time.c 8.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329
  1. /*
  2. * linux/arch/cris/arch-v32/kernel/time.c
  3. *
  4. * Copyright (C) 2003-2010 Axis Communications AB
  5. *
  6. */
  7. #include <linux/timex.h>
  8. #include <linux/time.h>
  9. #include <linux/clocksource.h>
  10. #include <linux/interrupt.h>
  11. #include <linux/swap.h>
  12. #include <linux/sched.h>
  13. #include <linux/init.h>
  14. #include <linux/threads.h>
  15. #include <linux/cpufreq.h>
  16. #include <asm/types.h>
  17. #include <asm/signal.h>
  18. #include <asm/io.h>
  19. #include <asm/delay.h>
  20. #include <asm/rtc.h>
  21. #include <asm/irq.h>
  22. #include <asm/irq_regs.h>
  23. #include <hwregs/reg_map.h>
  24. #include <hwregs/reg_rdwr.h>
  25. #include <hwregs/timer_defs.h>
  26. #include <hwregs/intr_vect_defs.h>
  27. #ifdef CONFIG_CRIS_MACH_ARTPEC3
  28. #include <hwregs/clkgen_defs.h>
  29. #endif
  30. /* Watchdog defines */
  31. #define ETRAX_WD_KEY_MASK 0x7F /* key is 7 bit */
  32. #define ETRAX_WD_HZ 763 /* watchdog counts at 763 Hz */
  33. /* Number of 763 counts before watchdog bites */
  34. #define ETRAX_WD_CNT ((2*ETRAX_WD_HZ)/HZ + 1)
  35. /* Register the continuos readonly timer available in FS and ARTPEC-3. */
  36. static cycle_t read_cont_rotime(struct clocksource *cs)
  37. {
  38. return (u32)REG_RD(timer, regi_timer0, r_time);
  39. }
  40. static struct clocksource cont_rotime = {
  41. .name = "crisv32_rotime",
  42. .rating = 300,
  43. .read = read_cont_rotime,
  44. .mask = CLOCKSOURCE_MASK(32),
  45. .shift = 10,
  46. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  47. };
  48. static int __init etrax_init_cont_rotime(void)
  49. {
  50. cont_rotime.mult = clocksource_khz2mult(100000, cont_rotime.shift);
  51. clocksource_register(&cont_rotime);
  52. return 0;
  53. }
  54. arch_initcall(etrax_init_cont_rotime);
  55. unsigned long timer_regs[NR_CPUS] =
  56. {
  57. regi_timer0,
  58. #ifdef CONFIG_SMP
  59. regi_timer2
  60. #endif
  61. };
  62. extern int set_rtc_mmss(unsigned long nowtime);
  63. extern int have_rtc;
  64. #ifdef CONFIG_CPU_FREQ
  65. static int
  66. cris_time_freq_notifier(struct notifier_block *nb, unsigned long val,
  67. void *data);
  68. static struct notifier_block cris_time_freq_notifier_block = {
  69. .notifier_call = cris_time_freq_notifier,
  70. };
  71. #endif
  72. unsigned long get_ns_in_jiffie(void)
  73. {
  74. reg_timer_r_tmr0_data data;
  75. unsigned long ns;
  76. data = REG_RD(timer, regi_timer0, r_tmr0_data);
  77. ns = (TIMER0_DIV - data) * 10;
  78. return ns;
  79. }
  80. /* From timer MDS describing the hardware watchdog:
  81. * 4.3.1 Watchdog Operation
  82. * The watchdog timer is an 8-bit timer with a configurable start value.
  83. * Once started the watchdog counts downwards with a frequency of 763 Hz
  84. * (100/131072 MHz). When the watchdog counts down to 1, it generates an
  85. * NMI (Non Maskable Interrupt), and when it counts down to 0, it resets the
  86. * chip.
