jquant1.cpp 34 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858
  1. /*
  2. * jquant1.c
  3. *
  4. * Copyright (C) 1991-1995, Thomas G. Lane.
  5. * This file is part of the Independent JPEG Group's software.
  6. * For conditions of distribution and use, see the accompanying README file.
  7. *
  8. * This file contains 1-pass color quantization (color mapping) routines.
  9. * These routines provide mapping to a fixed color map using equally spaced
  10. * color values. Optional Floyd-Steinberg or ordered dithering is available.
  11. */
  12. #define JPEG_INTERNALS
  13. #include "jinclude.h"
  14. #include "jpeglib.h"
  15. #ifdef QUANT_1PASS_SUPPORTED
  16. /*
  17. * The main purpose of 1-pass quantization is to provide a fast, if not very
  18. * high quality, colormapped output capability. A 2-pass quantizer usually
  19. * gives better visual quality; however, for quantized grayscale output this
  20. * quantizer is perfectly adequate. Dithering is highly recommended with this
  21. * quantizer, though you can turn it off if you really want to.
  22. *
  23. * In 1-pass quantization the colormap must be chosen in advance of seeing the
  24. * image. We use a map consisting of all combinations of Ncolors[i] color
  25. * values for the i'th component. The Ncolors[] values are chosen so that
  26. * their product, the total number of colors, is no more than that requested.
  27. * (In most cases, the product will be somewhat less.)
  28. *
  29. * Since the colormap is orthogonal, the representative value for each color
  30. * component can be determined without considering the other components;
  31. * then these indexes can be combined into a colormap index by a standard
  32. * N-dimensional-array-subscript calculation. Most of the arithmetic involved
  33. * can be precalculated and stored in the lookup table colorindex[].
  34. * colorindex[i][j] maps pixel value j in component i to the nearest
  35. * representative value (grid plane) for that component; this index is
  36. * multiplied by the array stride for component i, so that the
  37. * index of the colormap entry closest to a given pixel value is just
  38. * sum( colorindex[component-number][pixel-component-value] )
  39. * Aside from being fast, this scheme allows for variable spacing between
  40. * representative values with no additional lookup cost.
  41. *
  42. * If gamma correction has been applied in color conversion, it might be wise
  43. * to adjust the color grid spacing so that the representative colors are
  44. * equidistant in linear space. At this writing, gamma correction is not
  45. * implemented by jdcolor, so nothing is done here.
  46. */
  47. /* Declarations for ordered dithering.
  48. *
  49. * We use a standard 16x16 ordered dither array. The basic concept of ordered
  50. * dithering is described in many references, for instance Dale Schumacher's
  51. * chapter II.2 of Graphics Gems II (James Arvo, ed. Academic Press, 1991).
  52. * In place of Schumacher's comparisons against a "threshold" value, we add a
  53. * "dither" value to the input pixel and then round the result to the nearest
  54. * output value. The dither value is equivalent to (0.5 - threshold) times
  55. * the distance between output values. For ordered dithering, we assume that
  56. * the output colors are equally spaced; if not, results will probably be
  57. * worse, since the dither may be too much or too little at a given point.
  58. *
  59. * The normal calculation would be to form pixel value + dither, range-limit
  60. * this to 0..MAXJSAMPLE, and then index into the colorindex table as usual.
  61. * We can skip the separate range-limiting step by extending the colorindex
  62. * table in both directions.
  63. */
  64. #define ODITHER_SIZE 16 /* dimension of dither matrix */
  65. /* NB: if ODITHER_SIZE is not a power of 2, ODITHER_MASK uses will break */
  66. #define ODITHER_CELLS ( ODITHER_SIZE * ODITHER_SIZE ) /* # cells in matrix */
  67. #define ODITHER_MASK ( ODITHER_SIZE - 1 ) /* mask for wrapping around counters */
  68. typedef int ODITHER_MATRIX[ODITHER_SIZE][ODITHER_SIZE];
  69. typedef int ( *ODITHER_MATRIX_PTR )[ODITHER_SIZE];
  70. static const UINT8 base_dither_matrix[ODITHER_SIZE][ODITHER_SIZE] = {
  71. /* Bayer's order-4 dither array. Generated by the code given in
  72. * Stephen Hawley's article "Ordered Dithering" in Graphics Gems I.
  73. * The values in this array must range from 0 to ODITHER_CELLS-1.
