tsb.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506
  1. /* arch/sparc64/mm/tsb.c
  2. *
  3. * Copyright (C) 2006, 2008 David S. Miller <davem@davemloft.net>
  4. */
  5. #include <linux/kernel.h>
  6. #include <linux/preempt.h>
  7. #include <linux/slab.h>
  8. #include <asm/system.h>
  9. #include <asm/page.h>
  10. #include <asm/tlbflush.h>
  11. #include <asm/tlb.h>
  12. #include <asm/mmu_context.h>
  13. #include <asm/pgtable.h>
  14. #include <asm/tsb.h>
  15. #include <asm/oplib.h>
  16. extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
  17. static inline unsigned long tsb_hash(unsigned long vaddr, unsigned long hash_shift, unsigned long nentries)
  18. {
  19. vaddr >>= hash_shift;
  20. return vaddr & (nentries - 1);
  21. }
  22. static inline int tag_compare(unsigned long tag, unsigned long vaddr)
  23. {
  24. return (tag == (vaddr >> 22));
  25. }
  26. /* TSB flushes need only occur on the processor initiating the address
  27. * space modification, not on each cpu the address space has run on.
  28. * Only the TLB flush needs that treatment.
  29. */
  30. void flush_tsb_kernel_range(unsigned long start, unsigned long end)
  31. {
  32. unsigned long v;
  33. for (v = start; v < end; v += PAGE_SIZE) {
  34. unsigned long hash = tsb_hash(v, PAGE_SHIFT,
  35. KERNEL_TSB_NENTRIES);
  36. struct tsb *ent = &swapper_tsb[hash];
  37. if (tag_compare(ent->tag, v))
  38. ent->tag = (1UL << TSB_TAG_INVALID_BIT);
  39. }
  40. }
  41. static void __flush_tsb_one(struct tlb_batch *tb, unsigned long hash_shift,
  42. unsigned long tsb, unsigned long nentries)
  43. {
  44. unsigned long i;
  45. for (i = 0; i < tb->tlb_nr; i++) {
  46. unsigned long v = tb->vaddrs[i];
  47. unsigned long tag, ent, hash;
  48. v &= ~0x1UL;
  49. hash = tsb_hash(v, hash_shift, nentries);
  50. ent = tsb + (hash * sizeof(struct tsb));
  51. tag = (v >> 22UL);
  52. tsb_flush(ent, tag);
  53. }
  54. }
  55. void flush_tsb_user(struct tlb_batch *tb)
  56. {
  57. struct mm_struct *mm = tb->mm;
  58. unsigned long nentries, base, flags;
  59. spin_lock_irqsave(&mm->context.lock, flags);
  60. base = (unsigned long) mm->context.tsb_block[MM_TSB_BASE].tsb;
  61. nentries = mm->context.tsb_block[MM_TSB_BASE].tsb_nentries;
  62. if (tlb_type == cheetah_plus || tlb_type == hypervisor)
  63. base = __pa(base);
  64. __flush_tsb_one(tb, PAGE_SHIFT, base, nentries);
  65. #ifdef CONFIG_HUGETLB_PAGE
  66. if (mm->context.tsb_block[MM_TSB_HUGE].tsb) {
  67. base = (unsigned long) mm->context.tsb_block[MM_TSB_HUGE].tsb;
  68. nentries = mm->context.tsb_block[MM_TSB_HUGE].tsb_nentries;
  69. if (tlb_type == cheetah_plus || tlb_type == hypervisor)
  70. base = __pa(base);
  71. __flush_tsb_one(tb, HPAGE_SHIFT, base, nentries);
  72. }
  73. #endif
  74. spin_unlock_irqrestore(&mm->context.lock, flags);
  75. }
  76. #if defined(CONFIG_SPARC64_PAGE_SIZE_8KB)
  77. #define HV_PGSZ_IDX_BASE HV_PGSZ_IDX_8K
  78. #define HV_PGSZ_MASK_BASE HV_PGSZ_MASK_8K
  79. #elif defined(CONFIG_SPARC64_PAGE_SIZE_64KB)
  80. #define HV_PGSZ_IDX_BASE HV_PGSZ_IDX_64K
  81. #define HV_PGSZ_MASK_BASE HV_PGSZ_MASK_64K
  82. #else
  83. #error Broken base page size setting...