  87. */
  88. /* This gives us 1.3 ms to do something useful when the NMI comes */
  89. /* Right now, starting the watchdog is the same as resetting it */
  90. #define start_watchdog reset_watchdog
  91. #if defined(CONFIG_ETRAX_WATCHDOG)
  92. static short int watchdog_key = 42; /* arbitrary 7 bit number */
  93. #endif
  94. /* Number of pages to consider "out of memory". It is normal that the memory
  95. * is used though, so set this really low. */
  96. #define WATCHDOG_MIN_FREE_PAGES 8
  97. void reset_watchdog(void)
  98. {
  99. #if defined(CONFIG_ETRAX_WATCHDOG)
  100. reg_timer_rw_wd_ctrl wd_ctrl = { 0 };
  101. /* Only keep watchdog happy as long as we have memory left! */
  102. if(nr_free_pages() > WATCHDOG_MIN_FREE_PAGES) {
  103. /* Reset the watchdog with the inverse of the old key */
  104. /* Invert key, which is 7 bits */
  105. watchdog_key ^= ETRAX_WD_KEY_MASK;
  106. wd_ctrl.cnt = ETRAX_WD_CNT;
  107. wd_ctrl.cmd = regk_timer_start;
  108. wd_ctrl.key = watchdog_key;
  109. REG_WR(timer, regi_timer0, rw_wd_ctrl, wd_ctrl);
  110. }
  111. #endif
  112. }
  113. /* stop the watchdog - we still need the correct key */
  114. void stop_watchdog(void)
  115. {
  116. #if defined(CONFIG_ETRAX_WATCHDOG)
  117. reg_timer_rw_wd_ctrl wd_ctrl = { 0 };
  118. watchdog_key ^= ETRAX_WD_KEY_MASK; /* invert key, which is 7 bits */
  119. wd_ctrl.cnt = ETRAX_WD_CNT;
  120. wd_ctrl.cmd = regk_timer_stop;
  121. wd_ctrl.key = watchdog_key;
  122. REG_WR(timer, regi_timer0, rw_wd_ctrl, wd_ctrl);
  123. #endif
  124. }
  125. extern void show_registers(struct pt_regs *regs);
  126. void handle_watchdog_bite(struct pt_regs *regs)
  127. {
  128. #if defined(CONFIG_ETRAX_WATCHDOG)
  129. extern int cause_of_death;
  130. oops_in_progress = 1;
  131. printk(KERN_WARNING "Watchdog bite\n");
  132. /* Check if forced restart or unexpected watchdog */
  133. if (cause_of_death == 0xbedead) {
  134. #ifdef CONFIG_CRIS_MACH_ARTPEC3
  135. /* There is a bug in Artpec-3 (voodoo TR 78) that requires
  136. * us to go to lower frequency for the reset to be reliable
  137. */
  138. reg_clkgen_rw_clk_ctrl ctrl =
  139. REG_RD(clkgen, regi_clkgen, rw_clk_ctrl);
  140. ctrl.pll = 0;
  141. REG_WR(clkgen, regi_clkgen, rw_clk_ctrl, ctrl);
  142. #endif
  143. while(1);
  144. }
  145. /* Unexpected watchdog, stop the watchdog and dump registers. */
  146. stop_watchdog();
  147. printk(KERN_WARNING "Oops: bitten by watchdog\n");
  148. show_registers(regs);
  149. oops_in_progress = 0;
  150. #ifndef CONFIG_ETRAX_WATCHDOG_NICE_DOGGY
  151. reset_watchdog();
  152. #endif
  153. while(1) /* nothing */;
  154. #endif
  155. }
  156. /*
  157. * timer_interrupt() needs to keep up the real-time clock,
  158. * as well as call the "xtime_update()" routine every clocktick.
  159. */
  160. extern void cris_do_profile(struct pt_regs *regs);
  161. static inline irqreturn_t timer_interrupt(int irq, void *dev_id)
  162. {
  163. struct pt_regs *regs = get_irq_regs();
  164. int cpu = smp_processor_id();
  165. reg_timer_r_masked_intr masked_intr;
  166. reg_timer_rw_ack_intr ack_intr = { 0 };
  167. /* Check if the timer interrupt is for us (a tmr0 int) */
  168. masked_intr = REG_RD(timer, timer_regs[cpu], r_masked_intr);
  169. if (!masked_intr.tmr0)
  170. return IRQ_NONE;
  171. /* Acknowledge the timer irq. */
  172. ack_intr.tmr0 = 1;
  173. REG_WR(timer, timer_regs[cpu], rw_ack_intr, ack_intr);
  174. /* Reset watchdog otherwise it resets us! */
  175. reset_watchdog();
  176. /* Update statistics. */
  177. update_process_times(user_mode(regs));
  178. cris_do_profile(regs); /* Save profiling information */
  179. /* The master CPU is responsible for the time keeping. */
  180. if (cpu != 0)
  181. return IRQ_HANDLED;
  182. /* Call the real timer interrupt handler */
  183. xtime_update(1);
  184. return IRQ_HANDLED;
  185. }
  186. /* Timer is IRQF_SHARED so drivers can add stuff to the timer irq chain.
