jfdctflt.cpp 5.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175
  1. /*
  2. * jfdctflt.c
  3. *
  4. * Copyright (C) 1994, Thomas G. Lane.
  5. * This file is part of the Independent JPEG Group's software.
  6. * For conditions of distribution and use, see the accompanying README file.
  7. *
  8. * This file contains a floating-point implementation of the
  9. * forward DCT (Discrete Cosine Transform).
  10. *
  11. * This implementation should be more accurate than either of the integer
  12. * DCT implementations. However, it may not give the same results on all
  13. * machines because of differences in roundoff behavior. Speed will depend
  14. * on the hardware's floating point capacity.
  15. *
  16. * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
  17. * on each column. Direct algorithms are also available, but they are
  18. * much more complex and seem not to be any faster when reduced to code.
  19. *
  20. * This implementation is based on Arai, Agui, and Nakajima's algorithm for
  21. * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
  22. * Japanese, but the algorithm is described in the Pennebaker & Mitchell
  23. * JPEG textbook (see REFERENCES section in file README). The following code
  24. * is based directly on figure 4-8 in P&M.
  25. * While an 8-point DCT cannot be done in less than 11 multiplies, it is
  26. * possible to arrange the computation so that many of the multiplies are
  27. * simple scalings of the final outputs. These multiplies can then be
  28. * folded into the multiplications or divisions by the JPEG quantization
  29. * table entries. The AA&N method leaves only 5 multiplies and 29 adds
  30. * to be done in the DCT itself.
  31. * The primary disadvantage of this method is that with a fixed-point
  32. * implementation, accuracy is lost due to imprecise representation of the
  33. * scaled quantization values. However, that problem does not arise if
  34. * we use floating point arithmetic.
  35. */
  36. // leave this as first line for PCH reasons...
  37. //
  38. #include "../server/exe_headers.h"
  39. #define JPEG_INTERNALS
  40. #include "jinclude.h"
  41. #include "jpeglib.h"
  42. #include "jdct.h" /* Private declarations for DCT subsystem */
  43. #ifdef DCT_FLOAT_SUPPORTED
  44. /*
  45. * This module is specialized to the case DCTSIZE = 8.
  46. */
  47. #if DCTSIZE != 8
  48. Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
  49. #endif
  50. /*
  51. * Perform the forward DCT on one block of samples.
  52. */
  53. GLOBAL void
  54. jpeg_fdct_float (FAST_FLOAT * data)
  55. {
  56. FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
  57. FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
  58. FAST_FLOAT z1, z2, z3, z4, z5, z11, z13;
  59. FAST_FLOAT *dataptr;
  60. int ctr;
  61. /* Pass 1: process rows. */
  62. dataptr = data;
  63. for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
  64. tmp0 = dataptr[0] + dataptr[7];
  65. tmp7 = dataptr[0] - dataptr[7];
  66. tmp1 = dataptr[1] + dataptr[6];
  67. tmp6 = dataptr[1] - dataptr[6];
  68. tmp2 = dataptr[2] + dataptr[5];
  69. tmp5 = dataptr[2] - dataptr[5];
  70. tmp3 = dataptr[3] + dataptr[4];
  71. tmp4 = dataptr[3] - dataptr[4];
  72. /* Even part */
  73. tmp10 = tmp0 + tmp3; /* phase 2 */
  74. tmp13 = tmp0 - tmp3;
  75. tmp11 = tmp1 + tmp2;
  76. tmp12 = tmp1 - tmp2;
  77. dataptr[0] = tmp10 + tmp11; /* phase 3 */
  78. dataptr[4] = tmp10 - tmp11;
  79. z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
  80. dataptr[2] = tmp13 + z1; /* phase 5 */
  81. dataptr[6] = tmp13 - z1;
  82. /* Odd part */
  83. tmp10 = tmp4 + tmp5; /* phase 2 */
  84. tmp11 = tmp5 + tmp6;
  85. tmp12 = tmp6 + tmp7;
  86. /* The rotator is modified from fig 4-8 to avoid extra negations. */
  87. z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
  88. z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
  89. z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
  90. z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */
  91. z11 = tmp7 + z3; /* phase 5 */
  92. z13 = tmp7 - z3;
  93. dataptr[5] = z13 + z2; /* phase 6 */
  94. dataptr[3] = z13 - z2;
  95. dataptr[1] = z11 + z4;
  96. dataptr[7] = z11 - z4;
  97. dataptr += DCTSIZE; /* advance pointer to next row */
  98. }
  99. /* Pass 2: process columns. */
  100. dataptr = data;
  101. for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
  102. tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
  103. tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
  104. tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
  105. tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
  106. tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
  107. tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
  108. tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
  109. tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
  110. /* Even part */
  111. tmp10 = tmp0 + tmp3; /* phase 2 */
  112. tmp13 = tmp0 - tmp3;
  113. tmp11 = tmp1 + tmp2;
  114. tmp12 = tmp1 - tmp2;
  115. dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
  116. dataptr[DCTSIZE*4] = tmp10 - tmp11;
  117. z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
  118. dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
  119. dataptr[DCTSIZE*6] = tmp13 - z1;
  120. /* Odd part */
  121. tmp10 = tmp4 + tmp5; /* phase 2 */
  122. tmp11 = tmp5 + tmp6;
  123. tmp12 = tmp6 + tmp7;
  124. /* The rotator is modified from fig 4-8 to avoid extra negations. */
  125. z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
  126. z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
  127. z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
  128. z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */
  129. z11 = tmp7 + z3; /* phase 5 */
  130. z13 = tmp7 - z3;
  131. dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
  132. dataptr[DCTSIZE*3] = z13 - z2;
  133. dataptr[DCTSIZE*1] = z11 + z4;
  134. dataptr[DCTSIZE*7] = z11 - z4;
  135. dataptr++; /* advance pointer to next column */
  136. }
  137. }
  138. #endif /* DCT_FLOAT_SUPPORTED */