12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274 |
- // q_math.c -- stateless support routines that are included in each code module
- // leave this at the top for PCH reasons...
- #include "common_headers.h"
- //#include "q_shared.h"
- const vec3_t vec3_origin = {0,0,0};
- const vec3_t axisDefault[3] = { { 1, 0, 0 }, { 0, 1, 0 }, { 0, 0, 1 } };
- vec4_t colorTable[CT_MAX] =
- {
- {0, 0, 0, 0}, // CT_NONE
- {0, 0, 0, 1}, // CT_BLACK
- {1, 0, 0, 1}, // CT_RED
- {0, 1, 0, 1}, // CT_GREEN
- {0, 0, 1, 1}, // CT_BLUE
- {1, 1, 0, 1}, // CT_YELLOW
- {1, 0, 1, 1}, // CT_MAGENTA
- {0, 1, 1, 1}, // CT_CYAN
- {1, 1, 1, 1}, // CT_WHITE
- {0.75f, 0.75f, 0.75f, 1}, // CT_LTGREY
- {0.50f, 0.50f, 0.50f, 1}, // CT_MDGREY
- {0.25f, 0.25f, 0.25f, 1}, // CT_DKGREY
- {0.15f, 0.15f, 0.15f, 1}, // CT_DKGREY2
- {0.992f, 0.652f, 0.0f, 1}, // CT_VLTORANGE -- needs values
- {0.810f, 0.530f, 0.0f, 1}, // CT_LTORANGE
- {0.610f, 0.330f, 0.0f, 1}, // CT_DKORANGE
- {0.402f, 0.265f, 0.0f, 1}, // CT_VDKORANGE
- {0.503f, 0.375f, 0.996f, 1}, // CT_VLTBLUE1
- {0.367f, 0.261f, 0.722f, 1}, // CT_LTBLUE1
- {0.199f, 0.0f, 0.398f, 1}, // CT_DKBLUE1
- {0.160f, 0.117f, 0.324f, 1}, // CT_VDKBLUE1
- {0.300f, 0.628f, 0.816f, 1}, // CT_VLTBLUE2 -- needs values
- {0.300f, 0.628f, 0.816f, 1}, // CT_LTBLUE2
- {0.191f, 0.289f, 0.457f, 1}, // CT_DKBLUE2
- {0.125f, 0.250f, 0.324f, 1}, // CT_VDKBLUE2
- {0.796f, 0.398f, 0.199f, 1}, // CT_VLTBROWN1 -- needs values
- {0.796f, 0.398f, 0.199f, 1}, // CT_LTBROWN1
- {0.558f, 0.207f, 0.027f, 1}, // CT_DKBROWN1
- {0.328f, 0.125f, 0.035f, 1}, // CT_VDKBROWN1
- {0.996f, 0.796f, 0.398f, 1}, // CT_VLTGOLD1 -- needs values
- {0.996f, 0.796f, 0.398f, 1}, // CT_LTGOLD1
- {0.605f, 0.441f, 0.113f, 1}, // CT_DKGOLD1
- {0.386f, 0.308f, 0.148f, 1}, // CT_VDKGOLD1
- {0.648f, 0.562f, 0.784f, 1}, // CT_VLTPURPLE1 -- needs values
- {0.648f, 0.562f, 0.784f, 1}, // CT_LTPURPLE1
- {0.437f, 0.335f, 0.597f, 1}, // CT_DKPURPLE1
- {0.308f, 0.269f, 0.375f, 1}, // CT_VDKPURPLE1
- {0.816f, 0.531f, 0.710f, 1}, // CT_VLTPURPLE2 -- needs values
- {0.816f, 0.531f, 0.710f, 1}, // CT_LTPURPLE2
- {0.566f, 0.269f, 0.457f, 1}, // CT_DKPURPLE2
- {0.343f, 0.226f, 0.316f, 1}, // CT_VDKPURPLE2
- {0.929f, 0.597f, 0.929f, 1}, // CT_VLTPURPLE3
- {0.570f, 0.371f, 0.570f, 1}, // CT_LTPURPLE3
- {0.355f, 0.199f, 0.355f, 1}, // CT_DKPURPLE3
- {0.285f, 0.136f, 0.230f, 1}, // CT_VDKPURPLE3
- {0.953f, 0.378f, 0.250f, 1}, // CT_VLTRED1
- {0.953f, 0.378f, 0.250f, 1}, // CT_LTRED1
- {0.593f, 0.121f, 0.109f, 1}, // CT_DKRED1
- {0.429f, 0.171f, 0.113f, 1}, // CT_VDKRED1
- {.25f, 0, 0, 1}, // CT_VDKRED
- {.70f, 0, 0, 1}, // CT_DKRED
- {0.717f, 0.902f, 1.0f, 1}, // CT_VLTAQUA
- {0.574f, 0.722f, 0.804f, 1}, // CT_LTAQUA
- {0.287f, 0.361f, 0.402f, 1}, // CT_DKAQUA
- {0.143f, 0.180f, 0.201f, 1}, // CT_VDKAQUA
- {0.871f, 0.386f, 0.375f, 1}, // CT_LTPINK
- {0.435f, 0.193f, 0.187f, 1}, // CT_DKPINK
- { 0, .5f, .5f, 1}, // CT_LTCYAN
- { 0, .25f, .25f, 1}, // CT_DKCYAN
- { .179f, .51f, .92f, 1}, // CT_LTBLUE3
- { .199f, .71f, .92f, 1}, // CT_LTBLUE3
- { .5f, .05f, .4f, 1}, // CT_DKBLUE3
- { 0.0f, .613f, .097f, 1}, // CT_HUD_GREEN
- { 0.835f, .015f, .015f, 1}, // CT_HUD_RED
- { .567f, .685f, 1.0f, .75f}, // CT_ICON_BLUE
- { .515f, .406f, .507f, 1}, // CT_NO_AMMO_RED
- { 1.0f, .658f, .062f, 1}, // CT_HUD_ORANGE
- { 0.549f, .854f, 1.0f, 1.0f}, // CT_TITLE
