123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243 |
- /*
- ===========================================================================
- Doom 3 GPL Source Code
- Copyright (C) 1999-2011 id Software LLC, a ZeniMax Media company.
- This file is part of the Doom 3 GPL Source Code (?Doom 3 Source Code?).
- Doom 3 Source Code is free software: you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation, either version 3 of the License, or
- (at your option) any later version.
- Doom 3 Source Code is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
- You should have received a copy of the GNU General Public License
- along with Doom 3 Source Code. If not, see <http://www.gnu.org/licenses/>.
- In addition, the Doom 3 Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the Doom 3 Source Code. If not, please request a copy in writing from id Software at the address below.
- If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA.
- ===========================================================================
- */
- #include "../precompiled.h"
- #pragma hdrstop
- const float EPSILON = 1e-6f;
- /*
- =============
- idPolynomial::Laguer
- =============
- */
- int idPolynomial::Laguer( const idComplex *coef, const int degree, idComplex &x ) const {
- const int MT = 10, MAX_ITERATIONS = MT * 8;
- static const float frac[] = { 0.0f, 0.5f, 0.25f, 0.75f, 0.13f, 0.38f, 0.62f, 0.88f, 1.0f };
- int i, j;
- float abx, abp, abm, err;
- idComplex dx, cx, b, d, f, g, s, gps, gms, g2;
- for ( i = 1; i <= MAX_ITERATIONS; i++ ) {
- b = coef[degree];
- err = b.Abs();
- d.Zero();
- f.Zero();
- abx = x.Abs();
- for ( j = degree - 1; j >= 0; j-- ) {
- f = x * f + d;
- d = x * d + b;
- b = x * b + coef[j];
- err = b.Abs() + abx * err;
- }
- if ( b.Abs() < err * EPSILON ) {
- return i;
- }
- g = d / b;
- g2 = g * g;
- s = ( ( degree - 1 ) * ( degree * ( g2 - 2.0f * f / b ) - g2 ) ).Sqrt();
- gps = g + s;
- gms = g - s;
- abp = gps.Abs();
- abm = gms.Abs();
- if ( abp < abm ) {
- gps = gms;
- }
- if ( Max( abp, abm ) > 0.0f ) {
- dx = degree / gps;
- } else {
- dx = idMath::Exp( idMath::Log( 1.0f + abx ) ) * idComplex( idMath::Cos( i ), idMath::Sin( i ) );
- }
- cx = x - dx;
- if ( x == cx ) {
- return i;
- }
- if ( i % MT == 0 ) {
- x = cx;
- } else {
- x -= frac[i/MT] * dx;
- }
- }
- return i;
- }
- /*
- =============
- idPolynomial::GetRoots
- =============
- */
- int idPolynomial::GetRoots( idComplex *roots ) const {
- int i, j;
- idComplex x, b, c, *coef;
- coef = (idComplex *) _alloca16( ( degree + 1 ) * sizeof( idComplex ) );
- for ( i = 0; i <= degree; i++ ) {
- coef[i].Set( coefficient[i], 0.0f );
- }
- for ( i = degree - 1; i >= 0; i-- ) {
- x.Zero();
- Laguer( coef, i + 1, x );
- if ( idMath::Fabs( x.i ) < 2.0f * EPSILON * idMath::Fabs( x.r ) ) {
- x.i = 0.0f;
- }
- roots[i] = x;
- b = coef[i+1];
- for ( j = i; j >= 0; j-- ) {
- c = coef[j];
- coef[j] = b;
- b = x * b + c;
- }
- }
- for ( i = 0; i <= degree; i++ ) {
- coef[i].Set( coefficient[i], 0.0f );
- }
- for ( i = 0; i < degree; i++ ) {
- Laguer( coef, degree, roots[i] );
- }
- for ( i = 1; i < degree; i++ ) {
- x = roots[i];
- for ( j = i - 1; j >= 0; j-- ) {
- if ( roots[j].r <= x.r ) {
- break;
- }
- roots[j+1] = roots[j];
- }
- roots[j+1] = x;
- }
- return degree;
- }
- /*
- =============
- idPolynomial::GetRoots
- =============
- */
- int idPolynomial::GetRoots( float *roots ) const {
- int i, num;
- idComplex *complexRoots;
- switch( degree ) {
- case 0: return 0;
- case 1: return GetRoots1( coefficient[1], coefficient[0], roots );
- case 2: return GetRoots2( coefficient[2], coefficient[1], coefficient[0], roots );
- case 3: return GetRoots3( coefficient[3], coefficient[2], coefficient[1], coefficient[0], roots );
- case 4: return GetRoots4( coefficient[4], coefficient[3], coefficient[2], coefficient[1], coefficient[0], roots );
- }
- // The Abel-Ruffini theorem states that there is no general solution
- // in radicals to polynomial equations of degree five or higher.
