123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506 |
- /* Triangle/triangle intersection test routine,
- * by Tomas Moller, 1997.
- * See article "A Fast Triangle-Triangle Intersection Test",
- * Journal of Graphics Tools, 2(2), 1997
- *
- * int tri_tri_intersect(float V0[3],float V1[3],float V2[3],
- * float U0[3],float U1[3],float U2[3])
- *
- * parameters: vertices of triangle 1: V0,V1,V2
- * vertices of triangle 2: U0,U1,U2
- * result : returns 1 if the triangles intersect, otherwise 0
- *
- */
- // leave this at the top for PCH reasons...
- #include "common_headers.h"
- #include <math.h>
- #include "../game/q_shared.h"
- #include "../game/g_local.h"
- /* if USE_EPSILON_TEST is true then we do a check:
- if |dv|<EPSILON then dv=0.0;
- else no check is done (which is less robust)
- */
- #define USE_EPSILON_TEST 1
- #define EPSILON 0.000001
- /* some macros */
- #define CROSS(dest,v1,v2) \
- dest[0]=v1[1]*v2[2]-v1[2]*v2[1]; \
- dest[1]=v1[2]*v2[0]-v1[0]*v2[2]; \
- dest[2]=v1[0]*v2[1]-v1[1]*v2[0];
- #define DOT(v1,v2) (v1[0]*v2[0]+v1[1]*v2[1]+v1[2]*v2[2])
- #define SUB(dest,v1,v2) \
- dest[0]=v1[0]-v2[0]; \
- dest[1]=v1[1]-v2[1]; \
- dest[2]=v1[2]-v2[2];
- /* sort so that a<=b */
- #define SORT(a,b) \
- if(a>b) \
- { \
- float c; \
- c=a; \
- a=b; \
- b=c; \
- }
- #define ISECT(VV0,VV1,VV2,D0,D1,D2,isect0,isect1) \
- isect0=VV0+(VV1-VV0)*D0/(D0-D1); \
- isect1=VV0+(VV2-VV0)*D0/(D0-D2);
- #define COMPUTE_INTERVALS(VV0,VV1,VV2,D0,D1,D2,D0D1,D0D2,isect0,isect1) \
- if(D0D1>0.0f) \
- { \
- /* here we know that D0D2<=0.0 */ \
- /* that is D0, D1 are on the same side, D2 on the other or on the plane */ \
- ISECT(VV2,VV0,VV1,D2,D0,D1,isect0,isect1); \
- } \
- else if(D0D2>0.0f) \
- { \
- /* here we know that d0d1<=0.0 */ \
- ISECT(VV1,VV0,VV2,D1,D0,D2,isect0,isect1); \
- } \
- else if(D1*D2>0.0f || D0!=0.0f) \
- { \
- /* here we know that d0d1<=0.0 or that D0!=0.0 */ \
- ISECT(VV0,VV1,VV2,D0,D1,D2,isect0,isect1); \
- } \
- else if(D1!=0.0f) \
- { \
- ISECT(VV1,VV0,VV2,D1,D0,D2,isect0,isect1); \
- } \
- else if(D2!=0.0f) \
- { \
- ISECT(VV2,VV0,VV1,D2,D0,D1,isect0,isect1); \
- } \
- else \
- { \
- /* triangles are coplanar */ \
- return coplanar_tri_tri(N1,V0,V1,V2,U0,U1,U2); \
- }
- /* this edge to edge test is based on Franlin Antonio's gem:
- "Faster Line Segment Intersection", in Graphics Gems III,
- pp. 199-202 */
- #define EDGE_EDGE_TEST(V0,U0,U1) \
- Bx=U0[i0]-U1[i0]; \
- By=U0[i1]-U1[i1]; \
- Cx=V0[i0]-U0[i0]; \
- Cy=V0[i1]-U0[i1]; \
- f=Ay*Bx-Ax*By; \
- d=By*Cx-Bx*Cy; \
- if((f>0 && d>=0 && d<=f) || (f<0 && d<=0 && d>=f)) \
- { \
- e=Ax*Cy-Ay*Cx; \
- if(f>0) \
- { \
- if(e>=0 && e<=f) return 1; \
- } \
- else \
- { \
- if(e<=0 && e>=f) return 1; \
- } \
- }
- #define EDGE_AGAINST_TRI_EDGES(V0,V1,U0,U1,U2) \
- { \
- float Ax,Ay,Bx,By,Cx,Cy,e,d,f; \
- Ax=V1[i0]-V0[i0]; \
- Ay=V1[i1]-V0[i1]; \
- /* test edge U0,U1 against V0,V1 */ \
- EDGE_EDGE_TEST(V0,U0,U1); \
- /* test edge U1,U2 against V0,V1 */ \
- EDGE_EDGE_TEST(V0,U1,U2); \
- /* test edge U2,U1 against V0,V1 */ \
- EDGE_EDGE_TEST(V0,U2,U0); \
- }
- #define POINT_IN_TRI(V0,U0,U1,U2) \
- { \
- float a,b,c,d0,d1,d2; \