- };
- vec4_t g_color_table[8] =
- {
- {0.0, 0.0, 0.0, 1.0},
- {1.0, 0.0, 0.0, 1.0},
- {0.0, 1.0, 0.0, 1.0},
- {1.0, 1.0, 0.0, 1.0},
- {0.0, 0.0, 1.0, 1.0},
- {0.0, 1.0, 1.0, 1.0},
- {1.0, 0.0, 1.0, 1.0},
- {1.0, 1.0, 1.0, 1.0},
- };
- #pragma warning(disable : 4305) // truncation from const double to float
- vec3_t bytedirs[NUMVERTEXNORMALS] =
- {
- {-0.525731, 0.000000, 0.850651}, {-0.442863, 0.238856, 0.864188},
- {-0.295242, 0.000000, 0.955423}, {-0.309017, 0.500000, 0.809017},
- {-0.162460, 0.262866, 0.951056}, {0.000000, 0.000000, 1.000000},
- {0.000000, 0.850651, 0.525731}, {-0.147621, 0.716567, 0.681718},
- {0.147621, 0.716567, 0.681718}, {0.000000, 0.525731, 0.850651},
- {0.309017, 0.500000, 0.809017}, {0.525731, 0.000000, 0.850651},
- {0.295242, 0.000000, 0.955423}, {0.442863, 0.238856, 0.864188},
- {0.162460, 0.262866, 0.951056}, {-0.681718, 0.147621, 0.716567},
- {-0.809017, 0.309017, 0.500000},{-0.587785, 0.425325, 0.688191},
- {-0.850651, 0.525731, 0.000000},{-0.864188, 0.442863, 0.238856},
- {-0.716567, 0.681718, 0.147621},{-0.688191, 0.587785, 0.425325},
- {-0.500000, 0.809017, 0.309017}, {-0.238856, 0.864188, 0.442863},
- {-0.425325, 0.688191, 0.587785}, {-0.716567, 0.681718, -0.147621},
- {-0.500000, 0.809017, -0.309017}, {-0.525731, 0.850651, 0.000000},
- {0.000000, 0.850651, -0.525731}, {-0.238856, 0.864188, -0.442863},
- {0.000000, 0.955423, -0.295242}, {-0.262866, 0.951056, -0.162460},
- {0.000000, 1.000000, 0.000000}, {0.000000, 0.955423, 0.295242},
- {-0.262866, 0.951056, 0.162460}, {0.238856, 0.864188, 0.442863},
- {0.262866, 0.951056, 0.162460}, {0.500000, 0.809017, 0.309017},
- {0.238856, 0.864188, -0.442863},{0.262866, 0.951056, -0.162460},
- {0.500000, 0.809017, -0.309017},{0.850651, 0.525731, 0.000000},
- {0.716567, 0.681718, 0.147621}, {0.716567, 0.681718, -0.147621},
- {0.525731, 0.850651, 0.000000}, {0.425325, 0.688191, 0.587785},
- {0.864188, 0.442863, 0.238856}, {0.688191, 0.587785, 0.425325},
- {0.809017, 0.309017, 0.500000}, {0.681718, 0.147621, 0.716567},
- {0.587785, 0.425325, 0.688191}, {0.955423, 0.295242, 0.000000},
- {1.000000, 0.000000, 0.000000}, {0.951056, 0.162460, 0.262866},
- {0.850651, -0.525731, 0.000000},{0.955423, -0.295242, 0.000000},
- {0.864188, -0.442863, 0.238856}, {0.951056, -0.162460, 0.262866},
- {0.809017, -0.309017, 0.500000}, {0.681718, -0.147621, 0.716567},
- {0.850651, 0.000000, 0.525731}, {0.864188, 0.442863, -0.238856},
- {0.809017, 0.309017, -0.500000}, {0.951056, 0.162460, -0.262866},
- {0.525731, 0.000000, -0.850651}, {0.681718, 0.147621, -0.716567},
- {0.681718, -0.147621, -0.716567},{0.850651, 0.000000, -0.525731},
- {0.809017, -0.309017, -0.500000}, {0.864188, -0.442863, -0.238856},
- {0.951056, -0.162460, -0.262866}, {0.147621, 0.716567, -0.681718},
- {0.309017, 0.500000, -0.809017}, {0.425325, 0.688191, -0.587785},
- {0.442863, 0.238856, -0.864188}, {0.587785, 0.425325, -0.688191},
- {0.688191, 0.587785, -0.425325}, {-0.147621, 0.716567, -0.681718},
- {-0.309017, 0.500000, -0.809017}, {0.000000, 0.525731, -0.850651},
- {-0.525731, 0.000000, -0.850651}, {-0.442863, 0.238856, -0.864188},
- {-0.295242, 0.000000, -0.955423}, {-0.162460, 0.262866, -0.951056},
- {0.000000, 0.000000, -1.000000}, {0.295242, 0.000000, -0.955423},
- {0.162460, 0.262866, -0.951056}, {-0.442863, -0.238856, -0.864188},
