node_neighbors(node, cpu, &unbound_cpus);
  718. if (d < best_distance) {
  719. best_cpu = cpu;
  720. best_distance = d;
  721. }
  722. }
  723. }
  724. BUG_ON(best_cpu < 0);
  725. cpumask_set_cpu(best_cpu, &node_2_cpu_mask[node]);
  726. cpu_2_node[best_cpu] = node;
  727. cpumask_clear_cpu(best_cpu, &unbound_cpus);
  728. node = next_node(node, default_nodes);
  729. if (node == MAX_NUMNODES)
  730. node = first_node(default_nodes);
  731. }
  732. /* Print out node assignments and set defaults for disabled cpus */
  733. cpu = 0;
  734. for (y = 0; y < smp_height; ++y) {
  735. printk(KERN_DEBUG "NUMA cpu-to-node row %d:", y);
  736. for (x = 0; x < smp_width; ++x, ++cpu) {
  737. if (cpu_to_node(cpu) < 0) {
  738. pr_cont(" -");
  739. cpu_2_node[cpu] = first_node(default_nodes);
  740. } else {
  741. pr_cont(" %d", cpu_to_node(cpu));
  742. }
  743. }
  744. pr_cont("\n");
  745. }
  746. }
  747. static struct cpu cpu_devices[NR_CPUS];
  748. static int __init topology_init(void)
  749. {
  750. int i;
  751. for_each_online_node(i)
  752. register_one_node(i);
  753. for (i = 0; i < smp_height * smp_width; ++i)
  754. register_cpu(&cpu_devices[i], i);
  755. return 0;
  756. }
  757. subsys_initcall(topology_init);
  758. #else /* !CONFIG_NUMA */
  759. #define setup_numa_mapping() do { } while (0)
  760. #endif /* CONFIG_NUMA */
  761. /**
  762. * setup_cpu() - Do all necessary per-cpu, tile-specific initialization.
  763. * @boot: Is this the boot cpu?
  764. *
  765. * Called from setup_arch() on the boot cpu, or online_secondary().
  766. */
  767. void __cpuinit setup_cpu(int boot)
  768. {
  769. /* The boot cpu sets up its permanent mappings much earlier. */
  770. if (!boot)
  771. store_permanent_mappings();
  772. /* Allow asynchronous TLB interrupts. */
  773. #if CHIP_HAS_TILE_DMA()
  774. arch_local_irq_unmask(INT_DMATLB_MISS);
  775. arch_local_irq_unmask(INT_DMATLB_ACCESS);
  776. #endif
  777. #if CHIP_HAS_SN_PROC()
  778. arch_local_irq_unmask(INT_SNITLB_MISS);
  779. #endif
  780. #ifdef __tilegx__
  781. arch_local_irq_unmask(INT_SINGLE_STEP_K);
  782. #endif
  783. /*
  784. * Allow user access to many generic SPRs, like the cycle
  785. * counter, PASS/FAIL/DONE, INTERRUPT_CRITICAL_SECTION, etc.
  786. */
  787. __insn_mtspr(SPR_MPL_WORLD_ACCESS_SET_0, 1);
  788. #if CHIP_HAS_SN()
  789. /* Static network is not restricted. */
  790. __insn_mtspr(SPR_MPL_SN_ACCESS_SET_0, 1);
  791. #endif
  792. #if CHIP_HAS_SN_PROC()
  793. __insn_mtspr(SPR_MPL_SN_NOTIFY_SET_0, 1);
  794. __insn_mtspr(SPR_MPL_SN_CPL_SET_0, 1);
  795. #endif
  796. /*
  797. * Set the MPL for interrupt control 0 & 1 to the corresponding
  798. * values. This includes access to the SYSTEM_SAVE and EX_CONTEXT
  799. * SPRs, as well as the interrupt mask.
  800. */
  801. __insn_mtspr(SPR_MPL_INTCTRL_0_SET_0, 1);
  802. __insn_mtspr(SPR_MPL_INTCTRL_1_SET_1, 1);
  803. /* Initialize IRQ support for this cpu. */
  804. setup_irq_regs();
  805. #ifdef CONFIG_HARDWALL
  806. /* Reset the network state on this cpu. */
  807. reset_network_state();
  808. #endif
  809. }
  810. #ifdef CONFIG_BLK_DEV_INITRD
  811. static int __initdata set_initramfs_file;
  812. static char __initdata initramfs_file[128] = "initramfs.cpio.gz";
  813. static int __init setup_initramfs_file(char *str)
  814. {
  815. if (str == NULL)
  816. return -EINVAL;
  817. strncpy(initramfs_file, str, sizeof(initramfs_file) - 1);
  818. set_initramfs_file = 1;
  819. return 0;
  820. }
  821. early_param("initramfs_file", setup_initramfs_file);
  822. /*
  823. * We look for an additional "initramfs.cpio.gz" file in the hvfs.