- /* is T1 completly inside T2? */ \
- /* check if V0 is inside tri(U0,U1,U2) */ \
- a=U1[i1]-U0[i1]; \
- b=-(U1[i0]-U0[i0]); \
- c=-a*U0[i0]-b*U0[i1]; \
- d0=a*V0[i0]+b*V0[i1]+c; \
- \
- a=U2[i1]-U1[i1]; \
- b=-(U2[i0]-U1[i0]); \
- c=-a*U1[i0]-b*U1[i1]; \
- d1=a*V0[i0]+b*V0[i1]+c; \
- \
- a=U0[i1]-U2[i1]; \
- b=-(U0[i0]-U2[i0]); \
- c=-a*U2[i0]-b*U2[i1]; \
- d2=a*V0[i0]+b*V0[i1]+c; \
- if(d0*d1>0.0) \
- { \
- if(d0*d2>0.0) return 1; \
- } \
- }
- qboolean coplanar_tri_tri(vec3_t N,vec3_t V0,vec3_t V1,vec3_t V2,
- vec3_t U0,vec3_t U1,vec3_t U2)
- {
- vec3_t A;
- short i0,i1;
- /* first project onto an axis-aligned plane, that maximizes the area */
- /* of the triangles, compute indices: i0,i1. */
- A[0]=fabs(N[0]);
- A[1]=fabs(N[1]);
- A[2]=fabs(N[2]);
- if(A[0]>A[1])
- {
- if(A[0]>A[2])
- {
- i0=1; /* A[0] is greatest */
- i1=2;
- }
- else
- {
- i0=0; /* A[2] is greatest */
- i1=1;
- }
- }
- else /* A[0]<=A[1] */
- {
- if(A[2]>A[1])
- {
- i0=0; /* A[2] is greatest */
- i1=1;
- }
- else
- {
- i0=0; /* A[1] is greatest */
- i1=2;
- }
- }
-
- /* test all edges of triangle 1 against the edges of triangle 2 */
- EDGE_AGAINST_TRI_EDGES(V0,V1,U0,U1,U2);
- EDGE_AGAINST_TRI_EDGES(V1,V2,U0,U1,U2);
- EDGE_AGAINST_TRI_EDGES(V2,V0,U0,U1,U2);
-
- /* finally, test if tri1 is totally contained in tri2 or vice versa */
- POINT_IN_TRI(V0,U0,U1,U2);
- POINT_IN_TRI(U0,V0,V1,V2);
- return qfalse;
- }
- qboolean tri_tri_intersect(vec3_t V0,vec3_t V1,vec3_t V2,
- vec3_t U0,vec3_t U1,vec3_t U2)
- {
- vec3_t E1,E2;
- vec3_t N1,N2;
- float d1,d2;
- float du0,du1,du2,dv0,dv1,dv2;
- vec3_t D;
- float isect1[2], isect2[2];
- float du0du1,du0du2,dv0dv1,dv0dv2;
- short index;
- float vp0,vp1,vp2;
- float up0,up1,up2;
- float b,c,max;
- /* compute plane equation of triangle(V0,V1,V2) */
- SUB(E1,V1,V0);
- SUB(E2,V2,V0);
- CROSS(N1,E1,E2);
- d1=-DOT(N1,V0);
- /* plane equation 1: N1.X+d1=0 */
- /* put U0,U1,U2 into plane equation 1 to compute signed distances to the plane*/
- du0=DOT(N1,U0)+d1;
- du1=DOT(N1,U1)+d1;
- du2=DOT(N1,U2)+d1;
- /* coplanarity robustness check */
- #if USE_EPSILON_TEST
- if(fabs(du0)<EPSILON) du0=0.0;
- if(fabs(du1)<EPSILON) du1=0.0;
- if(fabs(du2)<EPSILON) du2=0.0;
- #endif
- du0du1=du0*du1;
- du0du2=du0*du2;
- if(du0du1>0.0f && du0du2>0.0f) /* same sign on all of them + not equal 0 ? */
- return 0; /* no intersection occurs */
- /* compute plane of triangle (U0,U1,U2) */
- SUB(E1,U1,U0);
- SUB(E2,U2,U0);
- CROSS(N2,E1,E2);
- d2=-DOT(N2,U0);
- /* plane equation 2: N2.X+d2=0 */
- /* put V0,V1,V2 into plane equation 2 */
- dv0=DOT(N2,V0)+d2;
- dv1=DOT(N2,V1)+d2;
- dv2=DOT(N2,V2)+d2;
- #if USE_EPSILON_TEST
- if(fabs(dv0)<EPSILON) dv0=0.0;
- if(fabs(dv1)<EPSILON) dv1=0.0;
- if(fabs(dv2)<EPSILON) dv2=0.0;
- #endif
- dv0dv1=dv0*dv1;
- dv0dv2=dv0*dv2;
-
- if(dv0dv1>0.0f && dv0dv2>0.0f) /* same sign on all of them + not equal 0 ? */
- return 0; /* no intersection occurs */
- /* compute direction of intersection line */
- CROSS(D,N1,N2);
- /* compute and index to the largest component of D */
- max=fabs(D[0]);
- index=0;
- b=fabs(D[1]);
- c=fabs(D[2]);
- if(b>max) max=b,index=1;
- if(c>max) max=c,index=2;
