linechart.go 7.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332
  1. // Copyright 2017 Zack Guo <zack.y.guo@gmail.com>. All rights reserved.
  2. // Use of this source code is governed by a MIT license that can
  3. // be found in the LICENSE file.
  4. package termui
  5. import (
  6. "fmt"
  7. "math"
  8. )
  9. // only 16 possible combinations, why bother
  10. var braillePatterns = map[[2]int]rune{
  11. [2]int{0, 0}: '⣀',
  12. [2]int{0, 1}: '⡠',
  13. [2]int{0, 2}: '⡐',
  14. [2]int{0, 3}: '⡈',
  15. [2]int{1, 0}: '⢄',
  16. [2]int{1, 1}: '⠤',
  17. [2]int{1, 2}: '⠔',
  18. [2]int{1, 3}: '⠌',
  19. [2]int{2, 0}: '⢂',
  20. [2]int{2, 1}: '⠢',
  21. [2]int{2, 2}: '⠒',
  22. [2]int{2, 3}: '⠊',
  23. [2]int{3, 0}: '⢁',
  24. [2]int{3, 1}: '⠡',
  25. [2]int{3, 2}: '⠑',
  26. [2]int{3, 3}: '⠉',
  27. }
  28. var lSingleBraille = [4]rune{'\u2840', '⠄', '⠂', '⠁'}
  29. var rSingleBraille = [4]rune{'\u2880', '⠠', '⠐', '⠈'}
  30. // LineChart has two modes: braille(default) and dot. Using braille gives 2x capicity as dot mode,
  31. // because one braille char can represent two data points.
  32. /*
  33. lc := termui.NewLineChart()
  34. lc.BorderLabel = "braille-mode Line Chart"
  35. lc.Data = [1.2, 1.3, 1.5, 1.7, 1.5, 1.6, 1.8, 2.0]
  36. lc.Width = 50
  37. lc.Height = 12
  38. lc.AxesColor = termui.ColorWhite
  39. lc.LineColor = termui.ColorGreen | termui.AttrBold
  40. // termui.Render(lc)...
  41. */
  42. type LineChart struct {
  43. Block
  44. Data []float64
  45. DataLabels []string // if unset, the data indices will be used
  46. Mode string // braille | dot
  47. DotStyle rune
  48. LineColor Attribute
  49. scale float64 // data span per cell on y-axis
  50. AxesColor Attribute
  51. drawingX int
  52. drawingY int
  53. axisYHeight int
  54. axisXWidth int
  55. axisYLabelGap int
  56. axisXLabelGap int
  57. topValue float64
  58. bottomValue float64
  59. labelX [][]rune
  60. labelY [][]rune
  61. labelYSpace int
  62. maxY float64
  63. minY float64
  64. autoLabels bool
  65. }
  66. // NewLineChart returns a new LineChart with current theme.
  67. func NewLineChart() *LineChart {
  68. lc := &LineChart{Block: *NewBlock()}
  69. lc.AxesColor = ThemeAttr("linechart.axes.fg")
  70. lc.LineColor = ThemeAttr("linechart.line.fg")
  71. lc.Mode = "braille"
  72. lc.DotStyle = '•'
  73. lc.axisXLabelGap = 2
  74. lc.axisYLabelGap = 1
  75. lc.bottomValue = math.Inf(1)
  76. lc.topValue = math.Inf(-1)
  77. return lc
  78. }
  79. // one cell contains two data points
  80. // so the capicity is 2x as dot-mode
  81. func (lc *LineChart) renderBraille() Buffer {
  82. buf := NewBuffer()
  83. // return: b -> which cell should the point be in
  84. // m -> in the cell, divided into 4 equal height levels, which subcell?