  824. * If there is one, we allocate some memory for it and it will be
  825. * unpacked to the initramfs after any built-in initramfs_data.
  826. */
  827. static void __init load_hv_initrd(void)
  828. {
  829. HV_FS_StatInfo stat;
  830. int fd, rc;
  831. void *initrd;
  832. fd = hv_fs_findfile((HV_VirtAddr) initramfs_file);
  833. if (fd == HV_ENOENT) {
  834. if (set_initramfs_file)
  835. pr_warning("No such hvfs initramfs file '%s'\n",
  836. initramfs_file);
  837. return;
  838. }
  839. BUG_ON(fd < 0);
  840. stat = hv_fs_fstat(fd);
  841. BUG_ON(stat.size < 0);
  842. if (stat.flags & HV_FS_ISDIR) {
  843. pr_warning("Ignoring hvfs file '%s': it's a directory.\n",
  844. initramfs_file);
  845. return;
  846. }
  847. initrd = alloc_bootmem_pages(stat.size);
  848. rc = hv_fs_pread(fd, (HV_VirtAddr) initrd, stat.size, 0);
  849. if (rc != stat.size) {
  850. pr_err("Error reading %d bytes from hvfs file '%s': %d\n",
  851. stat.size, initramfs_file, rc);
  852. free_initrd_mem((unsigned long) initrd, stat.size);
  853. return;
  854. }
  855. initrd_start = (unsigned long) initrd;
  856. initrd_end = initrd_start + stat.size;
  857. }
  858. void __init free_initrd_mem(unsigned long begin, unsigned long end)
  859. {
  860. free_bootmem(__pa(begin), end - begin);
  861. }
  862. #else
  863. static inline void load_hv_initrd(void) {}
  864. #endif /* CONFIG_BLK_DEV_INITRD */
  865. static void __init validate_hv(void)
  866. {
  867. /*
  868. * It may already be too late, but let's check our built-in
  869. * configuration against what the hypervisor is providing.
  870. */
  871. unsigned long glue_size = hv_sysconf(HV_SYSCONF_GLUE_SIZE);
  872. int hv_page_size = hv_sysconf(HV_SYSCONF_PAGE_SIZE_SMALL);
  873. int hv_hpage_size = hv_sysconf(HV_SYSCONF_PAGE_SIZE_LARGE);
  874. HV_ASIDRange asid_range;
  875. #ifndef CONFIG_SMP
  876. HV_Topology topology = hv_inquire_topology();
  877. BUG_ON(topology.coord.x != 0 || topology.coord.y != 0);
  878. if (topology.width != 1 || topology.height != 1) {
  879. pr_warning("Warning: booting UP kernel on %dx%d grid;"
  880. " will ignore all but first tile.\n",
  881. topology.width, topology.height);
  882. }
  883. #endif
  884. if (PAGE_OFFSET + HV_GLUE_START_CPA + glue_size > (unsigned long)_text)
  885. early_panic("Hypervisor glue size %ld is too big!\n",
  886. glue_size);
  887. if (hv_page_size != PAGE_SIZE)
  888. early_panic("Hypervisor page size %#x != our %#lx\n",
  889. hv_page_size, PAGE_SIZE);
  890. if (hv_hpage_size != HPAGE_SIZE)
  891. early_panic("Hypervisor huge page size %#x != our %#lx\n",
  892. hv_hpage_size, HPAGE_SIZE);
  893. #ifdef CONFIG_SMP
  894. /*
  895. * Some hypervisor APIs take a pointer to a bitmap array
  896. * whose size is at least the number of cpus on the chip.
  897. * We use a struct cpumask for this, so it must be big enough.
  898. */
  899. if ((smp_height * smp_width) > nr_cpu_ids)
  900. early_panic("Hypervisor %d x %d grid too big for Linux"
  901. " NR_CPUS %d\n", smp_height, smp_width,
  902. nr_cpu_ids);
  903. #endif
  904. /*
  905. * Check that we're using allowed ASIDs, and initialize the
  906. * various asid variables to their appropriate initial states.