- {-0.309017, -0.500000, -0.809017}, {-0.162460, -0.262866, -0.951056},
- {0.000000, -0.850651, -0.525731}, {-0.147621, -0.716567, -0.681718},
- {0.147621, -0.716567, -0.681718}, {0.000000, -0.525731, -0.850651},
- {0.309017, -0.500000, -0.809017}, {0.442863, -0.238856, -0.864188},
- {0.162460, -0.262866, -0.951056}, {0.238856, -0.864188, -0.442863},
- {0.500000, -0.809017, -0.309017}, {0.425325, -0.688191, -0.587785},
- {0.716567, -0.681718, -0.147621}, {0.688191, -0.587785, -0.425325},
- {0.587785, -0.425325, -0.688191}, {0.000000, -0.955423, -0.295242},
- {0.000000, -1.000000, 0.000000}, {0.262866, -0.951056, -0.162460},
- {0.000000, -0.850651, 0.525731}, {0.000000, -0.955423, 0.295242},
- {0.238856, -0.864188, 0.442863}, {0.262866, -0.951056, 0.162460},
- {0.500000, -0.809017, 0.309017}, {0.716567, -0.681718, 0.147621},
- {0.525731, -0.850651, 0.000000}, {-0.238856, -0.864188, -0.442863},
- {-0.500000, -0.809017, -0.309017}, {-0.262866, -0.951056, -0.162460},
- {-0.850651, -0.525731, 0.000000}, {-0.716567, -0.681718, -0.147621},
- {-0.716567, -0.681718, 0.147621}, {-0.525731, -0.850651, 0.000000},
- {-0.500000, -0.809017, 0.309017}, {-0.238856, -0.864188, 0.442863},
- {-0.262866, -0.951056, 0.162460}, {-0.864188, -0.442863, 0.238856},
- {-0.809017, -0.309017, 0.500000}, {-0.688191, -0.587785, 0.425325},
- {-0.681718, -0.147621, 0.716567}, {-0.442863, -0.238856, 0.864188},
- {-0.587785, -0.425325, 0.688191}, {-0.309017, -0.500000, 0.809017},
- {-0.147621, -0.716567, 0.681718}, {-0.425325, -0.688191, 0.587785},
- {-0.162460, -0.262866, 0.951056}, {0.442863, -0.238856, 0.864188},
- {0.162460, -0.262866, 0.951056}, {0.309017, -0.500000, 0.809017},
- {0.147621, -0.716567, 0.681718}, {0.000000, -0.525731, 0.850651},
- {0.425325, -0.688191, 0.587785}, {0.587785, -0.425325, 0.688191},
- {0.688191, -0.587785, 0.425325}, {-0.955423, 0.295242, 0.000000},
- {-0.951056, 0.162460, 0.262866}, {-1.000000, 0.000000, 0.000000},
- {-0.850651, 0.000000, 0.525731}, {-0.955423, -0.295242, 0.000000},
- {-0.951056, -0.162460, 0.262866}, {-0.864188, 0.442863, -0.238856},
- {-0.951056, 0.162460, -0.262866}, {-0.809017, 0.309017, -0.500000},
- {-0.864188, -0.442863, -0.238856}, {-0.951056, -0.162460, -0.262866},
- {-0.809017, -0.309017, -0.500000}, {-0.681718, 0.147621, -0.716567},
- {-0.681718, -0.147621, -0.716567}, {-0.850651, 0.000000, -0.525731},
- {-0.688191, 0.587785, -0.425325}, {-0.587785, 0.425325, -0.688191},
- {-0.425325, 0.688191, -0.587785}, {-0.425325, -0.688191, -0.587785},
- {-0.587785, -0.425325, -0.688191}, {-0.688191, -0.587785, -0.425325}
- };
- #pragma warning(default : 4305) // truncation from const double to float
- //==============================================================
- //=======================================================
- /*
- erandom
- This function produces a random number with a exponential
- distribution and the specified mean value.
- */
- float erandom( float mean ) {
- float r;
- do {
- r = random();
- } while ( r == 0.0 );
- return -mean * log( r );
- }
- signed char ClampChar( int i ) {
- if ( i < -128 ) {
- return -128;
- }
- if ( i > 127 ) {
- return 127;
- }
- return i;
- }
- signed short ClampShort( int i ) {
- if ( i < (short)0x8000 ) {
- return (short)0x8000;
- }
- if ( i > 0x7fff ) {
- return 0x7fff;
- }
- return i;
- }
- // this isn't a real cheap function to call!
