684 Inverse Digit Sum.sf 1.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263
  1. #!/usr/bin/ruby
  2. # Daniel "Trizen" Șuteu
  3. # Date: 27 November 2019
  4. # https://github.com/trizen
  5. # See OEIS sequence:
  6. # https://oeis.org/A051885
  7. # The smallest numbers whose sum of digits is n, are numbers of the form r*10^j-1, with r=1..9 and j >= 0.
  8. # This solution uses the following formula:
  9. # Sum_{j=0..n} (r*10^j-1) = (r * 10^(n+1) - r - 9*n - 9)/9
  10. # By letting r=1..9, we get:
  11. # R(k) = Sum_{r=1..9} Sum_{j=0..n} (r*10^j-1) = 2*(2^n * 5^(n+2) - 7) - 9*n
  12. # From R(k), we get S(k) as:
  13. # S(k) = R(k) - Sum_{j=2+(k mod 9) .. 9} (j*10^n-1)
  14. # where:
  15. # n = floor(k/9)
  16. # https://projecteuler.net/problem=684
  17. # Runtime: 0.188s
  18. const MOD = 1000000007
  19. func S(k) {
  20. var n = floor(k/9)
  21. var sum = (2*(2**n * 5**(n+2) - 7) - 9*n)
  22. for r in (k%9 + 2 .. 9) {
  23. sum -= (r * 10**n - 1)
  24. }
  25. sum
  26. }
  27. func modular_S(k) {
  28. var n = floor(k/9)
  29. var sum = (2*(powmod(2, n, MOD) * powmod(5, n+2, MOD) - 7) - 9*n)%MOD
  30. for r in (k%9 + 2 .. 9) {
  31. sum -= (r * powmod(10, n, MOD) - 1)%MOD
  32. }
  33. sum % MOD
  34. }
  35. assert_eq(S(20), 1074)
  36. assert_eq(S(49), 1999945)
  37. assert_eq(modular_S(20), 1074)
  38. assert_eq(modular_S(49), 1999945)
  39. say sum(2..90, {|k|
  40. modular_S(fib(k))
  41. })%MOD