  74. */
  75. { 0, 192, 48, 240, 12, 204, 60, 252, 3, 195, 51, 243, 15, 207, 63, 255 },
  76. { 128, 64, 176, 112, 140, 76, 188, 124, 131, 67, 179, 115, 143, 79, 191, 127 },
  77. { 32, 224, 16, 208, 44, 236, 28, 220, 35, 227, 19, 211, 47, 239, 31, 223 },
  78. { 160, 96, 144, 80, 172, 108, 156, 92, 163, 99, 147, 83, 175, 111, 159, 95 },
  79. { 8, 200, 56, 248, 4, 196, 52, 244, 11, 203, 59, 251, 7, 199, 55, 247 },
  80. { 136, 72, 184, 120, 132, 68, 180, 116, 139, 75, 187, 123, 135, 71, 183, 119 },
  81. { 40, 232, 24, 216, 36, 228, 20, 212, 43, 235, 27, 219, 39, 231, 23, 215 },
  82. { 168, 104, 152, 88, 164, 100, 148, 84, 171, 107, 155, 91, 167, 103, 151, 87 },
  83. { 2, 194, 50, 242, 14, 206, 62, 254, 1, 193, 49, 241, 13, 205, 61, 253 },
  84. { 130, 66, 178, 114, 142, 78, 190, 126, 129, 65, 177, 113, 141, 77, 189, 125 },
  85. { 34, 226, 18, 210, 46, 238, 30, 222, 33, 225, 17, 209, 45, 237, 29, 221 },
  86. { 162, 98, 146, 82, 174, 110, 158, 94, 161, 97, 145, 81, 173, 109, 157, 93 },
  87. { 10, 202, 58, 250, 6, 198, 54, 246, 9, 201, 57, 249, 5, 197, 53, 245 },
  88. { 138, 74, 186, 122, 134, 70, 182, 118, 137, 73, 185, 121, 133, 69, 181, 117 },
  89. { 42, 234, 26, 218, 38, 230, 22, 214, 41, 233, 25, 217, 37, 229, 21, 213 },
  90. { 170, 106, 154, 90, 166, 102, 150, 86, 169, 105, 153, 89, 165, 101, 149, 85 }
  91. };
  92. /* Declarations for Floyd-Steinberg dithering.
  93. *
  94. * Errors are accumulated into the array fserrors[], at a resolution of
  95. * 1/16th of a pixel count. The error at a given pixel is propagated
  96. * to its not-yet-processed neighbors using the standard F-S fractions,
  97. * ... (here) 7/16
  98. * 3/16 5/16 1/16
  99. * We work left-to-right on even rows, right-to-left on odd rows.
  100. *
  101. * We can get away with a single array (holding one row's worth of errors)
  102. * by using it to store the current row's errors at pixel columns not yet
  103. * processed, but the next row's errors at columns already processed. We
  104. * need only a few extra variables to hold the errors immediately around the
  105. * current column. (If we are lucky, those variables are in registers, but
  106. * even if not, they're probably cheaper to access than array elements are.)
  107. *
  108. * The fserrors[] array is indexed [component#][position].
  109. * We provide (#columns + 2) entries per component; the extra entry at each
  110. * end saves us from special-casing the first and last pixels.
  111. *
  112. * Note: on a wide image, we might not have enough room in a PC's near data
  113. * segment to hold the error array; so it is allocated with alloc_large.
  114. */
  115. #if BITS_IN_JSAMPLE == 8
  116. typedef INT16 FSERROR; /* 16 bits should be enough */
  117. typedef int LOCFSERROR; /* use 'int' for calculation temps */
  118. #else
  119. typedef INT32 FSERROR; /* may need more than 16 bits */
  120. typedef INT32 LOCFSERROR; /* be sure calculation temps are big enough */
  121. #endif
  122. typedef FSERROR FAR * FSERRPTR; /* pointer to error array (in FAR storage!) */
  123. /* Private subobject */
  124. #define MAX_Q_COMPS 4 /* max components I can handle */
  125. typedef struct {
  126. struct jpeg_color_quantizer pub;/* public fields */
  127. /* Initially allocated colormap is saved here */
  128. JSAMPARRAY sv_colormap; /* The color map as a 2-D pixel array */
  129. int sv_actual; /* number of entries in use */
  130. JSAMPARRAY colorindex; /* Precomputed mapping for speed */
  131. /* colorindex[i][j] = index of color closest to pixel value j in component i,
  132. * premultiplied as described above. Since colormap indexes must fit into
  133. * JSAMPLEs, the entries of this array will too.
  134. */
  135. boolean is_padded; /* is the colorindex padded for odither? */
  136. int Ncolors[MAX_Q_COMPS];/* # of values alloced to each component */
  137. /* Variables for ordered dithering */
  138. int row_index; /* cur row's vertical index in dither matrix */
  139. ODITHER_MATRIX_PTR odither[MAX_Q_COMPS];/* one dither array per component */
  140. /* Variables for Floyd-Steinberg dithering */
  141. FSERRPTR fserrors[MAX_Q_COMPS];/* accumulated errors */
  142. boolean on_odd_row; /* flag to remember which row we are on */
  143. } my_cquantizer;
  144. typedef my_cquantizer * my_cquantize_ptr;
  145. /*
  146. * Policy-making subroutines for create_colormap and create_colorindex.
  147. * These routines determine the colormap to be used. The rest of the module
  148. * only assumes that the colormap is orthogonal.
  149. *
  150. * * select_ncolors decides how to divvy up the available colors
  151. * among the components.
  152. * * output_value defines the set of representative values for a component.