  85. getPos := func(d float64) (b, m int) {
  86. cnt4 := int((d-lc.bottomValue)/(lc.scale/4) + 0.5)
  87. b = cnt4 / 4
  88. m = cnt4 % 4
  89. return
  90. }
  91. // plot points
  92. for i := 0; 2*i+1 < len(lc.Data) && i < lc.axisXWidth; i++ {
  93. b0, m0 := getPos(lc.Data[2*i])
  94. b1, m1 := getPos(lc.Data[2*i+1])
  95. if b0 == b1 {
  96. c := Cell{
  97. Ch: braillePatterns[[2]int{m0, m1}],
  98. Bg: lc.Bg,
  99. Fg: lc.LineColor,
  100. }
  101. y := lc.innerArea.Min.Y + lc.innerArea.Dy() - 3 - b0
  102. x := lc.innerArea.Min.X + lc.labelYSpace + 1 + i
  103. buf.Set(x, y, c)
  104. } else {
  105. c0 := Cell{Ch: lSingleBraille[m0],
  106. Fg: lc.LineColor,
  107. Bg: lc.Bg}
  108. x0 := lc.innerArea.Min.X + lc.labelYSpace + 1 + i
  109. y0 := lc.innerArea.Min.Y + lc.innerArea.Dy() - 3 - b0
  110. buf.Set(x0, y0, c0)
  111. c1 := Cell{Ch: rSingleBraille[m1],
  112. Fg: lc.LineColor,
  113. Bg: lc.Bg}
  114. x1 := lc.innerArea.Min.X + lc.labelYSpace + 1 + i
  115. y1 := lc.innerArea.Min.Y + lc.innerArea.Dy() - 3 - b1
  116. buf.Set(x1, y1, c1)
  117. }
  118. }
  119. return buf
  120. }
  121. func (lc *LineChart) renderDot() Buffer {
  122. buf := NewBuffer()
  123. for i := 0; i < len(lc.Data) && i < lc.axisXWidth; i++ {
  124. c := Cell{
  125. Ch: lc.DotStyle,
  126. Fg: lc.LineColor,
  127. Bg: lc.Bg,
  128. }
  129. x := lc.innerArea.Min.X + lc.labelYSpace + 1 + i
  130. y := lc.innerArea.Min.Y + lc.innerArea.Dy() - 3 - int((lc.Data[i]-lc.bottomValue)/lc.scale+0.5)
  131. buf.Set(x, y, c)
  132. }
  133. return buf
  134. }
  135. func (lc *LineChart) calcLabelX() {
  136. lc.labelX = [][]rune{}
  137. for i, l := 0, 0; i < len(lc.DataLabels) && l < lc.axisXWidth; i++ {
  138. if lc.Mode == "dot" {
  139. if l >= len(lc.DataLabels) {
  140. break
  141. }
  142. s := str2runes(lc.DataLabels[l])
  143. w := strWidth(lc.DataLabels[l])
  144. if l+w <= lc.axisXWidth {
  145. lc.labelX = append(lc.labelX, s)
  146. }
  147. l += w + lc.axisXLabelGap
  148. } else { // braille
  149. if 2*l >= len(lc.DataLabels) {
  150. break
  151. }
  152. s := str2runes(lc.DataLabels[2*l])
  153. w := strWidth(lc.DataLabels[2*l])
  154. if l+w <= lc.axisXWidth {
  155. lc.labelX = append(lc.labelX, s)
  156. }
  157. l += w + lc.axisXLabelGap
  158. }
  159. }
  160. }
  161. func shortenFloatVal(x float64) string {
  162. s := fmt.Sprintf("%.2f", x)
  163. if len(s)-3 > 3 {
  164. s = fmt.Sprintf("%.2e", x)
  165. }
  166. if x < 0 {
  167. s = fmt.Sprintf("%.2f", x)
  168. }
  169. return s
  170. }
  171. func (lc *LineChart) calcLabelY() {
  172. span := lc.topValue - lc.bottomValue
  173. lc.scale = span / float64(lc.axisYHeight)
  174. n := (1 + lc.axisYHeight) / (lc.axisYLabelGap + 1)
  175. lc.labelY = make([][]rune, n)
  176. maxLen := 0
  177. for i := 0; i < n; i++ {
  178. s := str2runes(shortenFloatVal(lc.bottomValue + float64(i)*span/float64(n)))
  179. if len(s) > maxLen {
  180. maxLen = len(s)
  181. }
  182. lc.labelY[i] = s
  183. }