  84. #endif
  85. #ifdef CONFIG_HUGETLB_PAGE
  86. #if defined(CONFIG_HUGETLB_PAGE_SIZE_64K)
  87. #define HV_PGSZ_IDX_HUGE HV_PGSZ_IDX_64K
  88. #define HV_PGSZ_MASK_HUGE HV_PGSZ_MASK_64K
  89. #elif defined(CONFIG_HUGETLB_PAGE_SIZE_512K)
  90. #define HV_PGSZ_IDX_HUGE HV_PGSZ_IDX_512K
  91. #define HV_PGSZ_MASK_HUGE HV_PGSZ_MASK_512K
  92. #elif defined(CONFIG_HUGETLB_PAGE_SIZE_4MB)
  93. #define HV_PGSZ_IDX_HUGE HV_PGSZ_IDX_4MB
  94. #define HV_PGSZ_MASK_HUGE HV_PGSZ_MASK_4MB
  95. #else
  96. #error Broken huge page size setting...
  97. #endif
  98. #endif
  99. static void setup_tsb_params(struct mm_struct *mm, unsigned long tsb_idx, unsigned long tsb_bytes)
  100. {
  101. unsigned long tsb_reg, base, tsb_paddr;
  102. unsigned long page_sz, tte;
  103. mm->context.tsb_block[tsb_idx].tsb_nentries =
  104. tsb_bytes / sizeof(struct tsb);
  105. base = TSBMAP_BASE;
  106. tte = pgprot_val(PAGE_KERNEL_LOCKED);
  107. tsb_paddr = __pa(mm->context.tsb_block[tsb_idx].tsb);
  108. BUG_ON(tsb_paddr & (tsb_bytes - 1UL));
  109. /* Use the smallest page size that can map the whole TSB
  110. * in one TLB entry.
  111. */
  112. switch (tsb_bytes) {
  113. case 8192 << 0:
  114. tsb_reg = 0x0UL;
  115. #ifdef DCACHE_ALIASING_POSSIBLE
  116. base += (tsb_paddr & 8192);
  117. #endif
  118. page_sz = 8192;
  119. break;
  120. case 8192 << 1:
  121. tsb_reg = 0x1UL;
  122. page_sz = 64 * 1024;
  123. break;
  124. case 8192 << 2:
  125. tsb_reg = 0x2UL;
  126. page_sz = 64 * 1024;
  127. break;
  128. case 8192 << 3:
  129. tsb_reg = 0x3UL;
  130. page_sz = 64 * 1024;
  131. break;
  132. case 8192 << 4:
  133. tsb_reg = 0x4UL;
  134. page_sz = 512 * 1024;
  135. break;
  136. case 8192 << 5:
  137. tsb_reg = 0x5UL;
  138. page_sz = 512 * 1024;
  139. break;
  140. case 8192 << 6:
  141. tsb_reg = 0x6UL;
  142. page_sz = 512 * 1024;
  143. break;
  144. case 8192 << 7:
  145. tsb_reg = 0x7UL;
  146. page_sz = 4 * 1024 * 1024;
  147. break;
  148. default:
  149. printk(KERN_ERR "TSB[%s:%d]: Impossible TSB size %lu, killing process.\n",
  150. current->comm, current->pid, tsb_bytes);
  151. do_exit(SIGSEGV);
  152. }
  153. tte |= pte_sz_bits(page_sz);
  154. if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
  155. /* Physical mapping, no locked TLB entry for TSB. */
  156. tsb_reg |= tsb_paddr;
  157. mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
  158. mm->context.tsb_block[tsb_idx].tsb_map_vaddr = 0;
  159. mm->context.tsb_block[tsb_idx].tsb_map_pte = 0;
  160. } else {
  161. tsb_reg |= base;
  162. tsb_reg |= (tsb_paddr & (page_sz - 1UL));
  163. tte |= (tsb_paddr & ~(page_sz - 1UL));
  164. mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
  165. mm->context.tsb_block[tsb_idx].tsb_map_vaddr = base;