- /* this is the simplified projection onto L*/
- vp0=V0[index];
- vp1=V1[index];
- vp2=V2[index];
- up0=U0[index];
- up1=U1[index];
- up2=U2[index];
- /* compute interval for triangle 1 */
- COMPUTE_INTERVALS(vp0,vp1,vp2,dv0,dv1,dv2,dv0dv1,dv0dv2,isect1[0],isect1[1]);
- /* compute interval for triangle 2 */
- COMPUTE_INTERVALS(up0,up1,up2,du0,du1,du2,du0du1,du0du2,isect2[0],isect2[1]);
- SORT(isect1[0],isect1[1]);
- SORT(isect2[0],isect2[1]);
- if(isect1[1]<isect2[0] || isect2[1]<isect1[0]) return qtrue;
- return qfalse;
- }
- float LineSegmentDistance( vec3_t a, vec3_t b, vec3_t c, vec3_t d )
- {
- vec3_t v1, v2, v3, cross;
- //FIXME: what if parallel or intersect?
- //FIXME: this doesn't take into account the endpoints...
- //get the two lines
- VectorSubtract( b, a, v1 );
- VectorSubtract( c, d, v2 );
- //get their normalized cross product
- CrossProduct( v1, v2, cross );
- /*
- float crossLength = VectorLength( cross );
- if ( crossLength == 0 )
- {//intersect! Or... parallel?
- return 0;
- }
- VectorScale( cross, 1/crossLength, cross );
- */
- VectorNormalize( cross );
- //now get a vector from v1 to v2
- VectorSubtract( d, a, v3 );
- //distance is dot product of that new vector and the normalized cross product
- float dist = fabs( DotProduct( v3, cross ) );
- return dist;
- }
- extern qboolean G_FindClosestPointOnLineSegment( const vec3_t start, const vec3_t end, const vec3_t from, vec3_t result );
- float ShortestLineSegBewteen2LineSegs( vec3_t start1, vec3_t end1, vec3_t start2, vec3_t end2, vec3_t close_pnt1, vec3_t close_pnt2 )
- {
- float current_dist, new_dist;
- vec3_t new_pnt;
- //start1, end1 : the first segment
- //start2, end2 : the second segment
- //output, one point on each segment, the closest two points on the segments.
- //compute some temporaries:
- //vec start_dif = start2 - start1
- vec3_t start_dif;
- VectorSubtract( start2, start1, start_dif );
- //vec v1 = end1 - start1
- vec3_t v1;
- VectorSubtract( end1, start1, v1 );
- //vec v2 = end2 - start2
- vec3_t v2;
- VectorSubtract( end2, start2, v2 );
- //
- float v1v1 = DotProduct( v1, v1 );
- float v2v2 = DotProduct( v2, v2 );
- float v1v2 = DotProduct( v1, v2 );
- //the main computation
- float denom = (v1v2 * v1v2) - (v1v1 * v2v2);
- //if denom is small, then skip all this and jump to the section marked below
- if ( fabs(denom) > 0.001f )
- {
- float s = -( (v2v2*DotProduct( v1, start_dif )) - (v1v2*DotProduct( v2, start_dif )) ) / denom;
- float t = ( (v1v1*DotProduct( v2, start_dif )) - (v1v2*DotProduct( v1, start_dif )) ) / denom;
- qboolean done = qtrue;
- if ( s < 0 )
- {
- done = qfalse;
- s = 0;// and see note below
- }
- if ( s > 1 )
- {
- done = qfalse;
- s = 1;// and see note below
- }
- if ( t < 0 )
- {
- done = qfalse;
- t = 0;// and see note below
- }
- if ( t > 1 )
- {
- done = qfalse;
- t = 1;// and see note below
- }
- //vec close_pnt1 = start1 + s * v1
- VectorMA( start1, s, v1, close_pnt1 );
- //vec close_pnt2 = start2 + t * v2
- VectorMA( start2, t, v2, close_pnt2 );
- current_dist = Distance( close_pnt1, close_pnt2 );
- //now, if none of those if's fired, you are done.