- int DirToByte( vec3_t dir ) {
- int i, best;
- float d, bestd;
- if ( !dir ) {
- return 0;
- }
- bestd = 0;
- best = 0;
- for (i=0 ; i<NUMVERTEXNORMALS ; i++)
- {
- d = DotProduct (dir, bytedirs[i]);
- if (d > bestd)
- {
- bestd = d;
- best = i;
- }
- }
- return best;
- }
- void ByteToDir( int b, vec3_t dir ) {
- if ( b < 0 || b >= NUMVERTEXNORMALS ) {
- VectorCopy( vec3_origin, dir );
- return;
- }
- VectorCopy (bytedirs[b], dir);
- }
- unsigned ColorBytes3 (float r, float g, float b) {
- unsigned i;
- ( (byte *)&i )[0] = r * 255;
- ( (byte *)&i )[1] = g * 255;
- ( (byte *)&i )[2] = b * 255;
- return i;
- }
- unsigned ColorBytes4 (float r, float g, float b, float a) {
- unsigned i;
- ( (byte *)&i )[0] = r * 255;
- ( (byte *)&i )[1] = g * 255;
- ( (byte *)&i )[2] = b * 255;
- ( (byte *)&i )[3] = a * 255;
- return i;
- }
- float NormalizeColor( const vec3_t in, vec3_t out ) {
- float max;
-
- max = in[0];
- if ( in[1] > max ) {
- max = in[1];
- }
- if ( in[2] > max ) {
- max = in[2];
- }
- if ( !max ) {
- VectorClear( out );
- } else {
- out[0] = in[0] / max;
- out[1] = in[1] / max;
- out[2] = in[2] / max;
- }
- return max;
- }
- void VectorAdvance( const vec3_t veca, const float scale, const vec3_t vecb, vec3_t vecc)
- {
- vecc[0] = veca[0] + (scale * (vecb[0] - veca[0]));
- vecc[1] = veca[1] + (scale * (vecb[1] - veca[1]));
- vecc[2] = veca[2] + (scale * (vecb[2] - veca[2]));
- }
- //============================================================================
- /*
- =====================
- PlaneFromPoints
- Returns false if the triangle is degenrate.
- The normal will point out of the clock for clockwise ordered points
- =====================
- */
- qboolean PlaneFromPoints( vec4_t plane, const vec3_t a, const vec3_t b, const vec3_t c ) {
- vec3_t d1, d2;
- VectorSubtract( b, a, d1 );
- VectorSubtract( c, a, d2 );
- CrossProduct( d2, d1, plane );
- if ( VectorNormalize( plane ) == 0 ) {
- return qfalse;
- }
- plane[3] = DotProduct( a, plane );
- return qtrue;
- }
- #ifdef _XBOX
- qboolean PlaneFromPoints( vec4_t plane, const short a[3], const short b[3], const short c[3] ) {
- vec3_t d1, d2;
- VectorSubtract( b, a, d1 );
- VectorSubtract( c, a, d2 );
- CrossProduct( d2, d1, plane );
- if ( VectorNormalize( plane ) == 0 ) {
- return qfalse;
- }
- plane[3] = DotProduct( a, plane );
- return qtrue;
- }
- #endif
- /*
- ===============
- RotatePointAroundVector
- This is not implemented very well...
- ===============
- */
- void RotatePointAroundVector( vec3_t dst, const vec3_t dir, const vec3_t point,
- float degrees ) {
- float m[3][3];
- float im[3][3];
- float zrot[3][3];
- float tmpmat[3][3];
- float rot[3][3];
- int i;
- vec3_t vr, vup, vf;
- float rad;
- vf[0] = dir[0];
- vf[1] = dir[1];
- vf[2] = dir[2];
- PerpendicularVector( vr, dir );
- CrossProduct( vr, vf, vup );
- m[0][0] = vr[0];
- m[1][0] = vr[1];
- m[2][0] = vr[2];
- m[0][1] = vup[0];
- m[1][1] = vup[1];
- m[2][1] = vup[2];
- m[0][2] = vf[0];
- m[1][2] = vf[1];
- m[2][2] = vf[2];
- memcpy( im, m, sizeof( im ) );
- im[0][1] = m[1][0];
- im[0][2] = m[2][0];
- im[1][0] = m[0][1];
- im[1][2] = m[2][1];
- im[2][0] = m[0][2];
- im[2][1] = m[1][2];
- memset( zrot, 0, sizeof( zrot ) );
- zrot[0][0] = zrot[1][1] = zrot[2][2] = 1.0F;
- rad = DEG2RAD( degrees );
- zrot[0][0] = cos( rad );
- zrot[0][1] = sin( rad );
- zrot[1][0] = -sin( rad );
- zrot[1][1] = cos( rad );
- MatrixMultiply( m, zrot, tmpmat );
- MatrixMultiply( tmpmat, im, rot );
- for ( i = 0; i < 3; i++ ) {
- dst[i] = rot[i][0] * point[0] + rot[i][1] * point[1] + rot[i][2] * point[2];
- }
- }
- /*
- ===============
- RotateAroundDirection
- ===============
- */
- void RotateAroundDirection( vec3_t axis[3], float yaw ) {
- // create an arbitrary axis[1]
- PerpendicularVector( axis[1], axis[0] );
- // rotate it around axis[0] by yaw
- if ( yaw ) {
- vec3_t temp;
- VectorCopy( axis[1], temp );
- RotatePointAroundVector( axis[1], axis[0], temp, yaw );
- }
- // cross to get axis[2]
- CrossProduct( axis[0], axis[1], axis[2] );
- }
- void vectoangles( const vec3_t value1, vec3_t angles ) {
- float forward;
- float yaw, pitch;
-
- if ( value1[1] == 0 && value1[0] == 0 ) {
- yaw = 0;
- if ( value1[2] > 0 ) {
- pitch = 90;
- }
- else {
- pitch = 270;
- }
- }
- else {
