123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576 |
- // Copyright 2014 The go-ethereum Authors
- // This file is part of the go-ethereum library.
- //
- // The go-ethereum library is free software: you can redistribute it and/or modify
- // it under the terms of the GNU Lesser General Public License as published by
- // the Free Software Foundation, either version 3 of the License, or
- // (at your option) any later version.
- //
- // The go-ethereum library is distributed in the hope that it will be useful,
- // but WITHOUT ANY WARRANTY; without even the implied warranty of
- // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- // GNU Lesser General Public License for more details.
- //
- // You should have received a copy of the GNU Lesser General Public License
- // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
- package trie
- import (
- "bytes"
- "container/heap"
- "errors"
- "github.com/ethereum/go-ethereum/common"
- "github.com/ethereum/go-ethereum/rlp"
- )
- // Iterator is a key-value trie iterator that traverses a Trie.
- type Iterator struct {
- nodeIt NodeIterator
- Key []byte // Current data key on which the iterator is positioned on
- Value []byte // Current data value on which the iterator is positioned on
- Err error
- }
- // NewIterator creates a new key-value iterator from a node iterator
- func NewIterator(it NodeIterator) *Iterator {
- return &Iterator{
- nodeIt: it,
- }
- }
- // Next moves the iterator forward one key-value entry.
- func (it *Iterator) Next() bool {
- for it.nodeIt.Next(true) {
- if it.nodeIt.Leaf() {
- it.Key = it.nodeIt.LeafKey()
- it.Value = it.nodeIt.LeafBlob()
- return true
- }
- }
- it.Key = nil
- it.Value = nil
- it.Err = it.nodeIt.Error()
- return false
- }
- // Prove generates the Merkle proof for the leaf node the iterator is currently
- // positioned on.
- func (it *Iterator) Prove() [][]byte {
- return it.nodeIt.LeafProof()
- }
- // NodeIterator is an iterator to traverse the trie pre-order.
- type NodeIterator interface {
- // Next moves the iterator to the next node. If the parameter is false, any child
- // nodes will be skipped.
- Next(bool) bool
- // Error returns the error status of the iterator.
- Error() error
- // Hash returns the hash of the current node.
- Hash() common.Hash
- // Parent returns the hash of the parent of the current node. The hash may be the one
- // grandparent if the immediate parent is an internal node with no hash.
- Parent() common.Hash
- // Path returns the hex-encoded path to the current node.
- // Callers must not retain references to the return value after calling Next.
- // For leaf nodes, the last element of the path is the 'terminator symbol' 0x10.
- Path() []byte
- // Leaf returns true iff the current node is a leaf node.
- Leaf() bool
- // LeafKey returns the key of the leaf. The method panics if the iterator is not
- // positioned at a leaf. Callers must not retain references to the value after
- // calling Next.
- LeafKey() []byte
- // LeafBlob returns the content of the leaf. The method panics if the iterator
- // is not positioned at a leaf. Callers must not retain references to the value
- // after calling Next.
- LeafBlob() []byte
- // LeafProof returns the Merkle proof of the leaf. The method panics if the
- // iterator is not positioned at a leaf. Callers must not retain references
- // to the value after calling Next.
- LeafProof() [][]byte
- }
- // nodeIteratorState represents the iteration state at one particular node of the
- // trie, which can be resumed at a later invocation.
- type nodeIteratorState struct {
- hash common.Hash // Hash of the node being iterated (nil if not standalone)
- node node // Trie node being iterated
- parent common.Hash // Hash of the first full ancestor node (nil if current is the root)
- index int // Child to be processed next
- pathlen int // Length of the path to this node
- }
- type nodeIterator struct {
- trie *Trie // Trie being iterated
- stack []*nodeIteratorState // Hierarchy of trie nodes persisting the iteration state
- path []byte // Path to the current node
- err error // Failure set in case of an internal error in the iterator
- }
- // errIteratorEnd is stored in nodeIterator.err when iteration is done.
- var errIteratorEnd = errors.New("end of iteration")
- // seekError is stored in nodeIterator.err if the initial seek has failed.