- // A polynomial equation can be solved by radicals if and only if
- // its Galois group is a solvable group.
- complexRoots = (idComplex *) _alloca16( degree * sizeof( idComplex ) );
- GetRoots( complexRoots );
- for ( num = i = 0; i < degree; i++ ) {
- if ( complexRoots[i].i == 0.0f ) {
- roots[i] = complexRoots[i].r;
- num++;
- }
- }
- return num;
- }
- /*
- =============
- idPolynomial::ToString
- =============
- */
- const char *idPolynomial::ToString( int precision ) const {
- return idStr::FloatArrayToString( ToFloatPtr(), GetDimension(), precision );
- }
- /*
- =============
- idPolynomial::Test
- =============
- */
- void idPolynomial::Test( void ) {
- int i, num;
- float roots[4], value;
- idComplex complexRoots[4], complexValue;
- idPolynomial p;
- p = idPolynomial( -5.0f, 4.0f );
- num = p.GetRoots( roots );
- for ( i = 0; i < num; i++ ) {
- value = p.GetValue( roots[i] );
- assert( idMath::Fabs( value ) < 1e-4f );
- }
- p = idPolynomial( -5.0f, 4.0f, 3.0f );
- num = p.GetRoots( roots );
- for ( i = 0; i < num; i++ ) {
- value = p.GetValue( roots[i] );
- assert( idMath::Fabs( value ) < 1e-4f );
- }
- p = idPolynomial( 1.0f, 4.0f, 3.0f, -2.0f );
- num = p.GetRoots( roots );
- for ( i = 0; i < num; i++ ) {
- value = p.GetValue( roots[i] );
- assert( idMath::Fabs( value ) < 1e-4f );
- }
- p = idPolynomial( 5.0f, 4.0f, 3.0f, -2.0f );
- num = p.GetRoots( roots );
- for ( i = 0; i < num; i++ ) {
- value = p.GetValue( roots[i] );
- assert( idMath::Fabs( value ) < 1e-4f );
- }
- p = idPolynomial( -5.0f, 4.0f, 3.0f, 2.0f, 1.0f );
- num = p.GetRoots( roots );
- for ( i = 0; i < num; i++ ) {
- value = p.GetValue( roots[i] );
- assert( idMath::Fabs( value ) < 1e-4f );
- }
- p = idPolynomial( 1.0f, 4.0f, 3.0f, -2.0f );
- num = p.GetRoots( complexRoots );
- for ( i = 0; i < num; i++ ) {
- complexValue = p.GetValue( complexRoots[i] );
- assert( idMath::Fabs( complexValue.r ) < 1e-4f && idMath::Fabs( complexValue.i ) < 1e-4f );
- }
- p = idPolynomial( 5.0f, 4.0f, 3.0f, -2.0f );
- num = p.GetRoots( complexRoots );
- for ( i = 0; i < num; i++ ) {
- complexValue = p.GetValue( complexRoots[i] );
- assert( idMath::Fabs( complexValue.r ) < 1e-4f && idMath::Fabs( complexValue.i ) < 1e-4f );
- }
- }
|