- if ( value1[0] ) {
- yaw = ( atan2 ( value1[1], value1[0] ) * 180 / M_PI );
- }
- else if ( value1[1] > 0 ) {
- yaw = 90;
- }
- else {
- yaw = 270;
- }
- if ( yaw < 0 ) {
- yaw += 360;
- }
- forward = sqrt ( value1[0]*value1[0] + value1[1]*value1[1] );
- pitch = ( atan2(value1[2], forward) * 180 / M_PI );
- if ( pitch < 0 ) {
- pitch += 360;
- }
- }
- angles[PITCH] = -pitch;
- angles[YAW] = yaw;
- angles[ROLL] = 0;
- }
- void ProjectPointOnPlane( vec3_t dst, const vec3_t p, const vec3_t normal )
- {
- float d;
- vec3_t n;
- float inv_denom;
- inv_denom = 1.0F / DotProduct( normal, normal );
- d = DotProduct( normal, p ) * inv_denom;
- n[0] = normal[0] * inv_denom;
- n[1] = normal[1] * inv_denom;
- n[2] = normal[2] * inv_denom;
- dst[0] = p[0] - d * n[0];
- dst[1] = p[1] - d * n[1];
- dst[2] = p[2] - d * n[2];
- }
- /*
- ================
- MakeNormalVectors
- Given a normalized forward vector, create two
- other perpendicular vectors
- ================
- */
- void MakeNormalVectors( const vec3_t forward, vec3_t right, vec3_t up) {
- float d;
- // this rotate and negate guarantees a vector
- // not colinear with the original
- right[1] = -forward[0];
- right[2] = forward[1];
- right[0] = forward[2];
- d = DotProduct (right, forward);
- VectorMA (right, -d, forward, right);
- VectorNormalize (right);
- CrossProduct (right, forward, up);
- }
- //============================================================================
- /*
- ** float q_rsqrt( float number )
- */
- float Q_rsqrt( float number )
- {
- long i;
- float x2, y;
- const float threehalfs = 1.5F;
- x2 = number * 0.5F;
- y = number;
- i = * ( long * ) &y; // evil floating point bit level hacking
- i = 0x5f3759df - ( i >> 1 ); // what the fuck?
- y = * ( float * ) &i;
- y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
- // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
- return y;
- }
- float Q_fabs( float f ) {
- int tmp = * ( int * ) &f;
- tmp &= 0x7FFFFFFF;
- return * ( float * ) &tmp;
- }
- //============================================================
- //float AngleMod(float a) {
- // a = (360.0/65536) * ((int)(a*(65536/360.0)) & 65535);
- // return a;
- //}
- //============================================================
- /*
- =================
- SetPlaneSignbits
- =================
- */
- void SetPlaneSignbits (cplane_t *out) {
- int bits, j;
- // for fast box on planeside test
- bits = 0;
- for (j=0 ; j<3 ; j++) {
- if (out->normal[j] < 0) {
- bits |= 1<<j;
- }
- }
- out->signbits = bits;
- }
- /*
- ==================
- BoxOnPlaneSide
- Returns 1, 2, or 1 + 2
- // this is the slow, general version
- int BoxOnPlaneSide2 (vec3_t emins, vec3_t emaxs, struct cplane_s *p)
- {
- int i;
- float dist1, dist2;
- int sides;
- vec3_t corners[2];
- for (i=0 ; i<3 ; i++)
- {
- if (p->normal[i] < 0)
- {
- corners[0][i] = emins[i];
- corners[1][i] = emaxs[i];
- }
- else
- {
- corners[1][i] = emins[i];
- corners[0][i] = emaxs[i];
- }
- }
- dist1 = DotProduct (p->normal, corners[0]) - p->dist;
- dist2 = DotProduct (p->normal, corners[1]) - p->dist;
- sides = 0;
- if (dist1 >= 0)
- sides = 1;
- if (dist2 < 0)
- sides |= 2;
- return sides;
- }
- ==================
- */
- #if !(defined __linux__ && defined __i386__) || defined __LCC__
- #if !id386
- int BoxOnPlaneSide (vec3_t emins, vec3_t emaxs, struct cplane_s *p)
- {
- float dist1, dist2;
- int sides;
- // fast axial cases
- if (p->type < 3)
- {
- if (p->dist <= emins[p->type])
- return 1;
- if (p->dist >= emaxs[p->type])
- return 2;
- return 3;
- }
-
- // general case
- switch (p->signbits)
- {
- case 0:
- dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
- dist2 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
- break;
- case 1:
- dist1 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
- dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
- break;
- case 2:
- dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
- dist2 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
- break;
- case 3:
- dist1 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
- dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
- break;
- case 4:
- dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
- dist2 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
- break;