- type seekError struct {
- key []byte
- err error
- }
- func (e seekError) Error() string {
- return "seek error: " + e.err.Error()
- }
- func newNodeIterator(trie *Trie, start []byte) NodeIterator {
- if trie.Hash() == emptyState {
- return new(nodeIterator)
- }
- it := &nodeIterator{trie: trie}
- it.err = it.seek(start)
- return it
- }
- func (it *nodeIterator) Hash() common.Hash {
- if len(it.stack) == 0 {
- return common.Hash{}
- }
- return it.stack[len(it.stack)-1].hash
- }
- func (it *nodeIterator) Parent() common.Hash {
- if len(it.stack) == 0 {
- return common.Hash{}
- }
- return it.stack[len(it.stack)-1].parent
- }
- func (it *nodeIterator) Leaf() bool {
- return hasTerm(it.path)
- }
- func (it *nodeIterator) LeafKey() []byte {
- if len(it.stack) > 0 {
- if _, ok := it.stack[len(it.stack)-1].node.(valueNode); ok {
- return hexToKeybytes(it.path)
- }
- }
- panic("not at leaf")
- }
- func (it *nodeIterator) LeafBlob() []byte {
- if len(it.stack) > 0 {
- if node, ok := it.stack[len(it.stack)-1].node.(valueNode); ok {
- return []byte(node)
- }
- }
- panic("not at leaf")
- }
- func (it *nodeIterator) LeafProof() [][]byte {
- if len(it.stack) > 0 {
- if _, ok := it.stack[len(it.stack)-1].node.(valueNode); ok {
- hasher := newHasher(0, 0, nil)
- proofs := make([][]byte, 0, len(it.stack))
- for i, item := range it.stack[:len(it.stack)-1] {
- // Gather nodes that end up as hash nodes (or the root)
- node, _, _ := hasher.hashChildren(item.node, nil)
- hashed, _ := hasher.store(node, nil, false)
- if _, ok := hashed.(hashNode); ok || i == 0 {
- enc, _ := rlp.EncodeToBytes(node)
- proofs = append(proofs, enc)
- }
- }
- return proofs
- }
- }
- panic("not at leaf")
- }
- func (it *nodeIterator) Path() []byte {
- return it.path
- }
- func (it *nodeIterator) Error() error {
- if it.err == errIteratorEnd {
- return nil
- }
- if seek, ok := it.err.(seekError); ok {
- return seek.err
- }
- return it.err
- }
- // Next moves the iterator to the next node, returning whether there are any
- // further nodes. In case of an internal error this method returns false and
- // sets the Error field to the encountered failure. If `descend` is false,
- // skips iterating over any subnodes of the current node.
- func (it *nodeIterator) Next(descend bool) bool {
- if it.err == errIteratorEnd {
- return false
- }
- if seek, ok := it.err.(seekError); ok {
- if it.err = it.seek(seek.key); it.err != nil {
- return false
- }
- }
- // Otherwise step forward with the iterator and report any errors.
- state, parentIndex, path, err := it.peek(descend)
- it.err = err
- if it.err != nil {
- return false
- }
- it.push(state, parentIndex, path)
- return true
- }
- func (it *nodeIterator) seek(prefix []byte) error {
- // The path we're looking for is the hex encoded key without terminator.
- key := keybytesToHex(prefix)
- key = key[:len(key)-1]
- // Move forward until we're just before the closest match to key.
- for {
- state, parentIndex, path, err := it.peek(bytes.HasPrefix(key, it.path))
- if err == errIteratorEnd {
- return errIteratorEnd
- } else if err != nil {
- return seekError{prefix, err}
- } else if bytes.Compare(path, key) >= 0 {
- return nil
- }
- it.push(state, parentIndex, path)
- }
- }
- // peek creates the next state of the iterator.
- func (it *nodeIterator) peek(descend bool) (*nodeIteratorState, *int, []byte, error) {
- if len(it.stack) == 0 {
- // Initialize the iterator if we've just started.
- root := it.trie.Hash()
- state := &nodeIteratorState{node: it.trie.root, index: -1}
- if root != emptyRoot {
- state.hash = root
- }
- err := state.resolve(it.trie, nil)
- return state, nil, nil, err
- }
- if !descend {
- // If we're skipping children, pop the current node first
- it.pop()
- }
- // Continue iteration to the next child
- for len(it.stack) > 0 {
- parent := it.stack[len(it.stack)-1]
- ancestor := parent.hash
- if (ancestor == common.Hash{}) {
- ancestor = parent.parent
- }
- state, path, ok := it.nextChild(parent, ancestor)
- if ok {
- if err := state.resolve(it.trie, path); err != nil {
- return parent, &parent.index, path, err
- }
- return state, &parent.index, path, nil
- }
- // No more child nodes, move back up.
