123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598 |
- /* arch/sparc64/kernel/kprobes.c
- *
- * Copyright (C) 2004 David S. Miller <davem@davemloft.net>
- */
- #include <linux/kernel.h>
- #include <linux/kprobes.h>
- #include <linux/module.h>
- #include <linux/kdebug.h>
- #include <linux/slab.h>
- #include <asm/signal.h>
- #include <asm/cacheflush.h>
- #include <asm/uaccess.h>
- /* We do not have hardware single-stepping on sparc64.
- * So we implement software single-stepping with breakpoint
- * traps. The top-level scheme is similar to that used
- * in the x86 kprobes implementation.
- *
- * In the kprobe->ainsn.insn[] array we store the original
- * instruction at index zero and a break instruction at
- * index one.
- *
- * When we hit a kprobe we:
- * - Run the pre-handler
- * - Remember "regs->tnpc" and interrupt level stored in
- * "regs->tstate" so we can restore them later
- * - Disable PIL interrupts
- * - Set regs->tpc to point to kprobe->ainsn.insn[0]
- * - Set regs->tnpc to point to kprobe->ainsn.insn[1]
- * - Mark that we are actively in a kprobe
- *
- * At this point we wait for the second breakpoint at
- * kprobe->ainsn.insn[1] to hit. When it does we:
- * - Run the post-handler
- * - Set regs->tpc to "remembered" regs->tnpc stored above,
- * restore the PIL interrupt level in "regs->tstate" as well
- * - Make any adjustments necessary to regs->tnpc in order
- * to handle relative branches correctly. See below.
- * - Mark that we are no longer actively in a kprobe.
- */
- DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
- DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
- struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
- int __kprobes arch_prepare_kprobe(struct kprobe *p)
- {
- if ((unsigned long) p->addr & 0x3UL)
- return -EILSEQ;
- p->ainsn.insn[0] = *p->addr;
- flushi(&p->ainsn.insn[0]);
- p->ainsn.insn[1] = BREAKPOINT_INSTRUCTION_2;
- flushi(&p->ainsn.insn[1]);
- p->opcode = *p->addr;
- return 0;
- }
- void __kprobes arch_arm_kprobe(struct kprobe *p)
- {
- *p->addr = BREAKPOINT_INSTRUCTION;
- flushi(p->addr);
- }
- void __kprobes arch_disarm_kprobe(struct kprobe *p)
- {
- *p->addr = p->opcode;
- flushi(p->addr);
- }
- static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
- {
- kcb->prev_kprobe.kp = kprobe_running();
- kcb->prev_kprobe.status = kcb->kprobe_status;
- kcb->prev_kprobe.orig_tnpc = kcb->kprobe_orig_tnpc;
- kcb->prev_kprobe.orig_tstate_pil = kcb->kprobe_orig_tstate_pil;
- }
- static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
- {
- __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
- kcb->kprobe_status = kcb->prev_kprobe.status;
- kcb->kprobe_orig_tnpc = kcb->prev_kprobe.orig_tnpc;
- kcb->kprobe_orig_tstate_pil = kcb->prev_kprobe.orig_tstate_pil;
- }
- static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
- struct kprobe_ctlblk *kcb)
- {
- __get_cpu_var(current_kprobe) = p;
- kcb->kprobe_orig_tnpc = regs->tnpc;
- kcb->kprobe_orig_tstate_pil = (regs->tstate & TSTATE_PIL);
- }
- static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs,
- struct kprobe_ctlblk *kcb)
- {
- regs->tstate |= TSTATE_PIL;
- /*single step inline, if it a breakpoint instruction*/
- if (p->opcode == BREAKPOINT_INSTRUCTION) {
- regs->tpc = (unsigned long) p->addr;
- regs->tnpc = kcb->kprobe_orig_tnpc;
- } else {
- regs->tpc = (unsigned long) &p->ainsn.insn[0];
- regs->tnpc = (unsigned long) &p->ainsn.insn[1];
- }
- }
- static int __kprobes kprobe_handler(struct pt_regs *regs)
- {
- struct kprobe *p;
- void *addr = (void *) regs->tpc;
- int ret = 0;
- struct kprobe_ctlblk *kcb;
- /*
- * We don't want to be preempted for the entire
- * duration of kprobe processing
- */
- preempt_disable();
- kcb = get_kprobe_ctlblk();
- if (kprobe_running()) {
- p = get_kprobe(addr);
- if (p) {
- if (kcb->kprobe_status == KPROBE_HIT_SS) {
- regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
- kcb->kprobe_orig_tstate_pil);
- goto no_kprobe;
- }
- /* We have reentered the kprobe_handler(), since
- * another probe was hit while within the handler.