  153. * * largest_input_value defines the mapping from input values to
  154. * representative values for a component.
  155. * Note that the latter two routines may impose different policies for
  156. * different components, though this is not currently done.
  157. */
  158. LOCAL int
  159. select_ncolors( j_decompress_ptr cinfo, int Ncolors[] ) {
  160. /* Determine allocation of desired colors to components, */
  161. /* and fill in Ncolors[] array to indicate choice. */
  162. /* Return value is total number of colors (product of Ncolors[] values). */
  163. int nc = cinfo->out_color_components;/* number of color components */
  164. int max_colors = cinfo->desired_number_of_colors;
  165. int total_colors, iroot, i, j;
  166. boolean changed;
  167. long temp;
  168. static const int RGB_order[3] = { RGB_GREEN, RGB_RED, RGB_BLUE };
  169. /* We can allocate at least the nc'th root of max_colors per component. */
  170. /* Compute floor(nc'th root of max_colors). */
  171. iroot = 1;
  172. do {
  173. iroot++;
  174. temp = iroot; /* set temp = iroot ** nc */
  175. for ( i = 1; i < nc; i++ ) {
  176. temp *= iroot;
  177. }
  178. } while ( temp <= (long) max_colors );/* repeat till iroot exceeds root */
  179. iroot--; /* now iroot = floor(root) */
  180. /* Must have at least 2 color values per component */
  181. if ( iroot < 2 ) {
  182. ERREXIT1( cinfo, JERR_QUANT_FEW_COLORS, (int) temp );
  183. }
  184. /* Initialize to iroot color values for each component */
  185. total_colors = 1;
  186. for ( i = 0; i < nc; i++ ) {
  187. Ncolors[i] = iroot;
  188. total_colors *= iroot;
  189. }
  190. /* We may be able to increment the count for one or more components without
  191. * exceeding max_colors, though we know not all can be incremented.
  192. * Sometimes, the first component can be incremented more than once!
  193. * (Example: for 16 colors, we start at 2*2*2, go to 3*2*2, then 4*2*2.)
  194. * In RGB colorspace, try to increment G first, then R, then B.
  195. */
  196. do {
  197. changed = FALSE;
  198. for ( i = 0; i < nc; i++ ) {
  199. j = ( cinfo->out_color_space == JCS_RGB ? RGB_order[i] : i );
  200. /* calculate new total_colors if Ncolors[j] is incremented */
  201. temp = total_colors / Ncolors[j];
  202. temp *= Ncolors[j] + 1;/* done in long arith to avoid oflo */
  203. if ( temp > (long) max_colors ) {
  204. break;
  205. } /* won't fit, done with this pass */
  206. Ncolors[j]++; /* OK, apply the increment */
  207. total_colors = (int) temp;
  208. changed = TRUE;
  209. }
  210. } while ( changed );
  211. return total_colors;
  212. }
  213. LOCAL int
  214. output_value( j_decompress_ptr cinfo, int ci, int j, int maxj ) {
  215. /* Return j'th output value, where j will range from 0 to maxj */
  216. /* The output values must fall in 0..MAXJSAMPLE in increasing order */
  217. /* We always provide values 0 and MAXJSAMPLE for each component;
  218. * any additional values are equally spaced between these limits.
  219. * (Forcing the upper and lower values to the limits ensures that
  220. * dithering can't produce a color outside the selected gamut.)
  221. */
  222. return (int) ( ( (INT32) j * MAXJSAMPLE + maxj / 2 ) / maxj );
  223. }
  224. LOCAL int
  225. largest_input_value( j_decompress_ptr cinfo, int ci, int j, int maxj ) {
  226. /* Return largest input value that should map to j'th output value */
  227. /* Must have largest(j=0) >= 0, and largest(j=maxj) >= MAXJSAMPLE */
  228. /* Breakpoints are halfway between values returned by output_value */
  229. return (int) ( ( (INT32) ( 2 * j + 1 ) * MAXJSAMPLE + maxj ) / ( 2 * maxj ) );
  230. }
  231. /*
  232. * Create the colormap.
