123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439 |
- // Copyright 2015 The go-ethereum Authors
- // This file is part of the go-ethereum library.
- //
- // The go-ethereum library is free software: you can redistribute it and/or modify
- // it under the terms of the GNU Lesser General Public License as published by
- // the Free Software Foundation, either version 3 of the License, or
- // (at your option) any later version.
- //
- // The go-ethereum library is distributed in the hope that it will be useful,
- // but WITHOUT ANY WARRANTY; without even the implied warranty of
- // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- // GNU Lesser General Public License for more details.
- //
- // You should have received a copy of the GNU Lesser General Public License
- // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
- package discv5
- import (
- "crypto/ecdsa"
- "crypto/elliptic"
- "encoding/hex"
- "errors"
- "fmt"
- "math/big"
- "math/rand"
- "net"
- "net/url"
- "regexp"
- "strconv"
- "strings"
- "github.com/ethereum/go-ethereum/common"
- "github.com/ethereum/go-ethereum/crypto"
- )
- // Node represents a host on the network.
- // The public fields of Node may not be modified.
- type Node struct {
- IP net.IP // len 4 for IPv4 or 16 for IPv6
- UDP, TCP uint16 // port numbers
- ID NodeID // the node's public key
- // Network-related fields are contained in nodeNetGuts.
- // These fields are not supposed to be used off the
- // Network.loop goroutine.
- nodeNetGuts
- }
- // NewNode creates a new node. It is mostly meant to be used for
- // testing purposes.
- func NewNode(id NodeID, ip net.IP, udpPort, tcpPort uint16) *Node {
- if ipv4 := ip.To4(); ipv4 != nil {
- ip = ipv4
- }
- return &Node{
- IP: ip,
- UDP: udpPort,
- TCP: tcpPort,
- ID: id,
- nodeNetGuts: nodeNetGuts{sha: crypto.Keccak256Hash(id[:])},
- }
- }
- func (n *Node) addr() *net.UDPAddr {
- return &net.UDPAddr{IP: n.IP, Port: int(n.UDP)}
- }
- func (n *Node) setAddr(a *net.UDPAddr) {
- n.IP = a.IP
- if ipv4 := a.IP.To4(); ipv4 != nil {
- n.IP = ipv4
- }
- n.UDP = uint16(a.Port)
- }
- // compares the given address against the stored values.
- func (n *Node) addrEqual(a *net.UDPAddr) bool {
- ip := a.IP
- if ipv4 := a.IP.To4(); ipv4 != nil {
- ip = ipv4
- }
- return n.UDP == uint16(a.Port) && n.IP.Equal(ip)
- }
- // Incomplete returns true for nodes with no IP address.
- func (n *Node) Incomplete() bool {
- return n.IP == nil
- }
- // checks whether n is a valid complete node.
- func (n *Node) validateComplete() error {
- if n.Incomplete() {
- return errors.New("incomplete node")
- }
- if n.UDP == 0 {
- return errors.New("missing UDP port")
- }
- if n.TCP == 0 {
- return errors.New("missing TCP port")
- }
- if n.IP.IsMulticast() || n.IP.IsUnspecified() {
- return errors.New("invalid IP (multicast/unspecified)")
- }
- _, err := n.ID.Pubkey() // validate the key (on curve, etc.)
- return err
- }
- // The string representation of a Node is a URL.
- // Please see ParseNode for a description of the format.
- func (n *Node) String() string {
- u := url.URL{Scheme: "enode"}
- if n.Incomplete() {
- u.Host = fmt.Sprintf("%x", n.ID[:])
- } else {
- addr := net.TCPAddr{IP: n.IP, Port: int(n.TCP)}
- u.User = url.User(fmt.Sprintf("%x", n.ID[:]))
- u.Host = addr.String()
- if n.UDP != n.TCP {
- u.RawQuery = "discport=" + strconv.Itoa(int(n.UDP))
- }
- }
- return u.String()
- }
- var incompleteNodeURL = regexp.MustCompile("(?i)^(?:enode://)?([0-9a-f]+)$")
- // ParseNode parses a node designator.
- //
- // There are two basic forms of node designators
- // - incomplete nodes, which only have the public key (node ID)
- // - complete nodes, which contain the public key and IP/Port information
- //
- // For incomplete nodes, the designator must look like one of these
- //
- // enode://<hex node id>
- // <hex node id>
- //
- // For complete nodes, the node ID is encoded in the username portion
- // of the URL, separated from the host by an @ sign. The hostname can
- // only be given as an IP address, DNS domain names are not allowed.