- it.pop()
- }
- return nil, nil, nil, errIteratorEnd
- }
- func (st *nodeIteratorState) resolve(tr *Trie, path []byte) error {
- if hash, ok := st.node.(hashNode); ok {
- resolved, err := tr.resolveHash(hash, path)
- if err != nil {
- return err
- }
- st.node = resolved
- st.hash = common.BytesToHash(hash)
- }
- return nil
- }
- func (it *nodeIterator) nextChild(parent *nodeIteratorState, ancestor common.Hash) (*nodeIteratorState, []byte, bool) {
- switch node := parent.node.(type) {
- case *fullNode:
- // Full node, move to the first non-nil child.
- for i := parent.index + 1; i < len(node.Children); i++ {
- child := node.Children[i]
- if child != nil {
- hash, _ := child.cache()
- state := &nodeIteratorState{
- hash: common.BytesToHash(hash),
- node: child,
- parent: ancestor,
- index: -1,
- pathlen: len(it.path),
- }
- path := append(it.path, byte(i))
- parent.index = i - 1
- return state, path, true
- }
- }
- case *shortNode:
- // Short node, return the pointer singleton child
- if parent.index < 0 {
- hash, _ := node.Val.cache()
- state := &nodeIteratorState{
- hash: common.BytesToHash(hash),
- node: node.Val,
- parent: ancestor,
- index: -1,
- pathlen: len(it.path),
- }
- path := append(it.path, node.Key...)
- return state, path, true
- }
- }
- return parent, it.path, false
- }
- func (it *nodeIterator) push(state *nodeIteratorState, parentIndex *int, path []byte) {
- it.path = path
- it.stack = append(it.stack, state)
- if parentIndex != nil {
- *parentIndex++
- }
- }
- func (it *nodeIterator) pop() {
- parent := it.stack[len(it.stack)-1]
- it.path = it.path[:parent.pathlen]
- it.stack = it.stack[:len(it.stack)-1]
- }
- func compareNodes(a, b NodeIterator) int {
- if cmp := bytes.Compare(a.Path(), b.Path()); cmp != 0 {
- return cmp
- }
- if a.Leaf() && !b.Leaf() {
- return -1
- } else if b.Leaf() && !a.Leaf() {
- return 1
- }
- if cmp := bytes.Compare(a.Hash().Bytes(), b.Hash().Bytes()); cmp != 0 {
- return cmp
- }
- if a.Leaf() && b.Leaf() {
- return bytes.Compare(a.LeafBlob(), b.LeafBlob())
- }
- return 0
- }
- type differenceIterator struct {
- a, b NodeIterator // Nodes returned are those in b - a.
- eof bool // Indicates a has run out of elements
- count int // Number of nodes scanned on either trie
- }
- // NewDifferenceIterator constructs a NodeIterator that iterates over elements in b that
- // are not in a. Returns the iterator, and a pointer to an integer recording the number
- // of nodes seen.
- func NewDifferenceIterator(a, b NodeIterator) (NodeIterator, *int) {
- a.Next(true)
- it := &differenceIterator{
- a: a,
- b: b,
- }
- return it, &it.count
- }
- func (it *differenceIterator) Hash() common.Hash {
- return it.b.Hash()
- }
- func (it *differenceIterator) Parent() common.Hash {
- return it.b.Parent()
- }
- func (it *differenceIterator) Leaf() bool {
- return it.b.Leaf()
- }
- func (it *differenceIterator) LeafKey() []byte {
- return it.b.LeafKey()
- }
- func (it *differenceIterator) LeafBlob() []byte {
- return it.b.LeafBlob()
- }
- func (it *differenceIterator) LeafProof() [][]byte {
- return it.b.LeafProof()
- }
- func (it *differenceIterator) Path() []byte {
- return it.b.Path()
- }
- func (it *differenceIterator) Next(bool) bool {
- // Invariants:
- // - We always advance at least one element in b.
- // - At the start of this function, a's path is lexically greater than b's.