- * We here save the original kprobes variables and
- * just single step on the instruction of the new probe
- * without calling any user handlers.
- */
- save_previous_kprobe(kcb);
- set_current_kprobe(p, regs, kcb);
- kprobes_inc_nmissed_count(p);
- kcb->kprobe_status = KPROBE_REENTER;
- prepare_singlestep(p, regs, kcb);
- return 1;
- } else {
- if (*(u32 *)addr != BREAKPOINT_INSTRUCTION) {
- /* The breakpoint instruction was removed by
- * another cpu right after we hit, no further
- * handling of this interrupt is appropriate
- */
- ret = 1;
- goto no_kprobe;
- }
- p = __get_cpu_var(current_kprobe);
- if (p->break_handler && p->break_handler(p, regs))
- goto ss_probe;
- }
- goto no_kprobe;
- }
- p = get_kprobe(addr);
- if (!p) {
- if (*(u32 *)addr != BREAKPOINT_INSTRUCTION) {
- /*
- * The breakpoint instruction was removed right
- * after we hit it. Another cpu has removed
- * either a probepoint or a debugger breakpoint
- * at this address. In either case, no further
- * handling of this interrupt is appropriate.
- */
- ret = 1;
- }
- /* Not one of ours: let kernel handle it */
- goto no_kprobe;
- }
- set_current_kprobe(p, regs, kcb);
- kcb->kprobe_status = KPROBE_HIT_ACTIVE;
- if (p->pre_handler && p->pre_handler(p, regs))
- return 1;
- ss_probe:
- prepare_singlestep(p, regs, kcb);
- kcb->kprobe_status = KPROBE_HIT_SS;
- return 1;
- no_kprobe:
- preempt_enable_no_resched();
- return ret;
- }
- /* If INSN is a relative control transfer instruction,
- * return the corrected branch destination value.
- *
- * regs->tpc and regs->tnpc still hold the values of the
- * program counters at the time of trap due to the execution
- * of the BREAKPOINT_INSTRUCTION_2 at p->ainsn.insn[1]
- *
- */
- static unsigned long __kprobes relbranch_fixup(u32 insn, struct kprobe *p,
- struct pt_regs *regs)
- {
- unsigned long real_pc = (unsigned long) p->addr;
- /* Branch not taken, no mods necessary. */
- if (regs->tnpc == regs->tpc + 0x4UL)
- return real_pc + 0x8UL;
- /* The three cases are call, branch w/prediction,
- * and traditional branch.
- */
- if ((insn & 0xc0000000) == 0x40000000 ||
- (insn & 0xc1c00000) == 0x00400000 ||
- (insn & 0xc1c00000) == 0x00800000) {
- unsigned long ainsn_addr;
- ainsn_addr = (unsigned long) &p->ainsn.insn[0];
- /* The instruction did all the work for us
- * already, just apply the offset to the correct
- * instruction location.
- */
- return (real_pc + (regs->tnpc - ainsn_addr));
- }
- /* It is jmpl or some other absolute PC modification instruction,
- * leave NPC as-is.
- */
- return regs->tnpc;
- }
- /* If INSN is an instruction which writes it's PC location
- * into a destination register, fix that up.
- */
- static void __kprobes retpc_fixup(struct pt_regs *regs, u32 insn,
- unsigned long real_pc)
- {
- unsigned long *slot = NULL;
- /* Simplest case is 'call', which always uses %o7 */
- if ((insn & 0xc0000000) == 0x40000000) {
- slot = ®s->u_regs[UREG_I7];
- }
- /* 'jmpl' encodes the register inside of the opcode */
- if ((insn & 0xc1f80000) == 0x81c00000) {
- unsigned long rd = ((insn >> 25) & 0x1f);
- if (rd <= 15) {
- slot = ®s->u_regs[rd];
- } else {
- /* Hard case, it goes onto the stack. */
- flushw_all();
- rd -= 16;
- slot = (unsigned long *)
- (regs->u_regs[UREG_FP] + STACK_BIAS);
- slot += rd;
- }
- }
- if (slot != NULL)
- *slot = real_pc;
- }
- /*
- * Called after single-stepping. p->addr is the address of the
- * instruction which has been replaced by the breakpoint
- * instruction. To avoid the SMP problems that can occur when we
- * temporarily put back the original opcode to single-step, we
- * single-stepped a copy of the instruction. The address of this
- * copy is &p->ainsn.insn[0].