  233. */
  234. LOCAL void
  235. create_colormap( j_decompress_ptr cinfo ) {
  236. my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
  237. JSAMPARRAY colormap; /* Created colormap */
  238. int total_colors; /* Number of distinct output colors */
  239. int i, j, k, nci, blksize, blkdist, ptr, val;
  240. /* Select number of colors for each component */
  241. total_colors = select_ncolors( cinfo, cquantize->Ncolors );
  242. /* Report selected color counts */
  243. if ( cinfo->out_color_components == 3 ) {
  244. TRACEMS4( cinfo, 1, JTRC_QUANT_3_NCOLORS,
  245. total_colors, cquantize->Ncolors[0],
  246. cquantize->Ncolors[1], cquantize->Ncolors[2] );
  247. } else {
  248. TRACEMS1( cinfo, 1, JTRC_QUANT_NCOLORS, total_colors );
  249. }
  250. /* Allocate and fill in the colormap. */
  251. /* The colors are ordered in the map in standard row-major order, */
  252. /* i.e. rightmost (highest-indexed) color changes most rapidly. */
  253. colormap = ( *cinfo->mem->alloc_sarray )
  254. ( (j_common_ptr) cinfo, JPOOL_IMAGE,
  255. (JDIMENSION) total_colors, (JDIMENSION) cinfo->out_color_components );
  256. /* blksize is number of adjacent repeated entries for a component */
  257. /* blkdist is distance between groups of identical entries for a component */
  258. blkdist = total_colors;
  259. for ( i = 0; i < cinfo->out_color_components; i++ ) {
  260. /* fill in colormap entries for i'th color component */
  261. nci = cquantize->Ncolors[i];/* # of distinct values for this color */
  262. blksize = blkdist / nci;
  263. for ( j = 0; j < nci; j++ ) {
  264. /* Compute j'th output value (out of nci) for component */
  265. val = output_value( cinfo, i, j, nci - 1 );
  266. /* Fill in all colormap entries that have this value of this component */
  267. for ( ptr = j * blksize; ptr < total_colors; ptr += blkdist ) {
  268. /* fill in blksize entries beginning at ptr */
  269. for ( k = 0; k < blksize; k++ ) {
  270. colormap[i][ptr + k] = (JSAMPLE) val;
  271. }
  272. }
  273. }
  274. blkdist = blksize; /* blksize of this color is blkdist of next */
  275. }
  276. /* Save the colormap in private storage,
  277. * where it will survive color quantization mode changes.
  278. */
  279. cquantize->sv_colormap = colormap;
  280. cquantize->sv_actual = total_colors;
  281. }
  282. /*
  283. * Create the color index table.
  284. */
  285. LOCAL void
  286. create_colorindex( j_decompress_ptr cinfo ) {
  287. my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
  288. JSAMPROW indexptr;
  289. int i, j, k, nci, blksize, val, pad;
  290. /* For ordered dither, we pad the color index tables by MAXJSAMPLE in
  291. * each direction (input index values can be -MAXJSAMPLE .. 2*MAXJSAMPLE).
  292. * This is not necessary in the other dithering modes. However, we
  293. * flag whether it was done in case user changes dithering mode.
  294. */
  295. if ( cinfo->dither_mode == JDITHER_ORDERED ) {
  296. pad = MAXJSAMPLE * 2;
  297. cquantize->is_padded = TRUE;
  298. } else {
  299. pad = 0;
  300. cquantize->is_padded = FALSE;
  301. }
  302. cquantize->colorindex = ( *cinfo->mem->alloc_sarray )
  303. ( (j_common_ptr) cinfo, JPOOL_IMAGE,
  304. (JDIMENSION) ( MAXJSAMPLE + 1 + pad ),
  305. (JDIMENSION) cinfo->out_color_components );
  306. /* blksize is number of adjacent repeated entries for a component */
  307. blksize = cquantize->sv_actual;
  308. for ( i = 0; i < cinfo->out_color_components; i++ ) {
  309. /* fill in colorindex entries for i'th color component */
  310. nci = cquantize->Ncolors[i];/* # of distinct values for this color */
  311. blksize = blksize / nci;
  312. /* adjust colorindex pointers to provide padding at negative indexes. */
  313. if ( pad ) {
  314. cquantize->colorindex[i] += MAXJSAMPLE;
  315. }
  316. /* in loop, val = index of current output value, */
  317. /* and k = largest j that maps to current val */
  318. indexptr = cquantize->colorindex[i];
  319. val = 0;
  320. k = largest_input_value( cinfo, i, 0, nci - 1 );
  321. for ( j = 0; j <= MAXJSAMPLE; j++ ) {
  322. while ( j > k ) {/* advance val if past boundary */
  323. k = largest_input_value( cinfo, i, ++val, nci - 1 );
  324. }
  325. /* premultiply so that no multiplication needed in main processing */
  326. indexptr[j] = (JSAMPLE) ( val * blksize );
  327. }
  328. /* Pad at both ends if necessary */
  329. if ( pad ) {
  330. for ( j = 1; j <= MAXJSAMPLE; j++ ) {
  331. indexptr[-j] = indexptr[0];
  332. indexptr[MAXJSAMPLE + j] = indexptr[MAXJSAMPLE];
  333. }
  334. }
  335. }
  336. }
  337. /*
  338. * Create an ordered-dither array for a component having ncolors
  339. * distinct output values.
  340. */
  341. LOCAL ODITHER_MATRIX_PTR
  342. make_odither_array( j_decompress_ptr cinfo, int ncolors ) {
  343. ODITHER_MATRIX_PTR odither;
  344. int j, k;
  345. INT32 num, den;
  346. odither = (ODITHER_MATRIX_PTR)
  347. ( *cinfo->mem->alloc_small )( (j_common_ptr) cinfo, JPOOL_IMAGE,
  348. SIZEOF( ODITHER_MATRIX ) );
  349. /* The inter-value distance for this color is MAXJSAMPLE/(ncolors-1).
