521 Smallest prime factor -- v3.pl 1.4 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162
  1. #!/usr/bin/perl
  2. # Daniel "Trizen" Șuteu
  3. # Date: 20 July 2020
  4. # https://github.com/trizen
  5. # Smallest prime factor
  6. # https://projecteuler.net/problem=521
  7. # For each prime p < sqrt(n), we count how many integers k <= n have lpf(k) = p.
  8. # We have G(n,p) = number of integers k <= n such that lpf(k) = p.
  9. # G(n,p) can be evaluated recursively over primes q < p.
  10. # Equivalently, G(n,p) is the number of p-rough numbers <= floor(n/p);
  11. # There are t = floor(n/p) integers <= n that are divisible by p.
  12. # From t we subtract the number integers that are divisible by smaller primes than p.
  13. # The sum of the primes is p * G(n,p).
  14. # When G(n,p) = 1, then G(n,p+r) = 1 for all r >= 1.
  15. # Runtime: 2.5 seconds (when Kim Walisch's `primesum` tool is installed).
  16. use 5.020;
  17. use integer;
  18. use ntheory qw(:all);
  19. use Math::Sidef qw();
  20. use experimental qw(signatures);
  21. local $Sidef::Types::Number::Number::USE_PRIMESUM = 1;
  22. my $MOD = 1e9;
  23. sub S($n) {
  24. my $sum = 0;
  25. my $s = sqrtint($n);
  26. forprimes {
  27. $sum += mulmod($_, rough_count($n/$_, $_), $MOD);
  28. } $s;
  29. addmod($sum, Math::Sidef::sum_primes(next_prime($s), $n) % $MOD, $MOD);
  30. }
  31. say S(1e12);
  32. __END__
  33. S(10^1) = 28
  34. S(10^2) = 1257
  35. S(10^3) = 79189
  36. S(10^4) = 5786451
  37. S(10^5) = 455298741
  38. S(10^6) = 37568404989
  39. S(10^7) = 3203714961609
  40. S(10^8) = 279218813374515
  41. S(10^9) = 24739731010688477
  42. S(10^10) = 2220827932427240957
  43. S(10^11) = 201467219561892846337