123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305 |
- // Copyright 2010 The Go Authors. All rights reserved.
- // Copyright 2011 ThePiachu. All rights reserved.
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are
- // met:
- //
- // * Redistributions of source code must retain the above copyright
- // notice, this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above
- // copyright notice, this list of conditions and the following disclaimer
- // in the documentation and/or other materials provided with the
- // distribution.
- // * Neither the name of Google Inc. nor the names of its
- // contributors may be used to endorse or promote products derived from
- // this software without specific prior written permission.
- // * The name of ThePiachu may not be used to endorse or promote products
- // derived from this software without specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- package secp256k1
- import (
- "crypto/elliptic"
- "math/big"
- "unsafe"
- "github.com/ethereum/go-ethereum/common/math"
- )
- /*
- #include "libsecp256k1/include/secp256k1.h"
- extern int secp256k1_ext_scalar_mul(const secp256k1_context* ctx, const unsigned char *point, const unsigned char *scalar);
- */
- import "C"
- // This code is from https://github.com/ThePiachu/GoBit and implements
- // several Koblitz elliptic curves over prime fields.
- //
- // The curve methods, internally, on Jacobian coordinates. For a given
- // (x, y) position on the curve, the Jacobian coordinates are (x1, y1,
- // z1) where x = x1/z1² and y = y1/z1³. The greatest speedups come
- // when the whole calculation can be performed within the transform
- // (as in ScalarMult and ScalarBaseMult). But even for Add and Double,
- // it's faster to apply and reverse the transform than to operate in
- // affine coordinates.
- // A BitCurve represents a Koblitz Curve with a=0.
- // See http://www.hyperelliptic.org/EFD/g1p/auto-shortw.html
- type BitCurve struct {
- P *big.Int // the order of the underlying field
- N *big.Int // the order of the base point
- B *big.Int // the constant of the BitCurve equation
- Gx, Gy *big.Int // (x,y) of the base point
- BitSize int // the size of the underlying field
- }
- func (BitCurve *BitCurve) Params() *elliptic.CurveParams {
- return &elliptic.CurveParams{
- P: BitCurve.P,
- N: BitCurve.N,
- B: BitCurve.B,
- Gx: BitCurve.Gx,
- Gy: BitCurve.Gy,
- BitSize: BitCurve.BitSize,
- }
- }
- // IsOnCurve returns true if the given (x,y) lies on the BitCurve.
- func (BitCurve *BitCurve) IsOnCurve(x, y *big.Int) bool {
- // y² = x³ + b
- y2 := new(big.Int).Mul(y, y) //y²
- y2.Mod(y2, BitCurve.P) //y²%P
- x3 := new(big.Int).Mul(x, x) //x²
- x3.Mul(x3, x) //x³
- x3.Add(x3, BitCurve.B) //x³+B
- x3.Mod(x3, BitCurve.P) //(x³+B)%P
- return x3.Cmp(y2) == 0
- }
- //TODO: double check if the function is okay
- // affineFromJacobian reverses the Jacobian transform. See the comment at the
- // top of the file.
- func (BitCurve *BitCurve) affineFromJacobian(x, y, z *big.Int) (xOut, yOut *big.Int) {
- zinv := new(big.Int).ModInverse(z, BitCurve.P)
- zinvsq := new(big.Int).Mul(zinv, zinv)
- xOut = new(big.Int).Mul(x, zinvsq)
- xOut.Mod(xOut, BitCurve.P)
- zinvsq.Mul(zinvsq, zinv)
- yOut = new(big.Int).Mul(y, zinvsq)
- yOut.Mod(yOut, BitCurve.P)
- return
- }
- // Add returns the sum of (x1,y1) and (x2,y2)
- func (BitCurve *BitCurve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) {
- z := new(big.Int).SetInt64(1)
- return BitCurve.affineFromJacobian(BitCurve.addJacobian(x1, y1, z, x2, y2, z))
- }
- // addJacobian takes two points in Jacobian coordinates, (x1, y1, z1) and
- // (x2, y2, z2) and returns their sum, also in Jacobian form.