  166. mm->context.tsb_block[tsb_idx].tsb_map_pte = tte;
  167. }
  168. /* Setup the Hypervisor TSB descriptor. */
  169. if (tlb_type == hypervisor) {
  170. struct hv_tsb_descr *hp = &mm->context.tsb_descr[tsb_idx];
  171. switch (tsb_idx) {
  172. case MM_TSB_BASE:
  173. hp->pgsz_idx = HV_PGSZ_IDX_BASE;
  174. break;
  175. #ifdef CONFIG_HUGETLB_PAGE
  176. case MM_TSB_HUGE:
  177. hp->pgsz_idx = HV_PGSZ_IDX_HUGE;
  178. break;
  179. #endif
  180. default:
  181. BUG();
  182. }
  183. hp->assoc = 1;
  184. hp->num_ttes = tsb_bytes / 16;
  185. hp->ctx_idx = 0;
  186. switch (tsb_idx) {
  187. case MM_TSB_BASE:
  188. hp->pgsz_mask = HV_PGSZ_MASK_BASE;
  189. break;
  190. #ifdef CONFIG_HUGETLB_PAGE
  191. case MM_TSB_HUGE:
  192. hp->pgsz_mask = HV_PGSZ_MASK_HUGE;
  193. break;
  194. #endif
  195. default:
  196. BUG();
  197. }
  198. hp->tsb_base = tsb_paddr;
  199. hp->resv = 0;
  200. }
  201. }
  202. static struct kmem_cache *tsb_caches[8] __read_mostly;
  203. static const char *tsb_cache_names[8] = {
  204. "tsb_8KB",
  205. "tsb_16KB",
  206. "tsb_32KB",
  207. "tsb_64KB",
  208. "tsb_128KB",
  209. "tsb_256KB",
  210. "tsb_512KB",
  211. "tsb_1MB",
  212. };
  213. void __init pgtable_cache_init(void)
  214. {
  215. unsigned long i;
  216. for (i = 0; i < 8; i++) {
  217. unsigned long size = 8192 << i;
  218. const char *name = tsb_cache_names[i];
  219. tsb_caches[i] = kmem_cache_create(name,
  220. size, size,
  221. 0, NULL);
  222. if (!tsb_caches[i]) {
  223. prom_printf("Could not create %s cache\n", name);
  224. prom_halt();
  225. }
  226. }
  227. }
  228. int sysctl_tsb_ratio = -2;
  229. static unsigned long tsb_size_to_rss_limit(unsigned long new_size)
  230. {
  231. unsigned long num_ents = (new_size / sizeof(struct tsb));
  232. if (sysctl_tsb_ratio < 0)
  233. return num_ents - (num_ents >> -sysctl_tsb_ratio);
  234. else
  235. return num_ents + (num_ents >> sysctl_tsb_ratio);
  236. }
  237. /* When the RSS of an address space exceeds tsb_rss_limit for a TSB,
  238. * do_sparc64_fault() invokes this routine to try and grow it.
  239. *
  240. * When we reach the maximum TSB size supported, we stick ~0UL into
  241. * tsb_rss_limit for that TSB so the grow checks in do_sparc64_fault()
  242. * will not trigger any longer.
  243. *
  244. * The TSB can be anywhere from 8K to 1MB in size, in increasing powers
  245. * of two. The TSB must be aligned to it's size, so f.e. a 512K TSB
  246. * must be 512K aligned. It also must be physically contiguous, so we
  247. * cannot use vmalloc().
  248. *
  249. * The idea here is to grow the TSB when the RSS of the process approaches
  250. * the number of entries that the current TSB can hold at once. Currently,
  251. * we trigger when the RSS hits 3/4 of the TSB capacity.