  350. * Hence the dither value for the matrix cell with fill order f
  351. * (f=0..N-1) should be (N-1-2*f)/(2*N) * MAXJSAMPLE/(ncolors-1).
  352. * On 16-bit-int machine, be careful to avoid overflow.
  353. */
  354. den = 2 * ODITHER_CELLS * ( (INT32) ( ncolors - 1 ) );
  355. for ( j = 0; j < ODITHER_SIZE; j++ ) {
  356. for ( k = 0; k < ODITHER_SIZE; k++ ) {
  357. num = ( (INT32) ( ODITHER_CELLS - 1 - 2 * ( (int)base_dither_matrix[j][k] ) ) )
  358. * MAXJSAMPLE;
  359. /* Ensure round towards zero despite C's lack of consistency
  360. * about rounding negative values in integer division...
  361. */
  362. odither[j][k] = (int) ( num < 0 ? -( ( -num ) / den ) : num / den );
  363. }
  364. }
  365. return odither;
  366. }
  367. /*
  368. * Create the ordered-dither tables.
  369. * Components having the same number of representative colors may
  370. * share a dither table.
  371. */
  372. LOCAL void
  373. create_odither_tables( j_decompress_ptr cinfo ) {
  374. my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
  375. ODITHER_MATRIX_PTR odither;
  376. int i, j, nci;
  377. for ( i = 0; i < cinfo->out_color_components; i++ ) {
  378. nci = cquantize->Ncolors[i];/* # of distinct values for this color */
  379. odither = NULL; /* search for matching prior component */
  380. for ( j = 0; j < i; j++ ) {
  381. if ( nci == cquantize->Ncolors[j] ) {
  382. odither = cquantize->odither[j];
  383. break;
  384. }
  385. }
  386. if ( odither == NULL ) {/* need a new table? */
  387. odither = make_odither_array( cinfo, nci );
  388. }
  389. cquantize->odither[i] = odither;
  390. }
  391. }
  392. /*
  393. * Map some rows of pixels to the output colormapped representation.
  394. */
  395. METHODDEF void
  396. color_quantize( j_decompress_ptr cinfo, JSAMPARRAY input_buf,
  397. JSAMPARRAY output_buf, int num_rows ) {
  398. /* General case, no dithering */
  399. my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
  400. JSAMPARRAY colorindex = cquantize->colorindex;
  401. register int pixcode, ci;
  402. register JSAMPROW ptrin, ptrout;
  403. int row;
  404. JDIMENSION col;
  405. JDIMENSION width = cinfo->output_width;
  406. register int nc = cinfo->out_color_components;
  407. for ( row = 0; row < num_rows; row++ ) {
  408. ptrin = input_buf[row];
  409. ptrout = output_buf[row];
  410. for ( col = width; col > 0; col-- ) {
  411. pixcode = 0;
  412. for ( ci = 0; ci < nc; ci++ ) {
  413. pixcode += GETJSAMPLE( colorindex[ci][GETJSAMPLE( *ptrin++ )] );
  414. }
  415. *ptrout++ = (JSAMPLE) pixcode;
  416. }
  417. }
  418. }
  419. METHODDEF void
  420. color_quantize3( j_decompress_ptr cinfo, JSAMPARRAY input_buf,
  421. JSAMPARRAY output_buf, int num_rows ) {
  422. /* Fast path for out_color_components==3, no dithering */
  423. my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
  424. register int pixcode;
  425. register JSAMPROW ptrin, ptrout;
  426. JSAMPROW colorindex0 = cquantize->colorindex[0];
  427. JSAMPROW colorindex1 = cquantize->colorindex[1];
  428. JSAMPROW colorindex2 = cquantize->colorindex[2];
  429. int row;
  430. JDIMENSION col;
  431. JDIMENSION width = cinfo->output_width;
  432. for ( row = 0; row < num_rows; row++ ) {
  433. ptrin = input_buf[row];
  434. ptrout = output_buf[row];
  435. for ( col = width; col > 0; col-- ) {
  436. pixcode = GETJSAMPLE( colorindex0[GETJSAMPLE( *ptrin++ )] );
  437. pixcode += GETJSAMPLE( colorindex1[GETJSAMPLE( *ptrin++ )] );
  438. pixcode += GETJSAMPLE( colorindex2[GETJSAMPLE( *ptrin++ )] );
  439. *ptrout++ = (JSAMPLE) pixcode;
  440. }
  441. }
  442. }
  443. METHODDEF void
  444. quantize_ord_dither( j_decompress_ptr cinfo, JSAMPARRAY input_buf,
  445. JSAMPARRAY output_buf, int num_rows ) {
  446. /* General case, with ordered dithering */
  447. my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
  448. register JSAMPROW input_ptr;
  449. register JSAMPROW output_ptr;
  450. JSAMPROW colorindex_ci;
  451. int * dither; /* points to active row of dither matrix */
  452. int row_index, col_index;/* current indexes into dither matrix */
  453. int nc = cinfo->out_color_components;
  454. int ci;
  455. int row;
  456. JDIMENSION col;
  457. JDIMENSION width = cinfo->output_width;
  458. for ( row = 0; row < num_rows; row++ ) {
  459. /* Initialize output values to 0 so can process components separately */
  460. jzero_far( (void FAR *) output_buf[row],
  461. (size_t) ( width * SIZEOF( JSAMPLE ) ) );
  462. row_index = cquantize->row_index;
  463. for ( ci = 0; ci < nc; ci++ ) {
  464. input_ptr = input_buf[row] + ci;
  465. output_ptr = output_buf[row];
  466. colorindex_ci = cquantize->colorindex[ci];
  467. dither = cquantize->odither[ci][row_index];
  468. col_index = 0;
  469. for ( col = width; col > 0; col-- ) {
  470. /* Form pixel value + dither, range-limit to 0..MAXJSAMPLE,
  471. * select output value, accumulate into output code for this pixel.