- if !it.b.Next(true) {
- return false
- }
- it.count++
- if it.eof {
- // a has reached eof, so we just return all elements from b
- return true
- }
- for {
- switch compareNodes(it.a, it.b) {
- case -1:
- // b jumped past a; advance a
- if !it.a.Next(true) {
- it.eof = true
- return true
- }
- it.count++
- case 1:
- // b is before a
- return true
- case 0:
- // a and b are identical; skip this whole subtree if the nodes have hashes
- hasHash := it.a.Hash() == common.Hash{}
- if !it.b.Next(hasHash) {
- return false
- }
- it.count++
- if !it.a.Next(hasHash) {
- it.eof = true
- return true
- }
- it.count++
- }
- }
- }
- func (it *differenceIterator) Error() error {
- if err := it.a.Error(); err != nil {
- return err
- }
- return it.b.Error()
- }
- type nodeIteratorHeap []NodeIterator
- func (h nodeIteratorHeap) Len() int { return len(h) }
- func (h nodeIteratorHeap) Less(i, j int) bool { return compareNodes(h[i], h[j]) < 0 }
- func (h nodeIteratorHeap) Swap(i, j int) { h[i], h[j] = h[j], h[i] }
- func (h *nodeIteratorHeap) Push(x interface{}) { *h = append(*h, x.(NodeIterator)) }
- func (h *nodeIteratorHeap) Pop() interface{} {
- n := len(*h)
- x := (*h)[n-1]
- *h = (*h)[0 : n-1]
- return x
- }
- type unionIterator struct {
- items *nodeIteratorHeap // Nodes returned are the union of the ones in these iterators
- count int // Number of nodes scanned across all tries
- }
- // NewUnionIterator constructs a NodeIterator that iterates over elements in the union
- // of the provided NodeIterators. Returns the iterator, and a pointer to an integer
- // recording the number of nodes visited.
- func NewUnionIterator(iters []NodeIterator) (NodeIterator, *int) {
- h := make(nodeIteratorHeap, len(iters))
- copy(h, iters)
- heap.Init(&h)
- ui := &unionIterator{items: &h}
- return ui, &ui.count
- }
- func (it *unionIterator) Hash() common.Hash {
- return (*it.items)[0].Hash()
- }
- func (it *unionIterator) Parent() common.Hash {
- return (*it.items)[0].Parent()
- }
- func (it *unionIterator) Leaf() bool {
- return (*it.items)[0].Leaf()
- }
- func (it *unionIterator) LeafKey() []byte {
- return (*it.items)[0].LeafKey()
- }
- func (it *unionIterator) LeafBlob() []byte {
- return (*it.items)[0].LeafBlob()
- }
- func (it *unionIterator) LeafProof() [][]byte {
- return (*it.items)[0].LeafProof()
- }
- func (it *unionIterator) Path() []byte {
- return (*it.items)[0].Path()
- }
- // Next returns the next node in the union of tries being iterated over.
- //
- // It does this by maintaining a heap of iterators, sorted by the iteration
- // order of their next elements, with one entry for each source trie. Each
- // time Next() is called, it takes the least element from the heap to return,
- // advancing any other iterators that also point to that same element. These
- // iterators are called with descend=false, since we know that any nodes under
- // these nodes will also be duplicates, found in the currently selected iterator.
- // Whenever an iterator is advanced, it is pushed back into the heap if it still
- // has elements remaining.
- //
- // In the case that descend=false - eg, we're asked to ignore all subnodes of the
- // current node - we also advance any iterators in the heap that have the current
- // path as a prefix.
- func (it *unionIterator) Next(descend bool) bool {
- if len(*it.items) == 0 {
- return false
- }
- // Get the next key from the union
- least := heap.Pop(it.items).(NodeIterator)
- // Skip over other nodes as long as they're identical, or, if we're not descending, as
- // long as they have the same prefix as the current node.
- for len(*it.items) > 0 && ((!descend && bytes.HasPrefix((*it.items)[0].Path(), least.Path())) || compareNodes(least, (*it.items)[0]) == 0) {
- skipped := heap.Pop(it.items).(NodeIterator)
- // Skip the whole subtree if the nodes have hashes; otherwise just skip this node
- if skipped.Next(skipped.Hash() == common.Hash{}) {
- it.count++
- // If there are more elements, push the iterator back on the heap
- heap.Push(it.items, skipped)
- }
- }
- if least.Next(descend) {
- it.count++
- heap.Push(it.items, least)
- }
- return len(*it.items) > 0
- }
- func (it *unionIterator) Error() error {
- for i := 0; i < len(*it.items); i++ {
- if err := (*it.items)[i].Error(); err != nil {
- return err
- }
- }
- return nil
- }
|