- // The port in the host name section is the TCP listening port. If the
- // TCP and UDP (discovery) ports differ, the UDP port is specified as
- // query parameter "discport".
- //
- // In the following example, the node URL describes
- // a node with IP address 10.3.58.6, TCP listening port 30303
- // and UDP discovery port 30301.
- //
- // enode://<hex node id>@10.3.58.6:30303?discport=30301
- func ParseNode(rawurl string) (*Node, error) {
- if m := incompleteNodeURL.FindStringSubmatch(rawurl); m != nil {
- id, err := HexID(m[1])
- if err != nil {
- return nil, fmt.Errorf("invalid node ID (%v)", err)
- }
- return NewNode(id, nil, 0, 0), nil
- }
- return parseComplete(rawurl)
- }
- func parseComplete(rawurl string) (*Node, error) {
- var (
- id NodeID
- ip net.IP
- tcpPort, udpPort uint64
- )
- u, err := url.Parse(rawurl)
- if err != nil {
- return nil, err
- }
- if u.Scheme != "enode" {
- return nil, errors.New("invalid URL scheme, want \"enode\"")
- }
- // Parse the Node ID from the user portion.
- if u.User == nil {
- return nil, errors.New("does not contain node ID")
- }
- if id, err = HexID(u.User.String()); err != nil {
- return nil, fmt.Errorf("invalid node ID (%v)", err)
- }
- // Parse the IP address.
- host, port, err := net.SplitHostPort(u.Host)
- if err != nil {
- return nil, fmt.Errorf("invalid host: %v", err)
- }
- if ip = net.ParseIP(host); ip == nil {
- return nil, errors.New("invalid IP address")
- }
- // Ensure the IP is 4 bytes long for IPv4 addresses.
- if ipv4 := ip.To4(); ipv4 != nil {
- ip = ipv4
- }
- // Parse the port numbers.
- if tcpPort, err = strconv.ParseUint(port, 10, 16); err != nil {
- return nil, errors.New("invalid port")
- }
- udpPort = tcpPort
- qv := u.Query()
- if qv.Get("discport") != "" {
- udpPort, err = strconv.ParseUint(qv.Get("discport"), 10, 16)
- if err != nil {
- return nil, errors.New("invalid discport in query")
- }
- }
- return NewNode(id, ip, uint16(udpPort), uint16(tcpPort)), nil
- }
- // MustParseNode parses a node URL. It panics if the URL is not valid.
- func MustParseNode(rawurl string) *Node {
- n, err := ParseNode(rawurl)
- if err != nil {
- panic("invalid node URL: " + err.Error())
- }
- return n
- }
- // MarshalText implements encoding.TextMarshaler.
- func (n *Node) MarshalText() ([]byte, error) {
- return []byte(n.String()), nil
- }
- // UnmarshalText implements encoding.TextUnmarshaler.
- func (n *Node) UnmarshalText(text []byte) error {
- dec, err := ParseNode(string(text))
- if err == nil {
- *n = *dec
- }
- return err
- }
- // type nodeQueue []*Node
- //
- // // pushNew adds n to the end if it is not present.
- // func (nl *nodeList) appendNew(n *Node) {
- // for _, entry := range n {
- // if entry == n {
- // return
- // }
- // }
- // *nq = append(*nq, n)
- // }
- //
- // // popRandom removes a random node. Nodes closer to
- // // to the head of the beginning of the have a slightly higher probability.
- // func (nl *nodeList) popRandom() *Node {
- // ix := rand.Intn(len(*nq))
- // //TODO: probability as mentioned above.
- // nl.removeIndex(ix)
- // }
- //
- // func (nl *nodeList) removeIndex(i int) *Node {
- // slice = *nl
- // if len(*slice) <= i {
- // return nil
- // }
- // *nl = append(slice[:i], slice[i+1:]...)
- // }
- const nodeIDBits = 512
- // NodeID is a unique identifier for each node.
- // The node identifier is a marshaled elliptic curve public key.
- type NodeID [nodeIDBits / 8]byte
- // NodeID prints as a long hexadecimal number.
- func (n NodeID) String() string {
- return fmt.Sprintf("%x", n[:])
- }
- // The Go syntax representation of a NodeID is a call to HexID.
- func (n NodeID) GoString() string {
- return fmt.Sprintf("discover.HexID(\"%x\")", n[:])
- }
- // TerminalString returns a shortened hex string for terminal logging.
- func (n NodeID) TerminalString() string {
- return hex.EncodeToString(n[:8])
- }
- // HexID converts a hex string to a NodeID.