  907. */
  908. asid_range = hv_inquire_asid(0);
  909. __get_cpu_var(current_asid) = min_asid = asid_range.start;
  910. max_asid = asid_range.start + asid_range.size - 1;
  911. if (hv_confstr(HV_CONFSTR_CHIP_MODEL, (HV_VirtAddr)chip_model,
  912. sizeof(chip_model)) < 0) {
  913. pr_err("Warning: HV_CONFSTR_CHIP_MODEL not available\n");
  914. strlcpy(chip_model, "unknown", sizeof(chip_model));
  915. }
  916. }
  917. static void __init validate_va(void)
  918. {
  919. #ifndef __tilegx__ /* FIXME: GX: probably some validation relevant here */
  920. /*
  921. * Similarly, make sure we're only using allowed VAs.
  922. * We assume we can contiguously use MEM_USER_INTRPT .. MEM_HV_INTRPT,
  923. * and 0 .. KERNEL_HIGH_VADDR.
  924. * In addition, make sure we CAN'T use the end of memory, since
  925. * we use the last chunk of each pgd for the pgd_list.
  926. */
  927. int i, user_kernel_ok = 0;
  928. unsigned long max_va = 0;
  929. unsigned long list_va =
  930. ((PGD_LIST_OFFSET / sizeof(pgd_t)) << PGDIR_SHIFT);
  931. for (i = 0; ; ++i) {
  932. HV_VirtAddrRange range = hv_inquire_virtual(i);
  933. if (range.size == 0)
  934. break;
  935. if (range.start <= MEM_USER_INTRPT &&
  936. range.start + range.size >= MEM_HV_INTRPT)
  937. user_kernel_ok = 1;
  938. if (range.start == 0)
  939. max_va = range.size;
  940. BUG_ON(range.start + range.size > list_va);
  941. }
  942. if (!user_kernel_ok)
  943. early_panic("Hypervisor not configured for user/kernel VAs\n");
  944. if (max_va == 0)
  945. early_panic("Hypervisor not configured for low VAs\n");
  946. if (max_va < KERNEL_HIGH_VADDR)
  947. early_panic("Hypervisor max VA %#lx smaller than %#lx\n",
  948. max_va, KERNEL_HIGH_VADDR);
  949. /* Kernel PCs must have their high bit set; see intvec.S. */
  950. if ((long)VMALLOC_START >= 0)
  951. early_panic(
  952. "Linux VMALLOC region below the 2GB line (%#lx)!\n"
  953. "Reconfigure the kernel with fewer NR_HUGE_VMAPS\n"
  954. "or smaller VMALLOC_RESERVE.\n",
  955. VMALLOC_START);
  956. #endif
  957. }
  958. /*
  959. * cpu_lotar_map lists all the cpus that are valid for the supervisor
  960. * to cache data on at a page level, i.e. what cpus can be placed in
  961. * the LOTAR field of a PTE. It is equivalent to the set of possible
  962. * cpus plus any other cpus that are willing to share their cache.
  963. * It is set by hv_inquire_tiles(HV_INQ_TILES_LOTAR).
  964. */
  965. struct cpumask __write_once cpu_lotar_map;
  966. EXPORT_SYMBOL(cpu_lotar_map);
  967. #if CHIP_HAS_CBOX_HOME_MAP()
  968. /*
  969. * hash_for_home_map lists all the tiles that hash-for-home data
  970. * will be cached on. Note that this may includes tiles that are not
  971. * valid for this supervisor to use otherwise (e.g. if a hypervisor
  972. * device is being shared between multiple supervisors).
  973. * It is set by hv_inquire_tiles(HV_INQ_TILES_HFH_CACHE).
  974. */
  975. struct cpumask hash_for_home_map;
  976. EXPORT_SYMBOL(hash_for_home_map);
  977. #endif
  978. /*
  979. * cpu_cacheable_map lists all the cpus whose caches the hypervisor can
  980. * flush on our behalf. It is set to cpu_possible_map OR'ed with
  981. * hash_for_home_map, and it is what should be passed to
  982. * hv_flush_remote() to flush all caches. Note that if there are
  983. * dedicated hypervisor driver tiles that have authorized use of their
  984. * cache, those tiles will only appear in cpu_lotar_map, NOT in
  985. * cpu_cacheable_map, as they are a special case.