  252. */
  253. void tsb_grow(struct mm_struct *mm, unsigned long tsb_index, unsigned long rss)
  254. {
  255. unsigned long max_tsb_size = 1 * 1024 * 1024;
  256. unsigned long new_size, old_size, flags;
  257. struct tsb *old_tsb, *new_tsb;
  258. unsigned long new_cache_index, old_cache_index;
  259. unsigned long new_rss_limit;
  260. gfp_t gfp_flags;
  261. if (max_tsb_size > (PAGE_SIZE << MAX_ORDER))
  262. max_tsb_size = (PAGE_SIZE << MAX_ORDER);
  263. new_cache_index = 0;
  264. for (new_size = 8192; new_size < max_tsb_size; new_size <<= 1UL) {
  265. new_rss_limit = tsb_size_to_rss_limit(new_size);
  266. if (new_rss_limit > rss)
  267. break;
  268. new_cache_index++;
  269. }
  270. if (new_size == max_tsb_size)
  271. new_rss_limit = ~0UL;
  272. retry_tsb_alloc:
  273. gfp_flags = GFP_KERNEL;
  274. if (new_size > (PAGE_SIZE * 2))
  275. gfp_flags = __GFP_NOWARN | __GFP_NORETRY;
  276. new_tsb = kmem_cache_alloc_node(tsb_caches[new_cache_index],
  277. gfp_flags, numa_node_id());
  278. if (unlikely(!new_tsb)) {
  279. /* Not being able to fork due to a high-order TSB
  280. * allocation failure is very bad behavior. Just back
  281. * down to a 0-order allocation and force no TSB
  282. * growing for this address space.
  283. */
  284. if (mm->context.tsb_block[tsb_index].tsb == NULL &&
  285. new_cache_index > 0) {
  286. new_cache_index = 0;
  287. new_size = 8192;
  288. new_rss_limit = ~0UL;
  289. goto retry_tsb_alloc;
  290. }
  291. /* If we failed on a TSB grow, we are under serious
  292. * memory pressure so don't try to grow any more.
  293. */
  294. if (mm->context.tsb_block[tsb_index].tsb != NULL)
  295. mm->context.tsb_block[tsb_index].tsb_rss_limit = ~0UL;
  296. return;
  297. }
  298. /* Mark all tags as invalid. */
  299. tsb_init(new_tsb, new_size);
  300. /* Ok, we are about to commit the changes. If we are
  301. * growing an existing TSB the locking is very tricky,
  302. * so WATCH OUT!
  303. *
  304. * We have to hold mm->context.lock while committing to the
  305. * new TSB, this synchronizes us with processors in
  306. * flush_tsb_user() and switch_mm() for this address space.
  307. *
  308. * But even with that lock held, processors run asynchronously
  309. * accessing the old TSB via TLB miss handling. This is OK
  310. * because those actions are just propagating state from the
  311. * Linux page tables into the TSB, page table mappings are not
  312. * being changed. If a real fault occurs, the processor will
  313. * synchronize with us when it hits flush_tsb_user(), this is
  314. * also true for the case where vmscan is modifying the page
  315. * tables. The only thing we need to be careful with is to
  316. * skip any locked TSB entries during copy_tsb().
  317. *
  318. * When we finish committing to the new TSB, we have to drop
  319. * the lock and ask all other cpus running this address space
  320. * to run tsb_context_switch() to see the new TSB table.
  321. */
  322. spin_lock_irqsave(&mm->context.lock, flags);
  323. old_tsb = mm->context.tsb_block[tsb_index].tsb;
  324. old_cache_index =
  325. (mm->context.tsb_block[tsb_index].tsb_reg_val & 0x7UL);
  326. old_size = (mm->context.tsb_block[tsb_index].tsb_nentries *
  327. sizeof(struct tsb));
  328. /* Handle multiple threads trying to grow the TSB at the same time.
  329. * One will get in here first, and bump the size and the RSS limit.
  330. * The others will get in here next and hit this check.