- func (BitCurve *BitCurve) addJacobian(x1, y1, z1, x2, y2, z2 *big.Int) (*big.Int, *big.Int, *big.Int) {
- // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl
- z1z1 := new(big.Int).Mul(z1, z1)
- z1z1.Mod(z1z1, BitCurve.P)
- z2z2 := new(big.Int).Mul(z2, z2)
- z2z2.Mod(z2z2, BitCurve.P)
- u1 := new(big.Int).Mul(x1, z2z2)
- u1.Mod(u1, BitCurve.P)
- u2 := new(big.Int).Mul(x2, z1z1)
- u2.Mod(u2, BitCurve.P)
- h := new(big.Int).Sub(u2, u1)
- if h.Sign() == -1 {
- h.Add(h, BitCurve.P)
- }
- i := new(big.Int).Lsh(h, 1)
- i.Mul(i, i)
- j := new(big.Int).Mul(h, i)
- s1 := new(big.Int).Mul(y1, z2)
- s1.Mul(s1, z2z2)
- s1.Mod(s1, BitCurve.P)
- s2 := new(big.Int).Mul(y2, z1)
- s2.Mul(s2, z1z1)
- s2.Mod(s2, BitCurve.P)
- r := new(big.Int).Sub(s2, s1)
- if r.Sign() == -1 {
- r.Add(r, BitCurve.P)
- }
- r.Lsh(r, 1)
- v := new(big.Int).Mul(u1, i)
- x3 := new(big.Int).Set(r)
- x3.Mul(x3, x3)
- x3.Sub(x3, j)
- x3.Sub(x3, v)
- x3.Sub(x3, v)
- x3.Mod(x3, BitCurve.P)
- y3 := new(big.Int).Set(r)
- v.Sub(v, x3)
- y3.Mul(y3, v)
- s1.Mul(s1, j)
- s1.Lsh(s1, 1)
- y3.Sub(y3, s1)
- y3.Mod(y3, BitCurve.P)
- z3 := new(big.Int).Add(z1, z2)
- z3.Mul(z3, z3)
- z3.Sub(z3, z1z1)
- if z3.Sign() == -1 {
- z3.Add(z3, BitCurve.P)
- }
- z3.Sub(z3, z2z2)
- if z3.Sign() == -1 {
- z3.Add(z3, BitCurve.P)
- }
- z3.Mul(z3, h)
- z3.Mod(z3, BitCurve.P)
- return x3, y3, z3
- }
- // Double returns 2*(x,y)
- func (BitCurve *BitCurve) Double(x1, y1 *big.Int) (*big.Int, *big.Int) {
- z1 := new(big.Int).SetInt64(1)
- return BitCurve.affineFromJacobian(BitCurve.doubleJacobian(x1, y1, z1))
- }
- // doubleJacobian takes a point in Jacobian coordinates, (x, y, z), and
- // returns its double, also in Jacobian form.
- func (BitCurve *BitCurve) doubleJacobian(x, y, z *big.Int) (*big.Int, *big.Int, *big.Int) {
- // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l
- a := new(big.Int).Mul(x, x) //X1²
- b := new(big.Int).Mul(y, y) //Y1²
- c := new(big.Int).Mul(b, b) //B²
- d := new(big.Int).Add(x, b) //X1+B
- d.Mul(d, d) //(X1+B)²
- d.Sub(d, a) //(X1+B)²-A
- d.Sub(d, c) //(X1+B)²-A-C
- d.Mul(d, big.NewInt(2)) //2*((X1+B)²-A-C)
- e := new(big.Int).Mul(big.NewInt(3), a) //3*A
- f := new(big.Int).Mul(e, e) //E²
- x3 := new(big.Int).Mul(big.NewInt(2), d) //2*D
- x3.Sub(f, x3) //F-2*D
- x3.Mod(x3, BitCurve.P)
- y3 := new(big.Int).Sub(d, x3) //D-X3
- y3.Mul(e, y3) //E*(D-X3)
- y3.Sub(y3, new(big.Int).Mul(big.NewInt(8), c)) //E*(D-X3)-8*C
- y3.Mod(y3, BitCurve.P)
- z3 := new(big.Int).Mul(y, z) //Y1*Z1
- z3.Mul(big.NewInt(2), z3) //3*Y1*Z1
- z3.Mod(z3, BitCurve.P)
- return x3, y3, z3
- }
- func (BitCurve *BitCurve) ScalarMult(Bx, By *big.Int, scalar []byte) (*big.Int, *big.Int) {
- // Ensure scalar is exactly 32 bytes. We pad always, even if
- // scalar is 32 bytes long, to avoid a timing side channel.