  986. */
  987. struct cpumask __write_once cpu_cacheable_map;
  988. EXPORT_SYMBOL(cpu_cacheable_map);
  989. static __initdata struct cpumask disabled_map;
  990. static int __init disabled_cpus(char *str)
  991. {
  992. int boot_cpu = smp_processor_id();
  993. if (str == NULL || cpulist_parse_crop(str, &disabled_map) != 0)
  994. return -EINVAL;
  995. if (cpumask_test_cpu(boot_cpu, &disabled_map)) {
  996. pr_err("disabled_cpus: can't disable boot cpu %d\n", boot_cpu);
  997. cpumask_clear_cpu(boot_cpu, &disabled_map);
  998. }
  999. return 0;
  1000. }
  1001. early_param("disabled_cpus", disabled_cpus);
  1002. void __init print_disabled_cpus(void)
  1003. {
  1004. if (!cpumask_empty(&disabled_map)) {
  1005. char buf[100];
  1006. cpulist_scnprintf(buf, sizeof(buf), &disabled_map);
  1007. pr_info("CPUs not available for Linux: %s\n", buf);
  1008. }
  1009. }
  1010. static void __init setup_cpu_maps(void)
  1011. {
  1012. struct cpumask hv_disabled_map, cpu_possible_init;
  1013. int boot_cpu = smp_processor_id();
  1014. int cpus, i, rc;
  1015. /* Learn which cpus are allowed by the hypervisor. */
  1016. rc = hv_inquire_tiles(HV_INQ_TILES_AVAIL,
  1017. (HV_VirtAddr) cpumask_bits(&cpu_possible_init),
  1018. sizeof(cpu_cacheable_map));
  1019. if (rc < 0)
  1020. early_panic("hv_inquire_tiles(AVAIL) failed: rc %d\n", rc);
  1021. if (!cpumask_test_cpu(boot_cpu, &cpu_possible_init))
  1022. early_panic("Boot CPU %d disabled by hypervisor!\n", boot_cpu);
  1023. /* Compute the cpus disabled by the hvconfig file. */
  1024. cpumask_complement(&hv_disabled_map, &cpu_possible_init);
  1025. /* Include them with the cpus disabled by "disabled_cpus". */
  1026. cpumask_or(&disabled_map, &disabled_map, &hv_disabled_map);
  1027. /*
  1028. * Disable every cpu after "setup_max_cpus". But don't mark
  1029. * as disabled the cpus that are outside of our initial rectangle,
  1030. * since that turns out to be confusing.
  1031. */
  1032. cpus = 1; /* this cpu */
  1033. cpumask_set_cpu(boot_cpu, &disabled_map); /* ignore this cpu */
  1034. for (i = 0; cpus < setup_max_cpus; ++i)
  1035. if (!cpumask_test_cpu(i, &disabled_map))
  1036. ++cpus;
  1037. for (; i < smp_height * smp_width; ++i)
  1038. cpumask_set_cpu(i, &disabled_map);
  1039. cpumask_clear_cpu(boot_cpu, &disabled_map); /* reset this cpu */
  1040. for (i = smp_height * smp_width; i < NR_CPUS; ++i)
  1041. cpumask_clear_cpu(i, &disabled_map);
  1042. /*
  1043. * Setup cpu_possible map as every cpu allocated to us, minus
  1044. * the results of any "disabled_cpus" settings.