- // The string may be prefixed with 0x.
- func HexID(in string) (NodeID, error) {
- var id NodeID
- b, err := hex.DecodeString(strings.TrimPrefix(in, "0x"))
- if err != nil {
- return id, err
- } else if len(b) != len(id) {
- return id, fmt.Errorf("wrong length, want %d hex chars", len(id)*2)
- }
- copy(id[:], b)
- return id, nil
- }
- // MustHexID converts a hex string to a NodeID.
- // It panics if the string is not a valid NodeID.
- func MustHexID(in string) NodeID {
- id, err := HexID(in)
- if err != nil {
- panic(err)
- }
- return id
- }
- // PubkeyID returns a marshaled representation of the given public key.
- func PubkeyID(pub *ecdsa.PublicKey) NodeID {
- var id NodeID
- pbytes := elliptic.Marshal(pub.Curve, pub.X, pub.Y)
- if len(pbytes)-1 != len(id) {
- panic(fmt.Errorf("need %d bit pubkey, got %d bits", (len(id)+1)*8, len(pbytes)))
- }
- copy(id[:], pbytes[1:])
- return id
- }
- // Pubkey returns the public key represented by the node ID.
- // It returns an error if the ID is not a point on the curve.
- func (n NodeID) Pubkey() (*ecdsa.PublicKey, error) {
- p := &ecdsa.PublicKey{Curve: crypto.S256(), X: new(big.Int), Y: new(big.Int)}
- half := len(n) / 2
- p.X.SetBytes(n[:half])
- p.Y.SetBytes(n[half:])
- if !p.Curve.IsOnCurve(p.X, p.Y) {
- return nil, errors.New("id is invalid secp256k1 curve point")
- }
- return p, nil
- }
- func (id NodeID) mustPubkey() ecdsa.PublicKey {
- pk, err := id.Pubkey()
- if err != nil {
- panic(err)
- }
- return *pk
- }
- // recoverNodeID computes the public key used to sign the
- // given hash from the signature.
- func recoverNodeID(hash, sig []byte) (id NodeID, err error) {
- pubkey, err := crypto.Ecrecover(hash, sig)
- if err != nil {
- return id, err
- }
- if len(pubkey)-1 != len(id) {
- return id, fmt.Errorf("recovered pubkey has %d bits, want %d bits", len(pubkey)*8, (len(id)+1)*8)
- }
- for i := range id {
- id[i] = pubkey[i+1]
- }
- return id, nil
- }
- // distcmp compares the distances a->target and b->target.
- // Returns -1 if a is closer to target, 1 if b is closer to target
- // and 0 if they are equal.
- func distcmp(target, a, b common.Hash) int {
- for i := range target {
- da := a[i] ^ target[i]
- db := b[i] ^ target[i]
- if da > db {
- return 1
- } else if da < db {
- return -1
- }
- }
- return 0
- }
- // table of leading zero counts for bytes [0..255]
- var lzcount = [256]int{
- 8, 7, 6, 6, 5, 5, 5, 5,
- 4, 4, 4, 4, 4, 4, 4, 4,
- 3, 3, 3, 3, 3, 3, 3, 3,
- 3, 3, 3, 3, 3, 3, 3, 3,
- 2, 2, 2, 2, 2, 2, 2, 2,
- 2, 2, 2, 2, 2, 2, 2, 2,
- 2, 2, 2, 2, 2, 2, 2, 2,
- 2, 2, 2, 2, 2, 2, 2, 2,
- 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1,
- 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0,
- }
- // logdist returns the logarithmic distance between a and b, log2(a ^ b).
- func logdist(a, b common.Hash) int {
- lz := 0
- for i := range a {
- x := a[i] ^ b[i]
- if x == 0 {
- lz += 8
- } else {
- lz += lzcount[x]
- break
- }
- }
- return len(a)*8 - lz
- }
- // hashAtDistance returns a random hash such that logdist(a, b) == n
- func hashAtDistance(a common.Hash, n int) (b common.Hash) {
- if n == 0 {
- return a
- }
- // flip bit at position n, fill the rest with random bits
- b = a
- pos := len(a) - n/8 - 1
- bit := byte(0x01) << (byte(n%8) - 1)
- if bit == 0 {
- pos++
- bit = 0x80
- }
- b[pos] = a[pos]&^bit | ^a[pos]&bit // TODO: randomize end bits
- for i := pos + 1; i < len(a); i++ {
- b[i] = byte(rand.Intn(255))
- }
- return b
- }
|