- *
- * This function prepares to return from the post-single-step
- * breakpoint trap.
- */
- static void __kprobes resume_execution(struct kprobe *p,
- struct pt_regs *regs, struct kprobe_ctlblk *kcb)
- {
- u32 insn = p->ainsn.insn[0];
- regs->tnpc = relbranch_fixup(insn, p, regs);
- /* This assignment must occur after relbranch_fixup() */
- regs->tpc = kcb->kprobe_orig_tnpc;
- retpc_fixup(regs, insn, (unsigned long) p->addr);
- regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
- kcb->kprobe_orig_tstate_pil);
- }
- static int __kprobes post_kprobe_handler(struct pt_regs *regs)
- {
- struct kprobe *cur = kprobe_running();
- struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
- if (!cur)
- return 0;
- if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
- kcb->kprobe_status = KPROBE_HIT_SSDONE;
- cur->post_handler(cur, regs, 0);
- }
- resume_execution(cur, regs, kcb);
- /*Restore back the original saved kprobes variables and continue. */
- if (kcb->kprobe_status == KPROBE_REENTER) {
- restore_previous_kprobe(kcb);
- goto out;
- }
- reset_current_kprobe();
- out:
- preempt_enable_no_resched();
- return 1;
- }
- int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
- {
- struct kprobe *cur = kprobe_running();
- struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
- const struct exception_table_entry *entry;
- switch(kcb->kprobe_status) {
- case KPROBE_HIT_SS:
- case KPROBE_REENTER:
- /*
- * We are here because the instruction being single
- * stepped caused a page fault. We reset the current
- * kprobe and the tpc points back to the probe address
- * and allow the page fault handler to continue as a
- * normal page fault.
- */
- regs->tpc = (unsigned long)cur->addr;
- regs->tnpc = kcb->kprobe_orig_tnpc;
- regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
- kcb->kprobe_orig_tstate_pil);
- if (kcb->kprobe_status == KPROBE_REENTER)
- restore_previous_kprobe(kcb);
- else
- reset_current_kprobe();
- preempt_enable_no_resched();
- break;
- case KPROBE_HIT_ACTIVE:
- case KPROBE_HIT_SSDONE:
- /*
- * We increment the nmissed count for accounting,
- * we can also use npre/npostfault count for accouting
- * these specific fault cases.
- */
- kprobes_inc_nmissed_count(cur);
- /*
- * We come here because instructions in the pre/post
- * handler caused the page_fault, this could happen
- * if handler tries to access user space by
- * copy_from_user(), get_user() etc. Let the
- * user-specified handler try to fix it first.
- */
- if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
- return 1;
- /*
- * In case the user-specified fault handler returned
- * zero, try to fix up.
- */
- entry = search_exception_tables(regs->tpc);
- if (entry) {
- regs->tpc = entry->fixup;
- regs->tnpc = regs->tpc + 4;
- return 1;
- }
- /*
- * fixup_exception() could not handle it,
- * Let do_page_fault() fix it.
- */
- break;
- default:
- break;
- }
- return 0;
- }
- /*
- * Wrapper routine to for handling exceptions.
- */
- int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
- unsigned long val, void *data)
- {
- struct die_args *args = (struct die_args *)data;
- int ret = NOTIFY_DONE;
- if (args->regs && user_mode(args->regs))
- return ret;
- switch (val) {
- case DIE_DEBUG:
- if (kprobe_handler(args->regs))
- ret = NOTIFY_STOP;
- break;
- case DIE_DEBUG_2:
- if (post_kprobe_handler(args->regs))
- ret = NOTIFY_STOP;
- break;
- default:
- break;
- }
- return ret;
- }
- asmlinkage void __kprobes kprobe_trap(unsigned long trap_level,
- struct pt_regs *regs)
- {
- BUG_ON(trap_level != 0x170 && trap_level != 0x171);
- if (user_mode(regs)) {
- local_irq_enable();
- bad_trap(regs, trap_level);
- return;
- }
- /* trap_level == 0x170 --> ta 0x70
- * trap_level == 0x171 --> ta 0x71
- */
- if (notify_die((trap_level == 0x170) ? DIE_DEBUG : DIE_DEBUG_2,
- (trap_level == 0x170) ? "debug" : "debug_2",
- regs, 0, trap_level, SIGTRAP) != NOTIFY_STOP)
- bad_trap(regs, trap_level);
- }
- /* Jprobes support. */
- int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
- {
- struct jprobe *jp = container_of(p, struct jprobe, kp);
- struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
- memcpy(&(kcb->jprobe_saved_regs), regs, sizeof(*regs));