  1045. */
  1046. cpumask_andnot(&cpu_possible_init, &cpu_possible_init, &disabled_map);
  1047. init_cpu_possible(&cpu_possible_init);
  1048. /* Learn which cpus are valid for LOTAR caching. */
  1049. rc = hv_inquire_tiles(HV_INQ_TILES_LOTAR,
  1050. (HV_VirtAddr) cpumask_bits(&cpu_lotar_map),
  1051. sizeof(cpu_lotar_map));
  1052. if (rc < 0) {
  1053. pr_err("warning: no HV_INQ_TILES_LOTAR; using AVAIL\n");
  1054. cpu_lotar_map = cpu_possible_map;
  1055. }
  1056. #if CHIP_HAS_CBOX_HOME_MAP()
  1057. /* Retrieve set of CPUs used for hash-for-home caching */
  1058. rc = hv_inquire_tiles(HV_INQ_TILES_HFH_CACHE,
  1059. (HV_VirtAddr) hash_for_home_map.bits,
  1060. sizeof(hash_for_home_map));
  1061. if (rc < 0)
  1062. early_panic("hv_inquire_tiles(HFH_CACHE) failed: rc %d\n", rc);
  1063. cpumask_or(&cpu_cacheable_map, &cpu_possible_map, &hash_for_home_map);
  1064. #else
  1065. cpu_cacheable_map = cpu_possible_map;
  1066. #endif
  1067. }
  1068. static int __init dataplane(char *str)
  1069. {
  1070. pr_warning("WARNING: dataplane support disabled in this kernel\n");
  1071. return 0;
  1072. }
  1073. early_param("dataplane", dataplane);
  1074. #ifdef CONFIG_CMDLINE_BOOL
  1075. static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
  1076. #endif
  1077. void __init setup_arch(char **cmdline_p)
  1078. {
  1079. int len;
  1080. #if defined(CONFIG_CMDLINE_BOOL) && defined(CONFIG_CMDLINE_OVERRIDE)
  1081. len = hv_get_command_line((HV_VirtAddr) boot_command_line,
  1082. COMMAND_LINE_SIZE);
  1083. if (boot_command_line[0])
  1084. pr_warning("WARNING: ignoring dynamic command line \"%s\"\n",
  1085. boot_command_line);
  1086. strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
  1087. #else
  1088. char *hv_cmdline;
  1089. #if defined(CONFIG_CMDLINE_BOOL)
  1090. if (builtin_cmdline[0]) {
  1091. int builtin_len = strlcpy(boot_command_line, builtin_cmdline,
  1092. COMMAND_LINE_SIZE);
  1093. if (builtin_len < COMMAND_LINE_SIZE-1)
  1094. boot_command_line[builtin_len++] = ' ';
  1095. hv_cmdline = &boot_command_line[builtin_len];
  1096. len = COMMAND_LINE_SIZE - builtin_len;
  1097. } else
  1098. #endif
  1099. {
  1100. hv_cmdline = boot_command_line;
  1101. len = COMMAND_LINE_SIZE;
  1102. }
  1103. len = hv_get_command_line((HV_VirtAddr) hv_cmdline, len);
  1104. if (len < 0 || len > COMMAND_LINE_SIZE)
  1105. early_panic("hv_get_command_line failed: %d\n", len);
  1106. #endif
  1107. *cmdline_p = boot_command_line;
  1108. /* Set disabled_map and setup_max_cpus very early */
  1109. parse_early_param();
  1110. /* Make sure the kernel is compatible with the hypervisor. */
  1111. validate_hv();
  1112. validate_va();
  1113. setup_cpu_maps();
  1114. #ifdef CONFIG_PCI
  1115. /*
  1116. * Initialize the PCI structures. This is done before memory
  1117. * setup so that we know whether or not a pci_reserve region
  1118. * is necessary.
  1119. */
  1120. if (tile_pci_init() == 0)
  1121. pci_reserve_mb = 0;
  1122. /* PCI systems reserve a region just below 4GB for mapping iomem. */
  1123. pci_reserve_end_pfn = (1 << (32 - PAGE_SHIFT));
  1124. pci_reserve_start_pfn = pci_reserve_end_pfn -
  1125. (pci_reserve_mb << (20 - PAGE_SHIFT));
  1126. #endif
  1127. init_mm.start_code = (unsigned long) _text;
  1128. init_mm.end_code = (unsigned long) _etext;
  1129. init_mm.end_data = (unsigned long) _edata;
  1130. init_mm.brk = (unsigned long) _end;
  1131. setup_memory();
  1132. store_permanent_mappings();
  1133. setup_bootmem_allocator();
  1134. /*
  1135. * NOTE: before this point _nobody_ is allowed to allocate
  1136. * any memory using the bootmem allocator.
  1137. */
  1138. paging_init();
  1139. setup_numa_mapping();
  1140. zone_sizes_init();
  1141. set_page_homes();
  1142. setup_cpu(1);
  1143. setup_clock();
  1144. load_hv_initrd();
  1145. }
  1146. /*
  1147. * Set up per-cpu memory.
  1148. */
  1149. unsigned long __per_cpu_offset[NR_CPUS] __write_once;
  1150. EXPORT_SYMBOL(__per_cpu_offset);
  1151. static size_t __initdata pfn_offset[MAX_NUMNODES] = { 0 };
  1152. static unsigned long __initdata percpu_pfn[NR_CPUS] = { 0 };
  1153. /*
  1154. * As the percpu code allocates pages, we return the pages from the
  1155. * end of the node for the specified cpu.