- if len(scalar) > 32 {
- panic("can't handle scalars > 256 bits")
- }
- // NOTE: potential timing issue
- padded := make([]byte, 32)
- copy(padded[32-len(scalar):], scalar)
- scalar = padded
- // Do the multiplication in C, updating point.
- point := make([]byte, 64)
- math.ReadBits(Bx, point[:32])
- math.ReadBits(By, point[32:])
- pointPtr := (*C.uchar)(unsafe.Pointer(&point[0]))
- scalarPtr := (*C.uchar)(unsafe.Pointer(&scalar[0]))
- res := C.secp256k1_ext_scalar_mul(context, pointPtr, scalarPtr)
- // Unpack the result and clear temporaries.
- x := new(big.Int).SetBytes(point[:32])
- y := new(big.Int).SetBytes(point[32:])
- for i := range point {
- point[i] = 0
- }
- for i := range padded {
- scalar[i] = 0
- }
- if res != 1 {
- return nil, nil
- }
- return x, y
- }
- // ScalarBaseMult returns k*G, where G is the base point of the group and k is
- // an integer in big-endian form.
- func (BitCurve *BitCurve) ScalarBaseMult(k []byte) (*big.Int, *big.Int) {
- return BitCurve.ScalarMult(BitCurve.Gx, BitCurve.Gy, k)
- }
- // Marshal converts a point into the form specified in section 4.3.6 of ANSI
- // X9.62.
- func (BitCurve *BitCurve) Marshal(x, y *big.Int) []byte {
- byteLen := (BitCurve.BitSize + 7) >> 3
- ret := make([]byte, 1+2*byteLen)
- ret[0] = 4 // uncompressed point flag
- math.ReadBits(x, ret[1:1+byteLen])
- math.ReadBits(y, ret[1+byteLen:])
- return ret
- }
- // Unmarshal converts a point, serialised by Marshal, into an x, y pair. On
- // error, x = nil.
- func (BitCurve *BitCurve) Unmarshal(data []byte) (x, y *big.Int) {
- byteLen := (BitCurve.BitSize + 7) >> 3
- if len(data) != 1+2*byteLen {
- return
- }
- if data[0] != 4 { // uncompressed form
- return
- }
- x = new(big.Int).SetBytes(data[1 : 1+byteLen])
- y = new(big.Int).SetBytes(data[1+byteLen:])
- return
- }
- var theCurve = new(BitCurve)
- func init() {
- // See SEC 2 section 2.7.1
- // curve parameters taken from:
- // http://www.secg.org/collateral/sec2_final.pdf
- theCurve.P = math.MustParseBig256("0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F")
- theCurve.N = math.MustParseBig256("0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141")
- theCurve.B = math.MustParseBig256("0x0000000000000000000000000000000000000000000000000000000000000007")
- theCurve.Gx = math.MustParseBig256("0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798")
- theCurve.Gy = math.MustParseBig256("0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8")
- theCurve.BitSize = 256
- }
- // S256 returns a BitCurve which implements secp256k1.
- func S256() *BitCurve {
- return theCurve
- }
|