684 Inverse Digit Sum -- v2.sf 1.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960
  1. #!/usr/bin/ruby
  2. # Daniel "Trizen" Șuteu
  3. # Date: 27 November 2019
  4. # https://github.com/trizen
  5. # See OEIS sequence:
  6. # https://oeis.org/A051885
  7. # The smallest numbers whose sum of digits is n, are numbers of the form r*10^j-1, with r=1..9 and j >= 0.
  8. # This solution uses the following formula:
  9. # Sum_{j=0..n} (r*10^j-1) = (r * 10^(n+1) - r - 9*n - 9)/9
  10. # By letting r=1..9, we get:
  11. # R(k) = Sum_{r=1..9} Sum_{j=0..n} (r*10^j-1) = 2*(2^n * 5^(n+2) - 7) - 9*n
  12. # From R(k), we get S(k) as:
  13. # S(k) = R(k) - Sum_{j=2+(k mod 9) .. 9} (j*10^n-1)
  14. # S(k) = R(k) - (10-r) * (10^n * (r+9) - 2)/2
  15. # Simplifying the formula, we get:
  16. # S(k) = (((r-1)*r + 10) * 10^n - 2*(r + 9*n + 4))/2
  17. # where:
  18. # n = floor(k/9)
  19. # r = 2+(k mod 9)
  20. # https://projecteuler.net/problem=684
  21. # Runtime: 0.176s
  22. const MOD = 1000000007
  23. func S(k) {
  24. var n = floor(k/9)
  25. var r = (k%9 + 2)
  26. (((r-1)*r + 10) * 10**n - 2*(r + 9*n + 4))/2
  27. }
  28. func modular_S(k) {
  29. var n = floor(k/9)
  30. var r = (k%9 + 2)
  31. (((r-1)*r + 10) * Mod(10,MOD)**n - 2*(r + 9*n + 4)) / Mod(2, MOD)
  32. }
  33. assert_eq(S(20), 1074)
  34. assert_eq(S(49), 1999945)
  35. assert_eq(modular_S(20), 1074)
  36. assert_eq(modular_S(49), 1999945)
  37. say map(2..90, {|k|
  38. modular_S(fib(k))
  39. }).reduce {|a,b| a + b }