- if ( done )
- {
- return current_dist;
- }
- //If they did fire, then we need to do some additional tests.
- //What we are gonna do is see if we can find a shorter distance than the above
- //involving the endpoints.
- }
- else
- {
- //******start here for paralell lines with current_dist = infinity****
- current_dist = Q3_INFINITE;
- }
- //test 2 close_pnts first
- /*
- G_FindClosestPointOnLineSegment( start1, end1, close_pnt2, new_pnt );
- new_dist = Distance( close_pnt2, new_pnt );
- if ( new_dist < current_dist )
- {//then update close_pnt1 close_pnt2 and current_dist
- VectorCopy( new_pnt, close_pnt1 );
- VectorCopy( close_pnt2, close_pnt2 );
- current_dist = new_dist;
- }
- G_FindClosestPointOnLineSegment( start2, end2, close_pnt1, new_pnt );
- new_dist = Distance( close_pnt1, new_pnt );
- if ( new_dist < current_dist )
- {//then update close_pnt1 close_pnt2 and current_dist
- VectorCopy( close_pnt1, close_pnt1 );
- VectorCopy( new_pnt, close_pnt2 );
- current_dist = new_dist;
- }
- */
- //test all the endpoints
- new_dist = Distance( start1, start2 );
- if ( new_dist < current_dist )
- {//then update close_pnt1 close_pnt2 and current_dist
- VectorCopy( start1, close_pnt1 );
- VectorCopy( start2, close_pnt2 );
- current_dist = new_dist;
- }
- new_dist = Distance( start1, end2 );
- if ( new_dist < current_dist )
- {//then update close_pnt1 close_pnt2 and current_dist
- VectorCopy( start1, close_pnt1 );
- VectorCopy( end2, close_pnt2 );
- current_dist = new_dist;
- }
- new_dist = Distance( end1, start2 );
- if ( new_dist < current_dist )
- {//then update close_pnt1 close_pnt2 and current_dist
- VectorCopy( end1, close_pnt1 );
- VectorCopy( start2, close_pnt2 );
- current_dist = new_dist;
- }
- new_dist = Distance( end1, end2 );
- if ( new_dist < current_dist )
- {//then update close_pnt1 close_pnt2 and current_dist
- VectorCopy( end1, close_pnt1 );
- VectorCopy( end2, close_pnt2 );
- current_dist = new_dist;
- }
- //Then we have 4 more point / segment tests
- G_FindClosestPointOnLineSegment( start2, end2, start1, new_pnt );
- new_dist = Distance( start1, new_pnt );
- if ( new_dist < current_dist )
- {//then update close_pnt1 close_pnt2 and current_dist
- VectorCopy( start1, close_pnt1 );
- VectorCopy( new_pnt, close_pnt2 );
- current_dist = new_dist;
- }
- G_FindClosestPointOnLineSegment( start2, end2, end1, new_pnt );
- new_dist = Distance( end1, new_pnt );
- if ( new_dist < current_dist )
- {//then update close_pnt1 close_pnt2 and current_dist
- VectorCopy( end1, close_pnt1 );
- VectorCopy( new_pnt, close_pnt2 );
- current_dist = new_dist;
- }
- G_FindClosestPointOnLineSegment( start1, end1, start2, new_pnt );
- new_dist = Distance( start2, new_pnt );
- if ( new_dist < current_dist )
- {//then update close_pnt1 close_pnt2 and current_dist
- VectorCopy( new_pnt, close_pnt1 );
- VectorCopy( start2, close_pnt2 );
- current_dist = new_dist;
- }
- G_FindClosestPointOnLineSegment( start1, end1, end2, new_pnt );
- new_dist = Distance( end2, new_pnt );
- if ( new_dist < current_dist )
- {//then update close_pnt1 close_pnt2 and current_dist
- VectorCopy( new_pnt, close_pnt1 );
- VectorCopy( end2, close_pnt2 );
- current_dist = new_dist;
- }
- return current_dist;
- }
|