123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115 |
- // Copyright 2014 The go-ethereum Authors
- // This file is part of the go-ethereum library.
- //
- // The go-ethereum library is free software: you can redistribute it and/or modify
- // it under the terms of the GNU Lesser General Public License as published by
- // the Free Software Foundation, either version 3 of the License, or
- // (at your option) any later version.
- //
- // The go-ethereum library is distributed in the hope that it will be useful,
- // but WITHOUT ANY WARRANTY; without even the implied warranty of
- // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- // GNU Lesser General Public License for more details.
- //
- // You should have received a copy of the GNU Lesser General Public License
- // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
- package trie
- // Trie keys are dealt with in three distinct encodings:
- //
- // KEYBYTES encoding contains the actual key and nothing else. This encoding is the
- // input to most API functions.
- //
- // HEX encoding contains one byte for each nibble of the key and an optional trailing
- // 'terminator' byte of value 0x10 which indicates whether or not the node at the key
- // contains a value. Hex key encoding is used for nodes loaded in memory because it's
- // convenient to access.
- //
- // COMPACT encoding is defined by the Ethereum Yellow Paper (it's called "hex prefix
- // encoding" there) and contains the bytes of the key and a flag. The high nibble of the
- // first byte contains the flag; the lowest bit encoding the oddness of the length and
- // the second-lowest encoding whether the node at the key is a value node. The low nibble
- // of the first byte is zero in the case of an even number of nibbles and the first nibble
- // in the case of an odd number. All remaining nibbles (now an even number) fit properly
- // into the remaining bytes. Compact encoding is used for nodes stored on disk.
- func hexToCompact(hex []byte) []byte {
- terminator := byte(0)
- if hasTerm(hex) {
- terminator = 1
- hex = hex[:len(hex)-1]
- }
- buf := make([]byte, len(hex)/2+1)
- buf[0] = terminator << 5 // the flag byte
- if len(hex)&1 == 1 {
- buf[0] |= 1 << 4 // odd flag
- buf[0] |= hex[0] // first nibble is contained in the first byte
- hex = hex[1:]
- }
- decodeNibbles(hex, buf[1:])
- return buf
- }
- func compactToHex(compact []byte) []byte {
- base := keybytesToHex(compact)
- base = base[:len(base)-1]
- // apply terminator flag
- if base[0] >= 2 {
- base = append(base, 16)
- }
- // apply odd flag
- chop := 2 - base[0]&1
- return base[chop:]
- }
- func keybytesToHex(str []byte) []byte {
- l := len(str)*2 + 1
- var nibbles = make([]byte, l)
- for i, b := range str {
- nibbles[i*2] = b / 16
- nibbles[i*2+1] = b % 16
- }
- nibbles[l-1] = 16
- return nibbles
- }
- // hexToKeybytes turns hex nibbles into key bytes.
- // This can only be used for keys of even length.
- func hexToKeybytes(hex []byte) []byte {
- if hasTerm(hex) {
- hex = hex[:len(hex)-1]
- }
- if len(hex)&1 != 0 {
- panic("can't convert hex key of odd length")
- }
- key := make([]byte, len(hex)/2)
- decodeNibbles(hex, key)
- return key
- }
- func decodeNibbles(nibbles []byte, bytes []byte) {
- for bi, ni := 0, 0; ni < len(nibbles); bi, ni = bi+1, ni+2 {
- bytes[bi] = nibbles[ni]<<4 | nibbles[ni+1]
- }
- }
- // prefixLen returns the length of the common prefix of a and b.
- func prefixLen(a, b []byte) int {
- var i, length = 0, len(a)
- if len(b) < length {
- length = len(b)
- }
- for ; i < length; i++ {
- if a[i] != b[i] {
- break
- }
- }
- return i
- }
- // hasTerm returns whether a hex key has the terminator flag.
- func hasTerm(s []byte) bool {
- return len(s) > 0 && s[len(s)-1] == 16
- }
|