  331. */
  332. if (unlikely(old_tsb &&
  333. (rss < mm->context.tsb_block[tsb_index].tsb_rss_limit))) {
  334. spin_unlock_irqrestore(&mm->context.lock, flags);
  335. kmem_cache_free(tsb_caches[new_cache_index], new_tsb);
  336. return;
  337. }
  338. mm->context.tsb_block[tsb_index].tsb_rss_limit = new_rss_limit;
  339. if (old_tsb) {
  340. extern void copy_tsb(unsigned long old_tsb_base,
  341. unsigned long old_tsb_size,
  342. unsigned long new_tsb_base,
  343. unsigned long new_tsb_size);
  344. unsigned long old_tsb_base = (unsigned long) old_tsb;
  345. unsigned long new_tsb_base = (unsigned long) new_tsb;
  346. if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
  347. old_tsb_base = __pa(old_tsb_base);
  348. new_tsb_base = __pa(new_tsb_base);
  349. }
  350. copy_tsb(old_tsb_base, old_size, new_tsb_base, new_size);
  351. }
  352. mm->context.tsb_block[tsb_index].tsb = new_tsb;
  353. setup_tsb_params(mm, tsb_index, new_size);
  354. spin_unlock_irqrestore(&mm->context.lock, flags);
  355. /* If old_tsb is NULL, we're being invoked for the first time
  356. * from init_new_context().
  357. */
  358. if (old_tsb) {
  359. /* Reload it on the local cpu. */
  360. tsb_context_switch(mm);
  361. /* Now force other processors to do the same. */
  362. preempt_disable();
  363. smp_tsb_sync(mm);
  364. preempt_enable();
  365. /* Now it is safe to free the old tsb. */
  366. kmem_cache_free(tsb_caches[old_cache_index], old_tsb);
  367. }
  368. }
  369. int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
  370. {
  371. #ifdef CONFIG_HUGETLB_PAGE
  372. unsigned long huge_pte_count;
  373. #endif
  374. unsigned int i;
  375. spin_lock_init(&mm->context.lock);
  376. mm->context.sparc64_ctx_val = 0UL;
  377. #ifdef CONFIG_HUGETLB_PAGE
  378. /* We reset it to zero because the fork() page copying
  379. * will re-increment the counters as the parent PTEs are
  380. * copied into the child address space.
  381. */
  382. huge_pte_count = mm->context.huge_pte_count;
  383. mm->context.huge_pte_count = 0;
  384. #endif
  385. /* copy_mm() copies over the parent's mm_struct before calling
  386. * us, so we need to zero out the TSB pointer or else tsb_grow()
  387. * will be confused and think there is an older TSB to free up.
  388. */
  389. for (i = 0; i < MM_NUM_TSBS; i++)
  390. mm->context.tsb_block[i].tsb = NULL;
  391. /* If this is fork, inherit the parent's TSB size. We would
  392. * grow it to that size on the first page fault anyways.
  393. */
  394. tsb_grow(mm, MM_TSB_BASE, get_mm_rss(mm));
  395. #ifdef CONFIG_HUGETLB_PAGE
  396. if (unlikely(huge_pte_count))
  397. tsb_grow(mm, MM_TSB_HUGE, huge_pte_count);
  398. #endif
  399. if (unlikely(!mm->context.tsb_block[MM_TSB_BASE].tsb))
  400. return -ENOMEM;
  401. return 0;
  402. }
  403. static void tsb_destroy_one(struct tsb_config *tp)
  404. {
  405. unsigned long cache_index;
  406. if (!tp->tsb)
  407. return;
  408. cache_index = tp->tsb_reg_val & 0x7UL;
  409. kmem_cache_free(tsb_caches[cache_index], tp->tsb);
  410. tp->tsb = NULL;
  411. tp->tsb_reg_val = 0UL;
  412. }
  413. void destroy_context(struct mm_struct *mm)
  414. {
  415. unsigned long flags, i;
  416. for (i = 0; i < MM_NUM_TSBS; i++)
  417. tsb_destroy_one(&mm->context.tsb_block[i]);
  418. spin_lock_irqsave(&ctx_alloc_lock, flags);
  419. if (CTX_VALID(mm->context)) {
  420. unsigned long nr = CTX_NRBITS(mm->context);
  421. mmu_context_bmap[nr>>6] &= ~(1UL << (nr & 63));
  422. }
  423. spin_unlock_irqrestore(&ctx_alloc_lock, flags);
  424. }