  187. * It needs to be IRQF_DISABLED to make the jiffies update work properly.
  188. */
  189. static struct irqaction irq_timer = {
  190. .handler = timer_interrupt,
  191. .flags = IRQF_SHARED | IRQF_DISABLED,
  192. .name = "timer"
  193. };
  194. void __init cris_timer_init(void)
  195. {
  196. int cpu = smp_processor_id();
  197. reg_timer_rw_tmr0_ctrl tmr0_ctrl = { 0 };
  198. reg_timer_rw_tmr0_div tmr0_div = TIMER0_DIV;
  199. reg_timer_rw_intr_mask timer_intr_mask;
  200. /* Setup the etrax timers.
  201. * Base frequency is 100MHz, divider 1000000 -> 100 HZ
  202. * We use timer0, so timer1 is free.
  203. * The trig timer is used by the fasttimer API if enabled.
  204. */
  205. tmr0_ctrl.op = regk_timer_ld;
  206. tmr0_ctrl.freq = regk_timer_f100;
  207. REG_WR(timer, timer_regs[cpu], rw_tmr0_div, tmr0_div);
  208. REG_WR(timer, timer_regs[cpu], rw_tmr0_ctrl, tmr0_ctrl); /* Load */
  209. tmr0_ctrl.op = regk_timer_run;
  210. REG_WR(timer, timer_regs[cpu], rw_tmr0_ctrl, tmr0_ctrl); /* Start */
  211. /* Enable the timer irq. */
  212. timer_intr_mask = REG_RD(timer, timer_regs[cpu], rw_intr_mask);
  213. timer_intr_mask.tmr0 = 1;
  214. REG_WR(timer, timer_regs[cpu], rw_intr_mask, timer_intr_mask);
  215. }
  216. void __init time_init(void)
  217. {
  218. reg_intr_vect_rw_mask intr_mask;
  219. /* Probe for the RTC and read it if it exists.
  220. * Before the RTC can be probed the loops_per_usec variable needs
  221. * to be initialized to make usleep work. A better value for
  222. * loops_per_usec is calculated by the kernel later once the
  223. * clock has started.
  224. */
  225. loops_per_usec = 50;
  226. if(RTC_INIT() < 0)
  227. have_rtc = 0;
  228. else
  229. have_rtc = 1;
  230. /* Start CPU local timer. */
  231. cris_timer_init();
  232. /* Enable the timer irq in global config. */
  233. intr_mask = REG_RD_VECT(intr_vect, regi_irq, rw_mask, 1);
  234. intr_mask.timer0 = 1;
  235. REG_WR_VECT(intr_vect, regi_irq, rw_mask, 1, intr_mask);
  236. /* Now actually register the timer irq handler that calls
  237. * timer_interrupt(). */
  238. setup_irq(TIMER0_INTR_VECT, &irq_timer);
  239. /* Enable watchdog if we should use one. */
  240. #if defined(CONFIG_ETRAX_WATCHDOG)
  241. printk(KERN_INFO "Enabling watchdog...\n");
  242. start_watchdog();
  243. /* If we use the hardware watchdog, we want to trap it as an NMI
  244. * and dump registers before it resets us. For this to happen, we
  245. * must set the "m" NMI enable flag (which once set, is unset only
  246. * when an NMI is taken). */
  247. {
  248. unsigned long flags;
  249. local_save_flags(flags);
  250. flags |= (1<<30); /* NMI M flag is at bit 30 */
  251. local_irq_restore(flags);
  252. }
  253. #endif
  254. #ifdef CONFIG_CPU_FREQ
  255. cpufreq_register_notifier(&cris_time_freq_notifier_block,
  256. CPUFREQ_TRANSITION_NOTIFIER);
  257. #endif
  258. }
  259. #ifdef CONFIG_CPU_FREQ
  260. static int
  261. cris_time_freq_notifier(struct notifier_block *nb, unsigned long val,
  262. void *data)
  263. {
  264. struct cpufreq_freqs *freqs = data;
  265. if (val == CPUFREQ_POSTCHANGE) {
  266. reg_timer_r_tmr0_data data;
  267. reg_timer_rw_tmr0_div div = (freqs->new * 500) / HZ;
  268. do {
  269. data = REG_RD(timer, timer_regs[freqs->cpu],
  270. r_tmr0_data);
  271. } while (data > 20);
  272. REG_WR(timer, timer_regs[freqs->cpu], rw_tmr0_div, div);
  273. }
  274. return 0;
  275. }
  276. #endif