  1156. */
  1157. static void *__init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
  1158. {
  1159. int nid = cpu_to_node(cpu);
  1160. unsigned long pfn = node_percpu_pfn[nid] + pfn_offset[nid];
  1161. BUG_ON(size % PAGE_SIZE != 0);
  1162. pfn_offset[nid] += size / PAGE_SIZE;
  1163. BUG_ON(node_percpu[nid] < size);
  1164. node_percpu[nid] -= size;
  1165. if (percpu_pfn[cpu] == 0)
  1166. percpu_pfn[cpu] = pfn;
  1167. return pfn_to_kaddr(pfn);
  1168. }
  1169. /*
  1170. * Pages reserved for percpu memory are not freeable, and in any case we are
  1171. * on a short path to panic() in setup_per_cpu_area() at this point anyway.
  1172. */
  1173. static void __init pcpu_fc_free(void *ptr, size_t size)
  1174. {
  1175. }
  1176. /*
  1177. * Set up vmalloc page tables using bootmem for the percpu code.
  1178. */
  1179. static void __init pcpu_fc_populate_pte(unsigned long addr)
  1180. {
  1181. pgd_t *pgd;
  1182. pud_t *pud;
  1183. pmd_t *pmd;
  1184. pte_t *pte;
  1185. BUG_ON(pgd_addr_invalid(addr));
  1186. if (addr < VMALLOC_START || addr >= VMALLOC_END)
  1187. panic("PCPU addr %#lx outside vmalloc range %#lx..%#lx;"
  1188. " try increasing CONFIG_VMALLOC_RESERVE\n",
  1189. addr, VMALLOC_START, VMALLOC_END);
  1190. pgd = swapper_pg_dir + pgd_index(addr);
  1191. pud = pud_offset(pgd, addr);
  1192. BUG_ON(!pud_present(*pud));
  1193. pmd = pmd_offset(pud, addr);
  1194. if (pmd_present(*pmd)) {
  1195. BUG_ON(pmd_huge_page(*pmd));
  1196. } else {
  1197. pte = __alloc_bootmem(L2_KERNEL_PGTABLE_SIZE,
  1198. HV_PAGE_TABLE_ALIGN, 0);
  1199. pmd_populate_kernel(&init_mm, pmd, pte);
  1200. }
  1201. }
  1202. void __init setup_per_cpu_areas(void)
  1203. {
  1204. struct page *pg;
  1205. unsigned long delta, pfn, lowmem_va;
  1206. unsigned long size = percpu_size();
  1207. char *ptr;
  1208. int rc, cpu, i;
  1209. rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE, pcpu_fc_alloc,
  1210. pcpu_fc_free, pcpu_fc_populate_pte);
  1211. if (rc < 0)
  1212. panic("Cannot initialize percpu area (err=%d)", rc);
  1213. delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
  1214. for_each_possible_cpu(cpu) {
  1215. __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
  1216. /* finv the copy out of cache so we can change homecache */
  1217. ptr = pcpu_base_addr + pcpu_unit_offsets[cpu];
  1218. __finv_buffer(ptr, size);
  1219. pfn = percpu_pfn[cpu];
  1220. /* Rewrite the page tables to cache on that cpu */
  1221. pg = pfn_to_page(pfn);
  1222. for (i = 0; i < size; i += PAGE_SIZE, ++pfn, ++pg) {
  1223. /* Update the vmalloc mapping and page home. */
  1224. pte_t *ptep =
  1225. virt_to_pte(NULL, (unsigned long)ptr + i);
  1226. pte_t pte = *ptep;
  1227. BUG_ON(pfn != pte_pfn(pte));
  1228. pte = hv_pte_set_mode(pte, HV_PTE_MODE_CACHE_TILE_L3);
  1229. pte = set_remote_cache_cpu(pte, cpu);
  1230. set_pte(ptep, pte);
  1231. /* Update the lowmem mapping for consistency. */
  1232. lowmem_va = (unsigned long)pfn_to_kaddr(pfn);
  1233. ptep = virt_to_pte(NULL, lowmem_va);
  1234. if (pte_huge(*ptep)) {
  1235. printk(KERN_DEBUG "early shatter of huge page"
  1236. " at %#lx\n", lowmem_va);
  1237. shatter_pmd((pmd_t *)ptep);
  1238. ptep = virt_to_pte(NULL, lowmem_va);
  1239. BUG_ON(pte_huge(*ptep));
  1240. }
  1241. BUG_ON(pfn != pte_pfn(*ptep));
  1242. set_pte(ptep, pte);
  1243. }