- case 5:
- dist1 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
- dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
- break;
- case 6:
- dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
- dist2 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
- break;
- case 7:
- dist1 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
- dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
- break;
- default:
- dist1 = dist2 = 0; // shut up compiler
- break;
- }
- sides = 0;
- if (dist1 >= p->dist)
- sides = 1;
- if (dist2 < p->dist)
- sides |= 2;
- return sides;
- }
- #else
- #pragma warning( disable: 4035 )
- __declspec( naked ) int BoxOnPlaneSide (vec3_t emins, vec3_t emaxs, struct cplane_s *p)
- {
- static int bops_initialized;
- static int Ljmptab[8];
- __asm {
- push ebx
-
- cmp bops_initialized, 1
- je initialized
- mov bops_initialized, 1
-
- mov Ljmptab[0*4], offset Lcase0
- mov Ljmptab[1*4], offset Lcase1
- mov Ljmptab[2*4], offset Lcase2
- mov Ljmptab[3*4], offset Lcase3
- mov Ljmptab[4*4], offset Lcase4
- mov Ljmptab[5*4], offset Lcase5
- mov Ljmptab[6*4], offset Lcase6
- mov Ljmptab[7*4], offset Lcase7
-
- initialized:
- mov edx,dword ptr[4+12+esp]
- mov ecx,dword ptr[4+4+esp]
- xor eax,eax
- mov ebx,dword ptr[4+8+esp]
- mov al,byte ptr[17+edx]
- cmp al,8
- jge Lerror
- fld dword ptr[0+edx]
- fld st(0)
- jmp dword ptr[Ljmptab+eax*4]
- Lcase0:
- fmul dword ptr[ebx]
- fld dword ptr[0+4+edx]
- fxch st(2)
- fmul dword ptr[ecx]
- fxch st(2)
- fld st(0)
- fmul dword ptr[4+ebx]
- fld dword ptr[0+8+edx]
- fxch st(2)
- fmul dword ptr[4+ecx]
- fxch st(2)
- fld st(0)
- fmul dword ptr[8+ebx]
- fxch st(5)
- faddp st(3),st(0)
- fmul dword ptr[8+ecx]
- fxch st(1)
- faddp st(3),st(0)
- fxch st(3)
- faddp st(2),st(0)
- jmp LSetSides
- Lcase1:
- fmul dword ptr[ecx]
- fld dword ptr[0+4+edx]
- fxch st(2)
- fmul dword ptr[ebx]
- fxch st(2)
- fld st(0)
- fmul dword ptr[4+ebx]
- fld dword ptr[0+8+edx]
- fxch st(2)
- fmul dword ptr[4+ecx]
- fxch st(2)
- fld st(0)
- fmul dword ptr[8+ebx]
- fxch st(5)
- faddp st(3),st(0)
- fmul dword ptr[8+ecx]
- fxch st(1)
- faddp st(3),st(0)
- fxch st(3)
- faddp st(2),st(0)
- jmp LSetSides
- Lcase2:
- fmul dword ptr[ebx]
- fld dword ptr[0+4+edx]
- fxch st(2)
- fmul dword ptr[ecx]
- fxch st(2)
- fld st(0)
- fmul dword ptr[4+ecx]
- fld dword ptr[0+8+edx]
- fxch st(2)
- fmul dword ptr[4+ebx]
- fxch st(2)
- fld st(0)
- fmul dword ptr[8+ebx]
- fxch st(5)
- faddp st(3),st(0)
- fmul dword ptr[8+ecx]
- fxch st(1)
- faddp st(3),st(0)
- fxch st(3)
- faddp st(2),st(0)
- jmp LSetSides
- Lcase3:
- fmul dword ptr[ecx]
- fld dword ptr[0+4+edx]
- fxch st(2)
- fmul dword ptr[ebx]
- fxch st(2)
- fld st(0)
- fmul dword ptr[4+ecx]
- fld dword ptr[0+8+edx]
- fxch st(2)
- fmul dword ptr[4+ebx]
- fxch st(2)
- fld st(0)
- fmul dword ptr[8+ebx]
- fxch st(5)
- faddp st(3),st(0)
- fmul dword ptr[8+ecx]
- fxch st(1)
- faddp st(3),st(0)
- fxch st(3)
- faddp st(2),st(0)
- jmp LSetSides
- Lcase4:
- fmul dword ptr[ebx]
- fld dword ptr[0+4+edx]
- fxch st(2)
- fmul dword ptr[ecx]
- fxch st(2)
- fld st(0)
- fmul dword ptr[4+ebx]
- fld dword ptr[0+8+edx]
- fxch st(2)
- fmul dword ptr[4+ecx]
- fxch st(2)
- fld st(0)
- fmul dword ptr[8+ecx]
- fxch st(5)
- faddp st(3),st(0)
- fmul dword ptr[8+ebx]
- fxch st(1)
- faddp st(3),st(0)
- fxch st(3)
- faddp st(2),st(0)
- jmp LSetSides
- Lcase5:
- fmul dword ptr[ecx]
- fld dword ptr[0+4+edx]
- fxch st(2)
- fmul dword ptr[ebx]
- fxch st(2)
- fld st(0)
- fmul dword ptr[4+ebx]
- fld dword ptr[0+8+edx]
- fxch st(2)
- fmul dword ptr[4+ecx]
- fxch st(2)
- fld st(0)
- fmul dword ptr[8+ecx]
- fxch st(5)
- faddp st(3),st(0)
- fmul dword ptr[8+ebx]
- fxch st(1)
- faddp st(3),st(0)
- fxch st(3)
- faddp st(2),st(0)
- jmp LSetSides
- Lcase6:
- fmul dword ptr[ebx]
- fld dword ptr[0+4+edx]
- fxch st(2)
- fmul dword ptr[ecx]
- fxch st(2)
- fld st(0)
- fmul dword ptr[4+ecx]
- fld dword ptr[0+8+edx]
- fxch st(2)
- fmul dword ptr[4+ebx]
- fxch st(2)
- fld st(0)
- fmul dword ptr[8+ecx]
- fxch st(5)
- faddp st(3),st(0)
- fmul dword ptr[8+ebx]
- fxch st(1)
- faddp st(3),st(0)
- fxch st(3)
- faddp st(2),st(0)
- jmp LSetSides
- Lcase7:
- fmul dword ptr[ecx]
- fld dword ptr[0+4+edx]
- fxch st(2)
- fmul dword ptr[ebx]
- fxch st(2)
- fld st(0)
- fmul dword ptr[4+ecx]