  472. * Range-limiting need not be done explicitly, as we have extended
  473. * the colorindex table to produce the right answers for out-of-range
  474. * inputs. The maximum dither is +- MAXJSAMPLE; this sets the
  475. * required amount of padding.
  476. */
  477. *output_ptr += colorindex_ci[GETJSAMPLE( *input_ptr ) + dither[col_index]];
  478. input_ptr += nc;
  479. output_ptr++;
  480. col_index = ( col_index + 1 ) & ODITHER_MASK;
  481. }
  482. }
  483. /* Advance row index for next row */
  484. row_index = ( row_index + 1 ) & ODITHER_MASK;
  485. cquantize->row_index = row_index;
  486. }
  487. }
  488. METHODDEF void
  489. quantize3_ord_dither( j_decompress_ptr cinfo, JSAMPARRAY input_buf,
  490. JSAMPARRAY output_buf, int num_rows ) {
  491. /* Fast path for out_color_components==3, with ordered dithering */
  492. my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
  493. register int pixcode;
  494. register JSAMPROW input_ptr;
  495. register JSAMPROW output_ptr;
  496. JSAMPROW colorindex0 = cquantize->colorindex[0];
  497. JSAMPROW colorindex1 = cquantize->colorindex[1];
  498. JSAMPROW colorindex2 = cquantize->colorindex[2];
  499. int * dither0; /* points to active row of dither matrix */
  500. int * dither1;
  501. int * dither2;
  502. int row_index, col_index;/* current indexes into dither matrix */
  503. int row;
  504. JDIMENSION col;
  505. JDIMENSION width = cinfo->output_width;
  506. for ( row = 0; row < num_rows; row++ ) {
  507. row_index = cquantize->row_index;
  508. input_ptr = input_buf[row];
  509. output_ptr = output_buf[row];
  510. dither0 = cquantize->odither[0][row_index];
  511. dither1 = cquantize->odither[1][row_index];
  512. dither2 = cquantize->odither[2][row_index];
  513. col_index = 0;
  514. for ( col = width; col > 0; col-- ) {
  515. pixcode = GETJSAMPLE( colorindex0[GETJSAMPLE( *input_ptr++ ) +
  516. dither0[col_index]] );
  517. pixcode += GETJSAMPLE( colorindex1[GETJSAMPLE( *input_ptr++ ) +
  518. dither1[col_index]] );
  519. pixcode += GETJSAMPLE( colorindex2[GETJSAMPLE( *input_ptr++ ) +
  520. dither2[col_index]] );
  521. *output_ptr++ = (JSAMPLE) pixcode;
  522. col_index = ( col_index + 1 ) & ODITHER_MASK;
  523. }
  524. row_index = ( row_index + 1 ) & ODITHER_MASK;
  525. cquantize->row_index = row_index;
  526. }
  527. }
  528. METHODDEF void
  529. quantize_fs_dither( j_decompress_ptr cinfo, JSAMPARRAY input_buf,
  530. JSAMPARRAY output_buf, int num_rows ) {
  531. /* General case, with Floyd-Steinberg dithering */
  532. my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
  533. register LOCFSERROR cur;/* current error or pixel value */
  534. LOCFSERROR belowerr; /* error for pixel below cur */
  535. LOCFSERROR bpreverr; /* error for below/prev col */
  536. LOCFSERROR bnexterr; /* error for below/next col */
  537. LOCFSERROR delta;
  538. register FSERRPTR errorptr; /* => fserrors[] at column before current */
  539. register JSAMPROW input_ptr;
  540. register JSAMPROW output_ptr;
  541. JSAMPROW colorindex_ci;
  542. JSAMPROW colormap_ci;
  543. int pixcode;
  544. int nc = cinfo->out_color_components;
  545. int dir; /* 1 for left-to-right, -1 for right-to-left */
  546. int dirnc; /* dir * nc */
  547. int ci;
  548. int row;
  549. JDIMENSION col;
  550. JDIMENSION width = cinfo->output_width;
  551. JSAMPLE * range_limit = cinfo->sample_range_limit;
  552. SHIFT_TEMPS
  553. for ( row = 0; row < num_rows; row++ ) {
  554. /* Initialize output values to 0 so can process components separately */
  555. jzero_far( (void FAR *) output_buf[row],
  556. (size_t) ( width * SIZEOF( JSAMPLE ) ) );
  557. for ( ci = 0; ci < nc; ci++ ) {
  558. input_ptr = input_buf[row] + ci;
  559. output_ptr = output_buf[row];
  560. if ( cquantize->on_odd_row ) {
  561. /* work right to left in this row */