  184. lc.labelYSpace = maxLen
  185. }
  186. func (lc *LineChart) calcLayout() {
  187. // set datalabels if it is not provided
  188. if (lc.DataLabels == nil || len(lc.DataLabels) == 0) || lc.autoLabels {
  189. lc.autoLabels = true
  190. lc.DataLabels = make([]string, len(lc.Data))
  191. for i := range lc.Data {
  192. lc.DataLabels[i] = fmt.Sprint(i)
  193. }
  194. }
  195. // lazy increase, to avoid y shaking frequently
  196. // update bound Y when drawing is gonna overflow
  197. lc.minY = lc.Data[0]
  198. lc.maxY = lc.Data[0]
  199. // valid visible range
  200. vrange := lc.innerArea.Dx()
  201. if lc.Mode == "braille" {
  202. vrange = 2 * lc.innerArea.Dx()
  203. }
  204. if vrange > len(lc.Data) {
  205. vrange = len(lc.Data)
  206. }
  207. for _, v := range lc.Data[:vrange] {
  208. if v > lc.maxY {
  209. lc.maxY = v
  210. }
  211. if v < lc.minY {
  212. lc.minY = v
  213. }
  214. }
  215. span := lc.maxY - lc.minY
  216. if lc.minY < lc.bottomValue {
  217. lc.bottomValue = lc.minY - 0.2*span
  218. }
  219. if lc.maxY > lc.topValue {
  220. lc.topValue = lc.maxY + 0.2*span
  221. }
  222. lc.axisYHeight = lc.innerArea.Dy() - 2
  223. lc.calcLabelY()
  224. lc.axisXWidth = lc.innerArea.Dx() - 1 - lc.labelYSpace
  225. lc.calcLabelX()
  226. lc.drawingX = lc.innerArea.Min.X + 1 + lc.labelYSpace
  227. lc.drawingY = lc.innerArea.Min.Y
  228. }
  229. func (lc *LineChart) plotAxes() Buffer {
  230. buf := NewBuffer()
  231. origY := lc.innerArea.Min.Y + lc.innerArea.Dy() - 2
  232. origX := lc.innerArea.Min.X + lc.labelYSpace
  233. buf.Set(origX, origY, Cell{Ch: ORIGIN, Fg: lc.AxesColor, Bg: lc.Bg})
  234. for x := origX + 1; x < origX+lc.axisXWidth; x++ {
  235. buf.Set(x, origY, Cell{Ch: HDASH, Fg: lc.AxesColor, Bg: lc.Bg})
  236. }
  237. for dy := 1; dy <= lc.axisYHeight; dy++ {
  238. buf.Set(origX, origY-dy, Cell{Ch: VDASH, Fg: lc.AxesColor, Bg: lc.Bg})
  239. }
  240. // x label
  241. oft := 0
  242. for _, rs := range lc.labelX {
  243. if oft+len(rs) > lc.axisXWidth {
  244. break
  245. }
  246. for j, r := range rs {
  247. c := Cell{
  248. Ch: r,
  249. Fg: lc.AxesColor,
  250. Bg: lc.Bg,
  251. }
  252. x := origX + oft + j
  253. y := lc.innerArea.Min.Y + lc.innerArea.Dy() - 1
  254. buf.Set(x, y, c)
  255. }
  256. oft += len(rs) + lc.axisXLabelGap
  257. }
  258. // y labels
  259. for i, rs := range lc.labelY {
  260. for j, r := range rs {
  261. buf.Set(
  262. lc.innerArea.Min.X+j,
  263. origY-i*(lc.axisYLabelGap+1),
  264. Cell{Ch: r, Fg: lc.AxesColor, Bg: lc.Bg})
  265. }
  266. }
  267. return buf
  268. }
  269. // Buffer implements Bufferer interface.
  270. func (lc *LineChart) Buffer() Buffer {
  271. buf := lc.Block.Buffer()
  272. if lc.Data == nil || len(lc.Data) == 0 {
  273. return buf
  274. }
  275. lc.calcLayout()
  276. buf.Merge(lc.plotAxes())
  277. if lc.Mode == "dot" {
  278. buf.Merge(lc.renderDot())
  279. } else {
  280. buf.Merge(lc.renderBraille())
  281. }
  282. return buf
  283. }