- fld dword ptr[0+8+edx]
- fxch st(2)
- fmul dword ptr[4+ebx]
- fxch st(2)
- fld st(0)
- fmul dword ptr[8+ecx]
- fxch st(5)
- faddp st(3),st(0)
- fmul dword ptr[8+ebx]
- fxch st(1)
- faddp st(3),st(0)
- fxch st(3)
- faddp st(2),st(0)
- LSetSides:
- faddp st(2),st(0)
- fcomp dword ptr[12+edx]
- xor ecx,ecx
- fnstsw ax
- fcomp dword ptr[12+edx]
- and ah,1
- xor ah,1
- add cl,ah
- fnstsw ax
- and ah,1
- add ah,ah
- add cl,ah
- pop ebx
- mov eax,ecx
- ret
- Lerror:
- int 3
- }
- }
- #pragma warning( default: 4035 )
- #endif
- #endif
- /*
- =================
- RadiusFromBounds
- =================
- */
- float RadiusFromBounds( const vec3_t mins, const vec3_t maxs ) {
- int i;
- vec3_t corner;
- float a, b;
- for (i=0 ; i<3 ; i++) {
- a = Q_fabs( mins[i] );
- b = Q_fabs( maxs[i] );
- corner[i] = a > b ? a : b;
- }
- return VectorLength (corner);
- }
- void ClearBounds( vec3_t mins, vec3_t maxs ) {
- mins[0] = mins[1] = mins[2] = WORLD_SIZE; //99999; // I used WORLD_SIZE instead of MAX_WORLD_COORD...
- maxs[0] = maxs[1] = maxs[2] = -WORLD_SIZE; //-99999; // ... so it would definately be beyond furthese legal.
- }
- vec_t DistanceHorizontal( const vec3_t p1, const vec3_t p2 ) {
- vec3_t v;
- VectorSubtract( p2, p1, v );
- return sqrt( v[0]*v[0] + v[1]*v[1] ); //Leave off the z component
- }
- vec_t DistanceHorizontalSquared( const vec3_t p1, const vec3_t p2 ) {
- vec3_t v;
- VectorSubtract( p2, p1, v );
- return v[0]*v[0] + v[1]*v[1]; //Leave off the z component
- }
- int Q_log2( int val ) {
- int answer;
- answer = 0;
- while ( ( val>>=1 ) != 0 ) {
- answer++;
- }
- return answer;
- }
- /*
- =================
- PlaneTypeForNormal
- =================
- */
- int PlaneTypeForNormal (vec3_t normal) {
- if ( normal[0] == 1.0 )
- return PLANE_X;
- if ( normal[1] == 1.0 )
- return PLANE_Y;
- if ( normal[2] == 1.0 )
- return PLANE_Z;
-
- return PLANE_NON_AXIAL;
- }
- /*
- ================
- MatrixMultiply
- ================
- */
- void MatrixMultiply(float in1[3][3], float in2[3][3], float out[3][3]) {
- out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] +
- in1[0][2] * in2[2][0];
- out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] +
- in1[0][2] * in2[2][1];
- out[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] +
- in1[0][2] * in2[2][2];
- out[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] +
- in1[1][2] * in2[2][0];
- out[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] +
- in1[1][2] * in2[2][1];
- out[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] +
- in1[1][2] * in2[2][2];
- out[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] +
- in1[2][2] * in2[2][0];
- out[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] +
- in1[2][2] * in2[2][1];
- out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] +
- in1[2][2] * in2[2][2];
- }
- void AngleVectors( const vec3_t angles, vec3_t forward, vec3_t right, vec3_t up) {
- float angle;
- static float sr, sp, sy, cr, cp, cy;
- // static to help MS compiler fp bugs
- angle = angles[YAW] * (M_PI*2 / 360.0);
- sy = sin(angle);
- cy = cos(angle);
- angle = angles[PITCH] * (M_PI*2 / 360.0);
- sp = sin(angle);
- cp = cos(angle);
- if (forward)
- {
- forward[0] = cp*cy;
- forward[1] = cp*sy;
- forward[2] = -sp;
- }
- if (right || up)
- {
- angle = angles[ROLL] * (M_PI*2 / 360.0);
- sr = sin(angle);
- cr = cos(angle);
- if (right)
- {
- right[0] = (-sr*sp*cy + cr*sy);
- right[1] = (-sr*sp*sy + -cr*cy);
- right[2] = -sr*cp;
- }
- if (up)
- {
- up[0] = (cr*sp*cy + sr*sy);
- up[1] = (cr*sp*sy + -sr*cy);
- up[2] = cr*cp;
- }
- }
- }
- /*
- ** assumes "src" is normalized
- */
- void PerpendicularVector( vec3_t dst, const vec3_t src )
- {
- int pos;
- int i;
- float minelem = 1.0F;
- vec3_t tempvec;
- /*
- ** find the smallest magnitude axially aligned vector
- ** bias towards using z instead of x or y
- */
- for ( pos = 0, i = 2; i >= 0; i-- )
- {
- if ( Q_fabs( src[i] ) < minelem )
- {
- pos = i;
- minelem = Q_fabs( src[i] );
- }
- }
- tempvec[0] = tempvec[1] = tempvec[2] = 0.0F;
- tempvec[pos] = 1.0F;
- /*
- ** project the point onto the plane defined by src
- */
- ProjectPointOnPlane( dst, tempvec, src );
- /*
- ** normalize the result
- */
- VectorNormalize( dst );
- }
- /*
- -------------------------
- DotProductNormalize