  562. input_ptr += ( width - 1 ) * nc;/* so point to rightmost pixel */
  563. output_ptr += width - 1;
  564. dir = -1;
  565. dirnc = -nc;
  566. errorptr = cquantize->fserrors[ci] + ( width + 1 );/* => entry after last column */
  567. } else {
  568. /* work left to right in this row */
  569. dir = 1;
  570. dirnc = nc;
  571. errorptr = cquantize->fserrors[ci];/* => entry before first column */
  572. }
  573. colorindex_ci = cquantize->colorindex[ci];
  574. colormap_ci = cquantize->sv_colormap[ci];
  575. /* Preset error values: no error propagated to first pixel from left */
  576. cur = 0;
  577. /* and no error propagated to row below yet */
  578. belowerr = bpreverr = 0;
  579. for ( col = width; col > 0; col-- ) {
  580. /* cur holds the error propagated from the previous pixel on the
  581. * current line. Add the error propagated from the previous line
  582. * to form the complete error correction term for this pixel, and
  583. * round the error term (which is expressed * 16) to an integer.
  584. * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
  585. * for either sign of the error value.
  586. * Note: errorptr points to *previous* column's array entry.
  587. */
  588. cur = RIGHT_SHIFT( cur + errorptr[dir] + 8, 4 );
  589. /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
  590. * The maximum error is +- MAXJSAMPLE; this sets the required size
  591. * of the range_limit array.
  592. */
  593. cur += GETJSAMPLE( *input_ptr );
  594. cur = GETJSAMPLE( range_limit[cur] );
  595. /* Select output value, accumulate into output code for this pixel */
  596. pixcode = GETJSAMPLE( colorindex_ci[cur] );
  597. *output_ptr += (JSAMPLE) pixcode;
  598. /* Compute actual representation error at this pixel */
  599. /* Note: we can do this even though we don't have the final */
  600. /* pixel code, because the colormap is orthogonal. */
  601. cur -= GETJSAMPLE( colormap_ci[pixcode] );
  602. /* Compute error fractions to be propagated to adjacent pixels.
  603. * Add these into the running sums, and simultaneously shift the
  604. * next-line error sums left by 1 column.
  605. */
  606. bnexterr = cur;
  607. delta = cur * 2;
  608. cur += delta;/* form error * 3 */
  609. errorptr[0] = (FSERROR) ( bpreverr + cur );
  610. cur += delta;/* form error * 5 */
  611. bpreverr = belowerr + cur;
  612. belowerr = bnexterr;
  613. cur += delta;/* form error * 7 */
  614. /* At this point cur contains the 7/16 error value to be propagated
  615. * to the next pixel on the current line, and all the errors for the
  616. * next line have been shifted over. We are therefore ready to move on.
  617. */
  618. input_ptr += dirnc;/* advance input ptr to next column */
  619. output_ptr += dir;/* advance output ptr to next column */
  620. errorptr += dir;/* advance errorptr to current column */
  621. }
  622. /* Post-loop cleanup: we must unload the final error value into the
  623. * final fserrors[] entry. Note we need not unload belowerr because
  624. * it is for the dummy column before or after the actual array.
  625. */
  626. errorptr[0] = (FSERROR) bpreverr;/* unload prev err into array */
  627. }
  628. cquantize->on_odd_row = ( cquantize->on_odd_row ? FALSE : TRUE );
  629. }
  630. }
  631. /*
  632. * Allocate workspace for Floyd-Steinberg errors.
  633. */
  634. LOCAL void
  635. alloc_fs_workspace( j_decompress_ptr cinfo ) {
  636. my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
  637. size_t arraysize;
  638. int i;
  639. arraysize = (size_t) ( ( cinfo->output_width + 2 ) * SIZEOF( FSERROR ) );
  640. for ( i = 0; i < cinfo->out_color_components; i++ ) {
  641. cquantize->fserrors[i] = (FSERRPTR)
  642. ( *cinfo->mem->alloc_large )( (j_common_ptr) cinfo, JPOOL_IMAGE, arraysize );
  643. }
  644. }
  645. /*
  646. * Initialize for one-pass color quantization.