- regs->tpc = (unsigned long) jp->entry;
- regs->tnpc = ((unsigned long) jp->entry) + 0x4UL;
- regs->tstate |= TSTATE_PIL;
- return 1;
- }
- void __kprobes jprobe_return(void)
- {
- struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
- register unsigned long orig_fp asm("g1");
- orig_fp = kcb->jprobe_saved_regs.u_regs[UREG_FP];
- __asm__ __volatile__("\n"
- "1: cmp %%sp, %0\n\t"
- "blu,a,pt %%xcc, 1b\n\t"
- " restore\n\t"
- ".globl jprobe_return_trap_instruction\n"
- "jprobe_return_trap_instruction:\n\t"
- "ta 0x70"
- : /* no outputs */
- : "r" (orig_fp));
- }
- extern void jprobe_return_trap_instruction(void);
- int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
- {
- u32 *addr = (u32 *) regs->tpc;
- struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
- if (addr == (u32 *) jprobe_return_trap_instruction) {
- memcpy(regs, &(kcb->jprobe_saved_regs), sizeof(*regs));
- preempt_enable_no_resched();
- return 1;
- }
- return 0;
- }
- /* The value stored in the return address register is actually 2
- * instructions before where the callee will return to.
- * Sequences usually look something like this
- *
- * call some_function <--- return register points here
- * nop <--- call delay slot
- * whatever <--- where callee returns to
- *
- * To keep trampoline_probe_handler logic simpler, we normalize the
- * value kept in ri->ret_addr so we don't need to keep adjusting it
- * back and forth.
- */
- void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
- struct pt_regs *regs)
- {
- ri->ret_addr = (kprobe_opcode_t *)(regs->u_regs[UREG_RETPC] + 8);
- /* Replace the return addr with trampoline addr */
- regs->u_regs[UREG_RETPC] =
- ((unsigned long)kretprobe_trampoline) - 8;
- }
- /*
- * Called when the probe at kretprobe trampoline is hit
- */
- int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
- {
- struct kretprobe_instance *ri = NULL;
- struct hlist_head *head, empty_rp;
- struct hlist_node *node, *tmp;
- unsigned long flags, orig_ret_address = 0;
- unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
- INIT_HLIST_HEAD(&empty_rp);
- kretprobe_hash_lock(current, &head, &flags);
- /*
- * It is possible to have multiple instances associated with a given
- * task either because an multiple functions in the call path
- * have a return probe installed on them, and/or more than one return
- * return probe was registered for a target function.
- *
- * We can handle this because:
- * - instances are always inserted at the head of the list
- * - when multiple return probes are registered for the same
- * function, the first instance's ret_addr will point to the
- * real return address, and all the rest will point to
- * kretprobe_trampoline
- */
- hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
- if (ri->task != current)
- /* another task is sharing our hash bucket */
- continue;
- if (ri->rp && ri->rp->handler)
- ri->rp->handler(ri, regs);
- orig_ret_address = (unsigned long)ri->ret_addr;
- recycle_rp_inst(ri, &empty_rp);
- if (orig_ret_address != trampoline_address)
- /*
- * This is the real return address. Any other
- * instances associated with this task are for
- * other calls deeper on the call stack
- */
- break;
- }
- kretprobe_assert(ri, orig_ret_address, trampoline_address);
- regs->tpc = orig_ret_address;
- regs->tnpc = orig_ret_address + 4;
- reset_current_kprobe();
- kretprobe_hash_unlock(current, &flags);
- preempt_enable_no_resched();
- hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
- hlist_del(&ri->hlist);
- kfree(ri);
- }
- /*
- * By returning a non-zero value, we are telling
- * kprobe_handler() that we don't want the post_handler
- * to run (and have re-enabled preemption)
- */
- return 1;
- }
- void kretprobe_trampoline_holder(void)
- {
- asm volatile(".global kretprobe_trampoline\n"
- "kretprobe_trampoline:\n"
- "\tnop\n"
- "\tnop\n");
- }
- static struct kprobe trampoline_p = {
- .addr = (kprobe_opcode_t *) &kretprobe_trampoline,
- .pre_handler = trampoline_probe_handler
- };
- int __init arch_init_kprobes(void)
- {
- return register_kprobe(&trampoline_p);
- }
- int __kprobes arch_trampoline_kprobe(struct kprobe *p)
- {
- if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline)
- return 1;
- return 0;
- }
|