  1244. }
  1245. /* Set our thread pointer appropriately. */
  1246. set_my_cpu_offset(__per_cpu_offset[smp_processor_id()]);
  1247. /* Make sure the finv's have completed. */
  1248. mb_incoherent();
  1249. /* Flush the TLB so we reference it properly from here on out. */
  1250. local_flush_tlb_all();
  1251. }
  1252. static struct resource data_resource = {
  1253. .name = "Kernel data",
  1254. .start = 0,
  1255. .end = 0,
  1256. .flags = IORESOURCE_BUSY | IORESOURCE_MEM
  1257. };
  1258. static struct resource code_resource = {
  1259. .name = "Kernel code",
  1260. .start = 0,
  1261. .end = 0,
  1262. .flags = IORESOURCE_BUSY | IORESOURCE_MEM
  1263. };
  1264. /*
  1265. * We reserve all resources above 4GB so that PCI won't try to put
  1266. * mappings above 4GB; the standard allows that for some devices but
  1267. * the probing code trunates values to 32 bits.
  1268. */
  1269. #ifdef CONFIG_PCI
  1270. static struct resource* __init
  1271. insert_non_bus_resource(void)
  1272. {
  1273. struct resource *res =
  1274. kzalloc(sizeof(struct resource), GFP_ATOMIC);
  1275. res->name = "Non-Bus Physical Address Space";
  1276. res->start = (1ULL << 32);
  1277. res->end = -1LL;
  1278. res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
  1279. if (insert_resource(&iomem_resource, res)) {
  1280. kfree(res);
  1281. return NULL;
  1282. }
  1283. return res;
  1284. }
  1285. #endif
  1286. static struct resource* __init
  1287. insert_ram_resource(u64 start_pfn, u64 end_pfn)
  1288. {
  1289. struct resource *res =
  1290. kzalloc(sizeof(struct resource), GFP_ATOMIC);
  1291. res->name = "System RAM";
  1292. res->start = start_pfn << PAGE_SHIFT;
  1293. res->end = (end_pfn << PAGE_SHIFT) - 1;
  1294. res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
  1295. if (insert_resource(&iomem_resource, res)) {
  1296. kfree(res);
  1297. return NULL;
  1298. }
  1299. return res;
  1300. }
  1301. /*
  1302. * Request address space for all standard resources
  1303. *
  1304. * If the system includes PCI root complex drivers, we need to create
  1305. * a window just below 4GB where PCI BARs can be mapped.
  1306. */
  1307. static int __init request_standard_resources(void)
  1308. {
  1309. int i;
  1310. enum { CODE_DELTA = MEM_SV_INTRPT - PAGE_OFFSET };
  1311. iomem_resource.end = -1LL;
  1312. #ifdef CONFIG_PCI
  1313. insert_non_bus_resource();
  1314. #endif
  1315. for_each_online_node(i) {
  1316. u64 start_pfn = node_start_pfn[i];
  1317. u64 end_pfn = node_end_pfn[i];
  1318. #ifdef CONFIG_PCI
  1319. if (start_pfn <= pci_reserve_start_pfn &&
  1320. end_pfn > pci_reserve_start_pfn) {
  1321. if (end_pfn > pci_reserve_end_pfn)
  1322. insert_ram_resource(pci_reserve_end_pfn,
  1323. end_pfn);
  1324. end_pfn = pci_reserve_start_pfn;
  1325. }
  1326. #endif
  1327. insert_ram_resource(start_pfn, end_pfn);
  1328. }
  1329. code_resource.start = __pa(_text - CODE_DELTA);
  1330. code_resource.end = __pa(_etext - CODE_DELTA)-1;
  1331. data_resource.start = __pa(_sdata);
  1332. data_resource.end = __pa(_end)-1;
  1333. insert_resource(&iomem_resource, &code_resource);
  1334. insert_resource(&iomem_resource, &data_resource);
  1335. #ifdef CONFIG_KEXEC
  1336. insert_resource(&iomem_resource, &crashk_res);
  1337. #endif
  1338. return 0;
  1339. }
  1340. subsys_initcall(request_standard_resources);