  647. */
  648. METHODDEF void
  649. start_pass_1_quant( j_decompress_ptr cinfo, boolean is_pre_scan ) {
  650. my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
  651. size_t arraysize;
  652. int i;
  653. /* Install my colormap. */
  654. cinfo->colormap = cquantize->sv_colormap;
  655. cinfo->actual_number_of_colors = cquantize->sv_actual;
  656. /* Initialize for desired dithering mode. */
  657. switch ( cinfo->dither_mode ) {
  658. case JDITHER_NONE:
  659. if ( cinfo->out_color_components == 3 ) {
  660. cquantize->pub.color_quantize = color_quantize3;
  661. } else {
  662. cquantize->pub.color_quantize = color_quantize;
  663. }
  664. break;
  665. case JDITHER_ORDERED:
  666. if ( cinfo->out_color_components == 3 ) {
  667. cquantize->pub.color_quantize = quantize3_ord_dither;
  668. } else {
  669. cquantize->pub.color_quantize = quantize_ord_dither;
  670. }
  671. cquantize->row_index = 0;/* initialize state for ordered dither */
  672. /* If user changed to ordered dither from another mode,
  673. * we must recreate the color index table with padding.
  674. * This will cost extra space, but probably isn't very likely.
  675. */
  676. if ( !cquantize->is_padded ) {
  677. create_colorindex( cinfo );
  678. }
  679. /* Create ordered-dither tables if we didn't already. */
  680. if ( cquantize->odither[0] == NULL ) {
  681. create_odither_tables( cinfo );
  682. }
  683. break;
  684. case JDITHER_FS:
  685. cquantize->pub.color_quantize = quantize_fs_dither;
  686. cquantize->on_odd_row = FALSE;/* initialize state for F-S dither */
  687. /* Allocate Floyd-Steinberg workspace if didn't already. */
  688. if ( cquantize->fserrors[0] == NULL ) {
  689. alloc_fs_workspace( cinfo );
  690. }
  691. /* Initialize the propagated errors to zero. */
  692. arraysize = (size_t) ( ( cinfo->output_width + 2 ) * SIZEOF( FSERROR ) );
  693. for ( i = 0; i < cinfo->out_color_components; i++ ) {
  694. jzero_far( (void FAR *) cquantize->fserrors[i], arraysize );
  695. }
  696. break;
  697. default:
  698. ERREXIT( cinfo, JERR_NOT_COMPILED );
  699. break;
  700. }
  701. }
  702. /*
  703. * Finish up at the end of the pass.
  704. */
  705. METHODDEF void
  706. finish_pass_1_quant( j_decompress_ptr cinfo ) {
  707. /* no work in 1-pass case */
  708. }
  709. /*
  710. * Switch to a new external colormap between output passes.
  711. * Shouldn't get to this module!
  712. */
  713. METHODDEF void
  714. new_color_map_1_quant( j_decompress_ptr cinfo ) {
  715. ERREXIT( cinfo, JERR_MODE_CHANGE );
  716. }
  717. /*
  718. * Module initialization routine for 1-pass color quantization.
  719. */
  720. GLOBAL void
  721. jinit_1pass_quantizer( j_decompress_ptr cinfo ) {
  722. my_cquantize_ptr cquantize;
  723. cquantize = (my_cquantize_ptr)
  724. ( *cinfo->mem->alloc_small )( (j_common_ptr) cinfo, JPOOL_IMAGE,
  725. SIZEOF( my_cquantizer ) );
  726. cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
  727. cquantize->pub.start_pass = start_pass_1_quant;
  728. cquantize->pub.finish_pass = finish_pass_1_quant;
  729. cquantize->pub.new_color_map = new_color_map_1_quant;
  730. cquantize->fserrors[0] = NULL;/* Flag FS workspace not allocated */
  731. cquantize->odither[0] = NULL;/* Also flag odither arrays not allocated */
  732. /* Make sure my internal arrays won't overflow */
  733. if ( cinfo->out_color_components > MAX_Q_COMPS ) {
  734. ERREXIT1( cinfo, JERR_QUANT_COMPONENTS, MAX_Q_COMPS );
  735. }
  736. /* Make sure colormap indexes can be represented by JSAMPLEs */
  737. if ( cinfo->desired_number_of_colors > ( MAXJSAMPLE + 1 ) ) {
  738. ERREXIT1( cinfo, JERR_QUANT_MANY_COLORS, MAXJSAMPLE + 1 );
  739. }
  740. /* Create the colormap and color index table. */
  741. create_colormap( cinfo );
  742. create_colorindex( cinfo );
  743. /* Allocate Floyd-Steinberg workspace now if requested.
  744. * We do this now since it is FAR storage and may affect the memory
  745. * manager's space calculations. If the user changes to FS dither
  746. * mode in a later pass, we will allocate the space then, and will
  747. * possibly overrun the max_memory_to_use setting.
  748. */
  749. if ( cinfo->dither_mode == JDITHER_FS ) {
  750. alloc_fs_workspace( cinfo );
  751. }
  752. }
  753. #endif /* QUANT_1PASS_SUPPORTED */