- -------------------------
- */
- float DotProductNormalize( const vec3_t inVec1, const vec3_t inVec2 )
- {
- vec3_t v1, v2;
- VectorNormalize2( inVec1, v1 );
- VectorNormalize2( inVec2, v2 );
- return DotProduct(v1, v2);
- }
- /*
- -------------------------
- G_FindClosestPointOnLineSegment
- -------------------------
- */
- qboolean G_FindClosestPointOnLineSegment( const vec3_t start, const vec3_t end, const vec3_t from, vec3_t result )
- {
- vec3_t vecStart2From, vecStart2End, vecEnd2Start, vecEnd2From;
- float distEnd2From, distEnd2Result, theta, cos_theta;
- //Find the perpendicular vector to vec from start to end
- VectorSubtract( from, start, vecStart2From);
- VectorSubtract( end, start, vecStart2End);
- float dot = DotProductNormalize( vecStart2From, vecStart2End );
- if ( dot <= 0 )
- {
- //The perpendicular would be beyond or through the start point
- VectorCopy( start, result );
- return qfalse;
- }
- if ( dot == 1 )
- {
- //parallel, closer of 2 points will be the target
- if( (VectorLengthSquared( vecStart2From )) < (VectorLengthSquared( vecStart2End )) )
- {
- VectorCopy( from, result );
- }
- else
- {
- VectorCopy( end, result );
- }
- return qfalse;
- }
- //Try other end
- VectorSubtract( from, end, vecEnd2From);
- VectorSubtract( start, end, vecEnd2Start);
- dot = DotProductNormalize( vecEnd2From, vecEnd2Start );
- if ( dot <= 0 )
- {//The perpendicular would be beyond or through the start point
- VectorCopy( end, result );
- return qfalse;
- }
- if ( dot == 1 )
- {//parallel, closer of 2 points will be the target
- if( (VectorLengthSquared( vecEnd2From )) < (VectorLengthSquared( vecEnd2Start )))
- {
- VectorCopy( from, result );
- }
- else
- {
- VectorCopy( end, result );
- }
- return qfalse;
- }
- // /|
- // c / |
- // / |a
- // theta /)__|
- // b
- //cos(theta) = b / c
- //solve for b
- //b = cos(theta) * c
- //angle between vecs end2from and end2start, should be between 0 and 90
- theta = 90 * (1 - dot);//theta
-
- //Get length of side from End2Result using sine of theta
- distEnd2From = VectorLength( vecEnd2From );//c
- cos_theta = cos(DEG2RAD(theta));//cos(theta)
- distEnd2Result = cos_theta * distEnd2From;//b
- //Extrapolate to find result
- VectorNormalize( vecEnd2Start );
- VectorMA( end, distEnd2Result, vecEnd2Start, result );
-
- //perpendicular intersection is between the 2 endpoints
- return qtrue;
- }
- float G_PointDistFromLineSegment( const vec3_t start, const vec3_t end, const vec3_t from )
- {
- vec3_t vecStart2From, vecStart2End, vecEnd2Start, vecEnd2From, intersection;
- float distEnd2From, distStart2From, distEnd2Result, theta, cos_theta;
- //Find the perpendicular vector to vec from start to end
- VectorSubtract( from, start, vecStart2From);
- VectorSubtract( end, start, vecStart2End);
- VectorSubtract( from, end, vecEnd2From);
- VectorSubtract( start, end, vecEnd2Start);
- float dot = DotProductNormalize( vecStart2From, vecStart2End );
- distStart2From = Distance( start, from );
- distEnd2From = Distance( end, from );
- if ( dot <= 0 )
- {
- //The perpendicular would be beyond or through the start point
- return distStart2From;
- }
- if ( dot == 1 )
- {
- //parallel, closer of 2 points will be the target
- return ((distStart2From<distEnd2From)?distStart2From:distEnd2From);
- }
- //Try other end
- dot = DotProductNormalize( vecEnd2From, vecEnd2Start );
- if ( dot <= 0 )
- {//The perpendicular would be beyond or through the end point
- return distEnd2From;
- }
- if ( dot == 1 )
- {//parallel, closer of 2 points will be the target
- return ((distStart2From<distEnd2From)?distStart2From:distEnd2From);
- }
- // /|
- // c / |
- // / |a
- // theta /)__|
- // b
- //cos(theta) = b / c
- //solve for b
- //b = cos(theta) * c
- //angle between vecs end2from and end2start, should be between 0 and 90
- theta = 90 * (1 - dot);//theta
-
- //Get length of side from End2Result using sine of theta
- cos_theta = cos(DEG2RAD(theta));//cos(theta)
- distEnd2Result = cos_theta * distEnd2From;//b
- //Extrapolate to find result
- VectorNormalize( vecEnd2Start );
- VectorMA( end, distEnd2Result, vecEnd2Start, intersection );
-
- //perpendicular intersection is between the 2 endpoints, return dist to it from from
- return Distance( intersection, from );
- }
|